
Citation: Liu, Y.; Chu, Z. A Dynamic

Fusion of Local and Non-Local

Features-Based Feedback Network

on Super-Resolution. Symmetry 2023,

15, 885. https://doi.org/10.3390/

sym15040885

Academic Editors: Jiankang Zhang,

Bin Li and Alexander Zaslavski

Received: 16 February 2023

Revised: 1 April 2023

Accepted: 7 April 2023

Published: 9 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Dynamic Fusion of Local and Non-Local Features-Based
Feedback Network on Super-Resolution
Yuhao Liu 1,∗ and Zhenzhong Chu 2

1 College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
2 School of Mechanical Engineering, University of Shanghai for Science and Technology,

Shanghai 200093, China
* Correspondence: liuyuhao@shmtu.edu.cn

Abstract: Many Symmetry blocks were proposed in the Single Image Super-Resolution (SISR) task.
The Attention-based block is powerful but costly on non-local features, while the Convolutional-
based block is good at efficiently handling the local features. However, assembling two different
Symmetry blocks will generate an Asymmetry block, making the classic Symmetry-block-based
Super-Resolution (SR) architecture fail to deal with these Asymmetry blocks. In this paper, we
proposed a new Dynamic fusion of Local and Non-local features-based Feedback Network (DLNFN)
for SR, which focus on optimizing the traditional Symmetry-block-based SR architecture to hold
two Symmetry blocks in parallel, making two Symmetry-blocks working on what they do best.
(1) We introduce the Convolutional-based block for the local features and Attention-based network
block for non-local features and propose the Delivery–Adjust–Fusion framework to hold these
blocks. (2) we propose a Dynamic Weight block (DW block) which can generate different weight
values to fuse the outputs on different feedback iterations. (3) We introduce the MAConv layer to
optimize the In block, which is critical for our two blocks-based feedback algorithm. Experiments
show our proposed DLNFN can take full advantage of two different blocks and outperform other
state-of-the-art algorithms.

Keywords: single-image super-resolution; self-attention; feedback network; dynamic weight; deep
convolutional network

1. Introduction

Single-Image Super-Resolution (SISR) aims to reconstruct a high-resolution (HR) image
from a single low-resolution (LR) input image. The mapping between LR and HR images
is not bijective, leading to a challenging and ill-posed problem. The recent success of deep
neural network based image SR achieved significant success [1], such as Convolutional [2],
Feedback [3], and Attention [4]-based HR.

The most recent advance mainly introduces only one block to extract features from
LR images to generate SR images; different blocks have own unique advantages: the
Convolutional-based SR [2] is adept at extracting local features from the input LR images
(receptive field is limited by kernel size), while the Attention-based SR [4] is adept at
non-local features from the input LR images but costly. Both kinds of methods achieved
remarkable results on PSNR or SSIM, but the performance of these methods is varied with
the input LR image’s features.

Addressing the above shortage, we try to make the best of both Attention-based SR
and Convolutional-based SR. We introduce the Attention-based block to focus on extracting
the non-local features, while the Convolution-based block focuses on extracting the local
features. This strategy can reinforce the advantages and avoid the disadvantages of both
blocks.

However, simply connecting two different blocks in parallel cannot improve the
performance: (1) Simply introducing two blocks will double the network scale, which

Symmetry 2023, 15, 885. https://doi.org/10.3390/sym15040885 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15040885
https://doi.org/10.3390/sym15040885
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-6376-8963
https://doi.org/10.3390/sym15040885
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15040885?type=check_update&version=2


Symmetry 2023, 15, 885 2 of 15

leads to difficult training. To solve this problem, we introduce the feedback strategy
for our network. The Feedback-based SR can reduce the network scale while achieving
remarkable performance. (2) How do we merge two blocks’ feature maps together to
generate the desired outputs? Chen’s work [5] indicated attention favor low-frequency
patterns at low level and high-frequency patterns at higher levels, which means different
level features need different weight values to fuse. So simply adding the corresponding
feature maps together (can be seen as fixed weighting add) cannot vary the weight values
during different levels. Another famous method is simply one Convolutional layer fusion,
but Convolutional layer fusion cannot deal with non-local features and will lead to one
branch gradient vanishing if bad initialization for the Convolutional layer. (3) How to
generate desired input feature maps for two blocks? The two branches-based feedback
block is sensitive to the input feature maps. It is expected that the input features need to be
easily separated to feed into two blocks, and the first iteration input for the feedback block
should be in the same form as the following iteration inputs, making the feedback block
focus on extracting similar features during all the iterations. The deeper input block can
ease the challenge, but it will lead to a vanishing gradient problem.

Addressing the three challenges mentioned above, in this paper, we proposed the
Dynamic fusion of Local and Non-local features-based Feedback Network (DLNFN) for
Super-Resolution (SR). (1) We take the Feedback-based SR as the overall structure, and intro-
duce the Cross-Scale Non-Local block (CSNL) from Mei’s work [4] as the Attention-based
block and the Feedback-block (FB) from Li’s work [3] as the Convolution-based-block,
and the two blocks placed in parallel, We also proposed the Delivery–Adjust–Fusion frame-
work to hold these blocks, making them working on what they do best. (2) We introduce a
Dynamic Weighting block (DW block) to evaluate the weight values for two branch feature
maps under different inputs for each feedback iteration and sum the corresponding feature
maps together. (3) We introduce a Mutual Affine Convolutional (MAConv) layer from
Liang’s work [6] as the input layer. The MAConv layer can enhance feature expressiveness
without increasing receptive field, model size, and computation; therefore, one MAConv
can get a close performance using fewer model sizes than one traditional Convolutional
layer. By cascading some MAConv layers as the input layer, we can obtain a deeper input
layer that is easy to train.

In summary, the main contributions of this paper are three-folds:

1. We introduce the Convolution-based block and Attention-based block as the base
block of our Feedback-based SR; the Convolution-based block focuses on extracting
local feature, and the Attention-based block focus on extracting non-local feature. We
also propose the Delivery–Adjust–Fusion framework to hold these blocks, making
them work on what they do best.

2. We proposed a Dynamic Weighting block (DW block) to generate the right weight
values for different inputs under different iterations, and fuse both branches’ feature
maps together.

3. We introduce the MAConv layer as the input block, which is critical for our two
branch-based feedback algorithms. By cascading 4 MAConv layers as the input layer,
we can obtain a deeper input layer while easy to train.

The experiments show our proposal outperforms other state-of-the-art algorithms.

2. Related Works

In this section, we will give a brief introduction to the famous SR algorithms related to
our work.

The Convolutional-based SR can extract local features efficiently. The receptive field
is limited by kernel size (usually 3× 3), but it can be extended by cascading many Con-
volutional layers. The SRCNN [7] is well-known as the first deep Convolutional-based
SR, which is only 3 Convolutional layers. VDSR [8] is a very deep Convolutional-based
SR with 20 Convolutional layers, so VDSR can extract deeper features which will improve
the SR performance, but difficult to converge. SRCNN and VDSR are well-known classical



Symmetry 2023, 15, 885 3 of 15

SISR algorithms, the performances are not superior but are still an inspiration for other
algorithms.

The Feedback-based SR is a famous network structure that can go very deep without
increasing the number of parameters. DRCN [9] is a typically Feedback-based SR, in which
up to 16 recursions, the outputs of all recursions are fed into the end (Reconstruction Net)
so different levels of feature maps can be used to generate SR images. SRFBN [3] is a newly
proposed Feedback-based SR algorithm, the feedback block of SRFBN is with G projection
groups sequentially with dense skip connections among them, totally T iterations. Each
projection group includes a Deconvolutional layer that follows a Convolutional layer,
the Deconvolutional layer can up-sampled features (LR - HR) while the Convolutional
layer can down-sampled (HR - LR) to get rid of useless information, this strategy can
generate powerful high-level representations. However, both DRCN and SRFBNs failed to
consider the Non-local features.

There are many works on optimizing the Convolutional-based SR to reduce the cost.
Adder Neural Networks (AdderNets) utilize additions to calculate the output features,
thus, avoiding massive energy consumption of Conventional multiplications, but cannot
be directly introduced into SR due to the different calculation paradigm. Song et. al. [10]
thoroughly analyze the relationship between an adder operation and the identity mapping
and insert shortcuts to enhance the performance, proposing the AdderSR. The experiments
show AdderSR can achieve comparable performance to that of the CNN baselines with an
about 2.5× reduction in energy consumption. Liang et. al. [6] proposed a new Mutual Affine
Convolution (MAConv) layer which enhanced feature expressiveness without increasing
receptive field, model size, and computation burden. The MAConv exploits channel
interdependence, by splitting channels with an affine transformation module whose input
is the rest of channel splits. The experiments show that the proposed MAConv achieves
the best performance with fewer parameters and FLOPs. Both AdderSR and MAConv
layers can reduce the cost, which is very helpful for us in designing larger-scale networks.
However, we cannot simply replace all the Convolutional layers with them, as they were
not designed to improve the performance (PSNR/SSIM).

Attention, which can extract non-local features, has been studied extensively in the
previous research [11,12]. There are many simple but efficient Attention-based models,
such as Channel Attention [11], Spatial Attention [13,14], and Pixel Attention [15]. These
Attention-based models can extract long-range (non-local) features under different di-
mensions. To improve the SR model’s performance further, many larger Attention-based
models were introduced.

Mei et al. [4] proposed the Cross-Scale Non-Local (CSNL) attention module, which can
deal with different scale non-local features. The CSNL is a cross-scale feature correlation-
based module by introducing a down-sample scaling factor, so the CSNL can deal with
different scale non-local features. Niu et al. [16] proposed a new Holistic Attention Network
(HAN), which consists of a Layer Attention Module (LAM) and a Channel-Spatial Attention
Module(CSAM) to model the holistic inter-dependencies among layers, channels, and posi-
tions. These attention models are powerful but costly due to the quadratic computational
cost of the input size and introduced too much noise [17].

Introducing sparse representation into the Attention-based model can alleviate the
problem of noise and cost. Mei et al. [18] introduce sparse representation into the Attention-
based model, proposing a novel Non-Local Sparse Attention (NLSA) with dynamic sparse
attention pattern while reducing the computational cost from quadratic to asymptotic
linear with respect to the input size. Xia et al. [17] proposed a novel Efficient Non-Local
Contrastive Attention (ENLCA) into SR, which also introduced sparse into the module.
The ENLCA merely requires linear computation and space complexity with respect to
the input size. Both NLSA and ENLCA significantly reduce the cost while achieving
comparable performance as the state-of-the-art Attention-based module. However, both of
these models did not consider the different scale similar features and only considered the
non-local features.



Symmetry 2023, 15, 885 4 of 15

Fusing different blocks together is a difficult task. Behjati et al. [19] introduced a
novel procedure called residual attention feature group (RAFG), in which both parallelizing
attention and residual block are linearly fused. They also propose a directional variance
attention network (DiVANet), which is a computationally efficient yet accurate network
for SISR. Our previous work [20] introduced a heavy-block LNFSR that introduced three
different blocks; we also proposed an Up-Fusion-Delivery layer to fuse three blocks together.
The proposed LNFSR achieved the best performance, but the network is too large, and
the fusion method is crude and needs further optimization. Chen et al. [5] introduced
an Attention Dropout Module, which dynamically produces sum-to-one attention for its
internal branches. This strategy is ingenious and inspired our work, but the proposed
Attention Dropout Module is lightweight, which only focuses on the non-local features,
and it is not designed for the Feedback-based network, so the strategy cannot be introduced
into our work directly.

Motivated by the recent work analyzed above, we proposed the Dynamic fusion of
Local and Non-local features-based Feedback Network (DLNFN) for SR, expecting the
Attention-based block (for non-local features) and the Convolutional-based block (for local
features) can work on what they do best. The fusion method is inspired by Chen’s work [5]
but making great improvement for our work. We also introduce the MAConv layer, which
was optimized to reduce the cost in Liang’s work [6], to replace the Convolutional layers in
the critical place.

3. The Dynamic Fusion of Local and Non-Local Features-Based Feedback Network
(DLNFN) for SR

In this section, we introduce our proposed Dynamic fusion of Local and Non-local
features-based Feedback Network (DLNFN) for SR. Firstly, we will introduce the network
overall Architecture of our proposed DLNFN in Section 3.1. Secondly, we will introduce the
main block (DLN block) of our proposed DLNFN in Section 3.2. At last, we will discuss the
implementation details not mentioned above in Section 3.3. The acronyms and notations
used in this Section are listed in Appendix A (Table A1).

3.1. The Network Overall Architecture of Our DLNFN

In this section, we will give a detailed introduction to the network architecture of our
proposed DLNFN, the overall architecture is shown in Figure 1. Our DLNFN consists of
3 parts: Input Feature Extraction block (In block), Dynamic fusion of Local and Non-local
features-based Feedback block (DLN block), and Reconstruction block (Rc block). Let
us denote ILR as the input Low-Resolution (LR) image, IHR as the corresponding High-
Resolution (HR) image, and ISR as the Super-Resolution (SR) image, which is the output of
the DLNFN.

DLN block

SRSR

LRLR

Attention blockAttention block

DW blockDW block

Deep NetDeep Net

DAF 

framework

DAF 

framework

Attention block

DW block

Deep Net

DAF 

framework
ConvConv MAConvMAConv

In blockIn block Rc block

Figure 1. The network overall architecture of our LNFSR.



Symmetry 2023, 15, 885 5 of 15

Input Feature Extraction block (In block): The In block is the first block extracting
features from the input LR image. Due to the In block being far from the output, it is easy to
be vanishing gradient problem (especially for Feedback-based SR, which can be considered
as a very deep network if we expend Feedback block into a series of blocks). Precious work
usually takes only one Convolutional layer to reduce the vanishing gradient problem [3,4],
but this trick isn’t suitable for our DLNFN because the DLN block is three blocks in parallel,
which is sensitive to the feature maps from the In block. The first iteration’s input (the In
block outputs) must be similar to the following iteration’s inputs (the outputs of the DLN
block in different iteration). The suitable output for In block will release the DLN block
from compensating different iteration’s inputs, so powerful In block can help the DLN
block focus on extracting similar features during different iterations.

To enhance the feature extraction capacity and expressiveness for the In block, we
introduce the MAConv layer [6] into the In block of our DLNFN. The MAConv layer
can enhance feature expressiveness without increasing receptive field, model size, and
computation, so one MAConv can get close performance but fewer model size, as well
as computation complexity, than the traditional Convolutional layer. By cascading some
MAConv layers for our In block, we can obtain a deeper input layer while easy to train.

The In block cascades one Convolutional layer and 4 MAConv layers, with PReLU
following each layer. The Convolutional layer is to expand the channel from 3 (for RGB
image) of the input LR images to the desired channels (64 for our DLNFN), and the 4
MAConv layers extract useful feature maps for the following block (DLN block).

If we denote the In block as In(·) and the input of In block is the LR image (ILR), the
output of In block is shown in Equation (1):

FIn = In(ILR) (1)

The output of In block FIn are fed into the following block (DLN block).
Dynamic fusion of Local and Non-local features-based Feedback block (DLN block):

The DLN block is the Feedback block for our DLNFN, which serves as the main block of
our DLNFN. The structure is shown in Figure 1. During each iteration, the output of the
DLN block is the up-scale feature map (the same dimensions as the HR image); this trick
will reduce the load of the following block (Rc block). The DLN block is denoted as DLN(·),
and the input of the DLN block is the output of In block (FIn), so the output of DLN block
DLN(·) is shown in Equation (2):

FDLN = DLN(FIn) (2)

For the DLN block: (1) we introduce two base blocks to focus on extracting differ-
ent kinds of features: we introduce the Cross-Scale Non-Local block (CSNL) from Mei’s
work [4], as the Attention-based block, to focus on extracting non-Local features. We also
introduce the Feedback-block (FB) from Li’s work [3], as the Convolutional-based block,
to focus on extracting local features. Both blocks are placed in parallel, as Figure 1, making
both blocks work on what they do best. (2) We introduce a Dynamic Weight block (DW
block) to score two blocks’ weight values for each iteration’s input, so different inputs
under different iterations can get different weight values to sum two blocks’ feature maps
together.

Figure 2 is the structure of our DLN block, we will give a detailed description of the
DLN block in Section 3.2.

Reconstruction block (Rc block): The Rc block is simply one Convolutional layer,
which reconstructs the SR image by assembling the up-scale feature maps of the DLN
block’s output. The Rc block is denoted as Rc(·) and the input of Rc block is the output
of DLN block (FDLN), so the output of Rc block is the final SR image (ISR), denotes as in
Equation (3):

ISR = Rc(FDLN) (3)



Symmetry 2023, 15, 885 6 of 15

The Rc block is only one Convolutional layer with its input as the up-scale feature
maps. So: (1) the Rc block will release from up-scale feature maps, only focusing on
assembling features into the SR outputs. (2) the gradient can be delivered to the previous
blocks (In block and DLN block) quickly during the back-propagation process, which can
reduce the vanishing gradient problem of the previous blocks.

The loss function: The DLNFN is optimized to minimize the loss function L(Θ); we
choose the Mean Absolute Error (MAE, denoted as L1) as the loss function to measure the
difference between the output SR image and the ground-truth HR image. Given a training
image pair <ILR, IHR>, where IHR is the HR image and ILR is the corresponding LR image,
the loss function is defined as:

L(Θ) = ‖DLNFN(ILR)− IHR‖1 (4)

where:
DLNFN(ILR) = ISR = Rb(DLN(In(ILR))) (5)

3.2. The Dynamic Fusion of Local and Non-local Features-Based Feedback Block (DLN Block)

In this section, we will give a detailed introduction to the Feedback block of our
proposed DLNFN: the Dynamic fusion of Local and Non-local features-based Feedback
block (DLN block). The detailed structure of our proposed DLN block is described in
Figure 2.

F_up
i
DLN

FB

F
 i-1

DLN
Weight

CSNL

Fusion layerDelivery layers

Up-scale

adjust layers

down-channel

WFB
i

WCSNL
i

F
i
DLN

DLN block

FDLN

F_up
1

DLN

F_up
i
DLN

F_up
T

DLN

Figure 2. Detailed structure of the DLN block.

The Structure of DLN block: Figure 2 gives us a detailed illustration of our proposed
DLN block. The DLN block is a Feedback-based block, with totally T iterations. For each
iteration (such as the i-th iteration), the previous iteration’s output (Fi−1

DLN if 2 6 i 6 T or
FIn if i = 1), with its dimensions as the LR, is considered as the input of the i-th iteration.
The outputs of the i-th iteration are two fold: Fi

DLN and F_upi
DLN . The output of Fi

DLN ,
with its dimensions as the LR, is considered as the input of the next iteration. In addition,
the output of F_upi

DLN , with its up-scaled feature maps as SR’s dimensions, is considered
as the output of the current iteration of the DLN block.

We concatenate the output of all iterations (F_up1
DLN , · · · , F_upi

DLN , · · · , F_upT
DLN)

in channel dimension as the final output of the DLN blocks FDLN . The final output of the
DLN block is defined as

FDLN = concat(F_up1
DLN , · · · , F_upT

DLN) (6)

where the function concat(. . . ) is to concatenate all the inputs on feature dimension.
We take all the feature maps of all iterations as the output to provide an abundant

different hierarchy of feature maps for the Rc block to generate a more accurate SR image.
Due to different iteration outputs, one can extract different hierarchies from the feature
maps [21], and the SR image can be generated from different hierarchies of the feature
maps.

The blocks in DLN: There are three blocks in our DLN: the FB block [3], the CSNL
block [4] and the Dynamic Weight block (DW block): (1) the FB block focus on extracting
the local feature and generate desired local features, which is more efficient and lower cost



Symmetry 2023, 15, 885 7 of 15

than Attention-based block (the CSNL block). So we take the FB block to focus on the local
feature high efficiently, releasing the load of the CSNL block. (2) the CSNL block is an
Attention-based block that is powerful on both non-local and local features but costly. In
our DLN block, the CSNL block will only need to focus on the non-local features, this will
reduce the cost of the CSNL block. (3) The DW block is used to generate different weight
values for two branches (FB branch and CSNL branch) during each iteration. The two
branches’ weight values varied with different inputs at different locations in the neural
network [5], so the DW block is introduced to generate dynamic weight values to fuse the
two branches’ output together.

The Delivery–Adjust–Fusion framework (DAF framework): In Figure 2, the DAF
framework (the green block and blue lines among them) is the framework for the DLN
block, which is used to carry three blocks (the FB block and the CSNL block for feature
extraction, and the DW block for weighting), giving two feature extraction blocks fully
playing to their strengths. The DAF framework consists of the Delivery layer, Adjust layer,
and Fusion layer.

The Delivery layer: the Delivery layer is simply one Convolutional layer, which is
ahead of the FB and CSNL block. The Delivery layer is focused on extracting desired
information for the following block from the input (Fi−1

DLN if 2 6 i 6 T or FIn if i = 1):
the Delivery layer ahead of the FB is focusing on extracting the local features, while the
Delivery layer ahead of the CSNL is focusing on extracting the non-local features. The
input are fed into the DW block without any preprocessing to score the local and non-local
weights directly.

The Adjust layer: we introduce the Adjust layer to adjust the outputs of the FB block
and CSNL block into the same channel and two different scales for the following layer
(Fusion layer). The outputs are twofold: the output with its dimensions as the LR (denote as
Fi

FB for FB block and Fi
CSNL for the CSNL block in the i-th iteration), and the output with its

up-scale dimensions as the HR (denote as F_upi
FB for FB block and F_upi

CSNL for the CSNL
block in the i-th iteration). The FB block’s output is only the Fi

FB, so one Deconvolutional
layer after the FB block is to up-scale the output of Fi

FB to F_upi
FB. While the CSNL block’s

outputs are Fi
CSNL and F_upi

CSNL with 2 × channels, so one Convolutional layer with
1 × output channels after the CSNL block, is introduced to reduce the output channel from
2 × channels to 1 × channels. At last, the outputs (Fi

FB, Fi
CSNL, F_upi

FB and F_upi
CSNL) are

feed into the Fusion layer.
The Fusion layer: we introduce the Fusion layer to fuse two channel outputs together

for different scale inputs. We fuse the Fi
FB and Fi

CSNL into Fi
DLN , and fuse the F_upi

FB and
F_upi

CSNL into F_upi
DLN . We take different strategies for different scale’s outputs: (1) The

Fi
FB and Fi

CSNL are fed into one Convolutional layer to generate output Fi
DLN , then Fi

DLN are
considered as the input of the DLN block for next iteration. (2) The F_upi

FB and F_upi
CSNL

are added with the weight values generated by the DW block. The outputs of DW block
denotes as Wi

FB and Wi
CSNL (Wi

FB is the weight values for FB block, and Wi
CSNL is the weight

values for CSNL block), so the output F_upi
DLN are computed as Equation (7):

F_upi
DLN = Wi

FB · F_upi
FB + Wi

CSNL · F_upi
CSNL (7)

Finally, all the outputs of F_upi
DLN (F_up1

DLN , · · · , F_upT
DLN) are concatenated as the

output of FDLN .
The Dynamic Weighting method: there are three typical feature fusion methods,

as shown in Figure 3. (1) Figure 3b is Convolutional-based fusion, the Convolutional layer
can learn optimal parameters according the training data. This strategy, which is flexible
without a priori knowledge, is a widely used fusion strategy, but there are two shortages:
(a) The Convolutional layer only focuses on the local features (receptive field depends
on the kernel size, usually 3× 3). (b) Inappropriate initial values for the Convolutional
layer will result in difficulty in training. In extreme situations, it will cause one branch
gradient to vanish. (2) Figure 3c is adding two branches’ outputs with fixed weight values
(usually the same weight values as 0.5); this strategy can get rid of the one branch gradient



Symmetry 2023, 15, 885 8 of 15

vanishing problem, and ingenious weight values will greatly improve the performance
of the network, but there are two shortage: (a) Fixing the weight values heavily rely on
experience and a priori knowledge, simply set same weight values as 0.5 may not suitable
for all the network. (b) The fixed weight values are not fit for the Feedback-based feature
fusion due to the weight values varied under different inputs and iterations.

B
lo

ck
 1

B
lo

ck
 2

D
W

 b
lo

ck

(a)

B
lo

ck
 1

B
lo

ck
 2

Convolutional layer

B
lo

ck
 1

B
lo

ck
 2

Convolutional layer

(b)

B
lo

ck
 1

B
lo

ck
 2

B
lo

ck
 1

B
lo

ck
 2

(c)

Figure 3. Three different types of feature fusion: (a) dynamic weighting add. (b) Convolutional
fusion. (c) fix weights add.

Based on the above analyses, we introduce the Dynamic Weighting block (DW block)
to generate proper weight values for the current iteration and fusion of two branches
according to the weight values. The advantage of the dynamic weighting add-based fusion
method, as in Figure 3a, are as follows: (1) If properly designed the DW block, the weight
value generation can consider multiple factors, such as local and non-local features. (2) It
can get rid of the one-branch gradient vanishing problem due to the add operation would
not reduce the gradient propagation. (3) The DW block is suitable for the Feedback-based
SR to generate different weight values during different iteration.

We only introduce the dynamic weighting add for F_upi
FB and F_upi

CSNL to generate
the output F_upi

DLN , but take the Convolutional layer on Fi
FB and Fi

CSNL to generate output
Fi

DLN . The reason is (1) it cannot share the same dynamic weight for generating F_upi
DLN

and Fi
DLN due to the need to consider different information for two fusion procedures:

generating the weight values for F_upi
DLN need to consider the input of Fi−1

DLN , while
generating Fi

DLN for the next iteration’s input need to predict the next iteration’s two blocks’
requirements. Therefore, we need two DW blocks to generate 2 groups of weight values
respectively, this will increase the model parameters and computation cost. (2) Predicting
the next iteration’s requirement is heavy work, so we take one Convolutional layer to fuse
the Fi

FB and Fi
CSNL, generating acceptable feature maps for the Delivery layer.

The analyses on the DW block are as follows: (1) The MAConv layer can extract the
local features like the classic Convolutional layer with the same receptive field (kernel size
= 3× 3) but fewer parameters and computation cost, so it’s helpful to reduce the DW
block’s cost. (2) The PA+AvgPool+FC can extract information from the non-local features.
The PA (Pixel Attention) block [15] generates attention coefficients for all pixels of the
feature map, generating 3D output. Then the AvgPool + FC extracts the non-local features,
which can be considered as a Channel Attention-Like block (slightly different from classic
Channel Attention [13], we drop the max pooling for simple and modify the last FC’s
output channel = 2), generating 1D weight vector. (3) We place the MAConv (for the local
feature) and the PA + AvgPool+FC (for the non-local feature) sequentially, so feature maps
flow as 3D Local (convolution)-3D Non-local (pixel)-1D Non-local (channel)-output.

The Dynamic Weight block (DW block): the architecture of DW block is shown in
Figure 4. The DW block is simply 4 layers to generate two weight values (Wi

FB and Wi
CSNL)

for the two branches of up-scaled outputs (the F_upi
FB and F_upi

CSNL) in the i-th iteration.
Therefore, we introduce the MAConv+PReLU to evaluate the weight of local futures (FB
block’s output: F_upi

FB) and PA+AvgPool+FC to evaluate the weight of non-local features
(CSNL block’s output: F_upi

CSNL). The DW block is considered a lightweight block, so the
DW block wouldn’t increase the load of the DLN block.



Symmetry 2023, 15, 885 9 of 15

F
 i-1

DLN MAConv

PReLU

PA

AvgPool

FC

ReLU

FC

Softmax

W
 i

FB

W
 i

CSNL

Figure 4. The architecture of Dynamic Weight block (DW block).

The DW block is inspired by A2N of Chen’s work [5], but there are some differences:
(1) Our block is Feedback-based while A2N is n blocks sequentially; (2) the DW block of
our DLN block is considered both local and non-local feature, so DW block introduced
both Convolutional-based block and Attention-based blocks (PA and CA-like), while the
A2N’s Attention Dropout Module only generating the dynamic attention weights with
CA-like block.

3.3. Other Implementation Details

Following are the other implementation details not mentioned above:
(1) We follow the implementation details of the FB and CSNL blocks. We take the

activation function as PReLU for all the Convolutional and Deconvolutional blocks except
for the DW block and the Rc block. We take the feature-map channels = 64 and feedback
iteration = 9 for our DLNFN.

(2) We take MAE loss (L1 loss) to optimize our proposed DLNFN, Adam optimizer
to optimize the network parameters with β1 = 0.9, β2 = 0.999 and the initial learning
rate = 0.0001, we reduce the learning rate by multiplying 0.5 for every 150 epochs, total
500 epochs. The network is implemented with the PyTorch framework.

4. Experimental Results
4.1. Datasets, Reuse Strategy, and Evaluation Metrics

We perform all the experiments on the DIV2k database for training (a total of 1000
images, where 800 images as the train set, 100 images as a valid set, and 100 images as
the test set); we take all the train set (800 HR images) for training all models (our DLNFN
and all the comparing algorithms). The image reuse strategy is performed as follows:
Firstly, each HR image is randomly cropped into one small patch. Secondly, each HR patch
is randomly rotated by 0◦, 90◦, 180◦, and 270◦, and horizontally flipped to augment the
train images. Lastly, the BiCubic method is performed to generate the LR patch from the
HR patch. During each epoch, all training images are performed 20 times (10 times in
Section 4.2 to reduce the training cost) under the image reuse strategy. We set the input
patch (LR patch) size= 48× 48 for our proposed DLNFN to balance the performance and
cost. For evaluation, all the SR results are first transformed into YCbCr space and evaluated
by PSNR and SSIM [22] metrics on the Y channel only.

4.2. Ablation Study

In this Section, we will perform an ablation study on our DLNFN. To reduce the
training cost, all the experiments on the ablation study are performed on a light weight
network and half data augmenting: We set the feature channel = 32 and feedback iteration
= 3 as a light weight DLNFN, denoted as DLNFN-L. During each epoch, all the training
images are performed 10 times. For fair comparison, the comparing algorithms on ablation
study are under the same strategy.

Do the Local and Non-local features improve performance: We perform an ablation
study to determine whether the Local and Non-local feature-based Network will improve
the performance: We only active the FB block, denotes as DLNFN-Local, to determine
the performance on single local feature-based Network, and only active the CSNL block,
denotes as DLNFN-Non-local, to determine the performance on single non-local feature-
based Network. We also perform experiments on the classic FB and CSNLN algorithm to
git rid of the framework’s impact, we choose the SRFBN-L [3] as a light weight FB-based
algorithm, and we set the feature channel = 64, feedback iteration = 3 for the CSNLN,



Symmetry 2023, 15, 885 10 of 15

denotes as CSNLN-L, as a light weight CSNL-based algorithm, the performances (PSNR)
are list in Table 1.

In Table 1, our lightweight DLNFN performs best, demonstrating the efficiency of the
Local and Non-local feature-based Network. Our DLNFN-based structure can improve
the performance of FB-based block (outperform the SRFBN-L) but reduce the performance
of CSNL-based block(underperform the CSNLN-L), illustrating the overall framework do
impact the performance greatly, and different blocks have their own optimal overall frame-
work.

Table 1. The ablation study on the Local and Non-local features at ×2 scale on Set5 (the best
performance is shown in red).

Algorithm

Local-Feature-Based Non-Local-Feature-Based
Local and
Non-Local

Features-Based

SRFBN-L DLNFN-Local CSNLN-L DLNFN-Non-
local DLNFN-L (our)

PSNR 37.77 37.84 37.91 37.85 38.02

Whether the Dynamic fusion method improves performance: We perform an abla-
tion study to determine whether the Dynamic fusion method will improve the performance.
Our proposed Dynamic fusion method, as Figure 3a, is computed as Equation (7). We re-
place the Dynamic fusion into one Convolutional layer as the Convolutional-based method
(as Figure 3b, denote as Conv-DLNFN-L), and We fix both the weight values = 0.5 as the fix
weights add method (as Figure 3c, denote as Fix-DLNFN-L). The performances (PSNR) are
listed in Table 2.

Table 2. The ablation study on the Dynamic fusion at×2 scale on Set5 (the best performance is shown
in red).

Algorithm Conv-DLNFN-L Fix-DLNFN-L DLNFN-L (our)

PSNR 37.90 37.75 38.02

In Table 2, our Dynamic fusion-based DLNFN performs best. The performance of
the Dynamic fusion method (DLNFN-L) outperforms the Convolutional-based method
(Conv-DLNFN), and the fix weights add method (Fix-DLNFN) with a large gap. The fix
weights add method performed worst, illustrating the unsuitable weighting values will
perform the opposite effect.

Whether the MAConv layer improves performance: We perform an ablation study to
determine whether the MAConv layer improves performance. Our DLNFN-L is 4 MAConv
layers for the In block, we choose 3 compared algorithm as follow: 2 MAConv layers for
the In block (denoted as DLNFN-2MA), 2 Convolutional layers for the In block (denotes as
DLNFN-2Conv), 4 Convolutional layers for the In block (denotes as DLNFN-4Conv). The
performances (PSNR/SSIM) are listed in Table 3.

Table 3. The ablation study on the MAConv layer at ×2 scale on Set5 (the best performance is shown
in red).

Algorithm

convolutional Layer Based MAConv Layer Based

DLNFN-2Conv DLNFN-4Conv DLNFN-2MA DLNFN-L
(4MA, our)

PSNR 37.96 37.97 38.00 38.02



Symmetry 2023, 15, 885 11 of 15

In Table 3, the MAConv layer-based algorithms (2 MAConv layers and 4 MAConv lay-
ers) outperform the corresponding Convolutional layer based algorithms (2 Convolutional
layers and 4 Convolutional layers) for the In block, which means the MAConv layer can
improve the performance. The 4 MAConv layers perform best, so we take the In block as
4 MAConv layers.

4.3. Comparisons With State-of-the-Arts

In this section, we will give a quantitative comparison of our DLNFN with other
famous state-of-the-art SR algorithms, we choose SRCNN [7], VDSR [8], EDSR [23],
RCAN [24], SRFBN [3], A2N [5], DiVANet+ [19], and CSNLN [4] as the state-of-the-art
algorithms considered in this experiment. The SRCNN, first proposed as the Convolutional
based SR algorithm, is considered the baseline of the SR method. We have downloaded
the official PyTorch-based models for RCAN, SRFBN, and CSNLN algorithms, so we per-
formed the official model in this section. We retrained the SRCNN, VDSR, and EDSR
algorithms. We dropped their unique training tricks (such as noise and Gauss blurring)
and retrained them under the same training strategy as our DLNFN, a total of 1000 epochs.
We perform the upscale factor range in ×2 and ×3 for all the SR algorithms; we did not
perform our DLNFN on a larger scale (such as ×4 and ×8) due to time and GPU memory
consumption. We report the performance on five famous standard benchmark databases:
Set5 [25], Set14 [26], B100 [27], Urban100 [28], and Manga109 [29]. For a fair comparison,
we also list the number of parameters to show the effectiveness of algorithms. We evaluated
all the SR results on PSNR and SSIM [22]. The results are listed in Table 4.

Table 4. The performance (PSNR/SSIM) of the considered state-of-the-art algorithms (the best
performance is shown in red and the second-best performance is shown in blue).

Algorithm Scale Params
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRCNN [7] ×2 0.02M 36.45 0.9527 32.32 0.9043 31.04 0.8838 29.11 0.8887 34.82 0.9627

VDSR [8] ×2 0.67M 37.58 0.9587 33.16 0.9133 31.94 0.8964 31.05 0.9164 37.44 0.9737

A2N [5] ×2 1.04M 38.06 0.9608 33.75 0.9194 32.22 0.9002 32.43 0.9311 38.87 0.9769

SRFBN [3] ×2 2.14M 38.11 0.9609 33.82 0.9196 33.29 0.9010 32.62 0.9328 39.08 0.9779

DiVANet+
[19] ×2 0.9M 38.23 0.9618 33.88 0.9201 32.36 0.9018 32.67 0.9330 39.15 0.9780

CSNLN [4] ×2 3.06M 38.28 0.9616 34.12 0.9223 32.40 0.9024 33.25 0.9386 39.37 0.9785

RCAN [24] ×2 15.44M 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786

EDSR [23] ×2 40.73M 38.25 0.9613 33.97 0.9205 32.36 0.9020 32.98 0.9361 39.17 0.9781

DLNFN
(our) ×2 5.82M 38.28 0.9617 34.22 0.9231 32.41 0.9026 33.39 0.9390 39.41 0.9786

SRCNN [7] ×3 0.02M 32.52 0.9052 29.09 0.8160 28.10 0.7781 25.84 0.7869 29.62 0.8999

VDSR [8] ×3 0.67M 33.76 0.9225 29.96 0.8347 28.85 0.7986 27.32 0.8324 32.41 0.9356

A2N [5] ×3 1.04M 34.47 0.9279 30.44 0.8437 29.14 0.8059 28.41 0.8570 33.78 0.9458

SRFBN [3] ×3 2.83M 34.70 0.9292 30.51 0.8461 29.24 0.8084 28.73 0.8641 34.18 0.9481

DiVANet+
[19] ×3 0.9M 34.66 0.9289 30.53 0.8452 29.26 0.8077 28.66 0.8610 34.02 0.9473

CSNLN [4] ×3 6.01M 34.74 0.9300 30.66 0.8482 29.33 0.8105 29.13 0.8712 34.45 0.9502

RCAN [24] ×3 15.63M 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499

EDSR [23] ×3 43.68M 34.74 0.9297 30.50 0.8461 29.24 0.8095 28.76 0.8651 34.01 0.9481

DLNFN
(our) ×3 9.59M 34.84 0.9307 30.78 0.8498 29.36 0.8119 29.45 0.8764 34.72 0.9515



Symmetry 2023, 15, 885 12 of 15

We list the performance of our DLNFN and other compared algorithms at a scale factor
of ×2 and ×3. Our proposal performed best in all the state-of-the-art algorithms, illustrat-
ing the Local and Non-local features-based network outperform other single feature-based
networks. In the ×2 scale, our DLNFN outperformed most of the other compared algo-
rithms. Our DLNFN algorithm performs best in 3 databases (Set14, B100, and Manga109).
In Set5, our DLNFN draw with the CSNLN in ’PSNR’ metric, is better than CSNLN in the
’SSIM’ metric. In B100, our DLNFN draws with the RCAN in the ’PSNR’ metric, but worse
than RCAN in the ’SSIM’ metric. In ×3 scales, our DLNFN outperformed best than all
the other compared algorithms, the reason for this is that our DLN block can generate the
upscaled feature maps directly, reducing the load on the Rc block to generate SR images.

We take the newly proposed evaluation metric: Diffusion Index (DI) [30] (A larger DI
indicates more pixels are involved), evaluate the resection field for our DLNFN and CSNLN
(second-best performance) in scale×2, the DI = 19.96 for CSNLN (with 12 iterations) while
the DI = 20.42 for our DLNFN (with 9 iterations), illustrated our DLNFN involved more
pixels than CSNLN, but fewer feedback iterations. The reason we suspect this is that our
Delivery–Adjust–Fusion framework can rapidly deliver features to the right place, so the
larger resection field is fully evaluated.

We must acknowledge that there are still shortcomings in our proposed algorithm:
Our DLNFN is relatively more parameter numbers than some comparing algorithms, such
as DiVANet+ [19], which is balance-oriented (balance the cost and performance), while our
proposed DLNFN is performance-oriented (higher PSNR and SSIM).

4.4. Visualized Analysis

In this section, we give a visualized analysis of our DLNFN. We chose the SRCNN [7],
VDSR [8], EDSR [23], RCAN [24], SRFBN [3], A2N [5], and CSNLN [4] as the comparing
algorithms, the HR and LR image is considered as the benchmark and our DLNFN is placed
in the right-bottom. We chose two typical sections under ×2 and ×3, in Figure 5.

Figure 5. Visualized comparison on our DLNFN with other comparing Algorithms.

The first picture in Figure 5 is ’img046’ in the Urban100 database under scale ×2.
The glass has a line-like shape, which has typically long-distance similar features. The
direction of the line in HR is from the top left to the bottom right, and only our DLNFN
generated the right SR image. The A2N performed second. The SRCNN generates the
wrong image. In addition, the other compared algorithms generate the wrong line direction.



Symmetry 2023, 15, 885 13 of 15

The Convolutional-based algorithms (SRCNN, VDSR, EDSR, and SRFBN) performed
worse (larger area wrong SR image patch) than the Attention-based algorithms(RCAN and
CSNLN), illustrating the Attention-based algorithms can take fully used of the non-local
feature (long distance simply features), which can help to estimate local feature’s pattern.

The second picture in Figure 5 is the ’EienNoWith’ image in the Manga109 database
under scale ×3. The word ’Comics BET’ is too small in ×3 LR image, so all the algorithms
fail to generate clearly letters. However, our DLNFN can generate recognizable letters
(‘Comics BET’). For the comparing algorithms, the SRCNN, VDSR, EDSR, and SRFBN
failed to generate clear letters ’i’, ’c, ’and ’E,’ the RCAN failed to generate clear letters ’i’
and ’c,’ the CSNLN generate second best SR patch but still worse than our DLNFN in letter
’i’ and ’E.’ The English letter is typically for local features, but Attention-based algorithms
(RCAN CSNLN) still outperformed the Convolutional-based algorithms (SRCNN, VDSR,
EDSR, and SRFBN), illustrating the Attention-based algorithm’s power, but it was not
superior to Convolutional-based algorithms in all aspects.

According to the visualized analysis above, the Attention-based algorithm (RCAN
and CSNLN) is more powerful than Convolutional-based algorithms but is not superior
to Convolutional-based algorithms in all aspects, so Convolutional-based algorithms can
compensate the Attention-based algorithms, making all block working on what they do
best. By introducing the FB block (focus on local feature) and CSNL block (focus on non-
local feature), our proposed DLNFN can generate clearer SR images and outperform other
state-of-the-art algorithms.

5. Conclusions

In this paper, we proposed a Dynamic fusion of Local and Non-local features-based
Feedback Networks (DLNFN) for Super-Resolution (SR). The main contributions of this
paper are three-fold: (1) We introduce the Convolution-based block to focus on extracting
local features and the Attention-based block to focus on extracting non-local features. We
also propose the Delivery–Adjust–Fusion framework to hold these blocks, making them
work on what they do best. (2) We proposed a Dynamic Weighting block to generate
weight values for different inputs under different iterations, and fuse both branches’ feature
maps together. (3) We introduce the MAConv layer as the input block, which is critical
for our two branch-based feedback algorithms. By cascading 4 MAConv layers as the
input layer, we can obtain a deeper input layer while easy to train. Experiments show
our proposed DLNFN can take full advantage of two different blocks, and outperform
other state-of-the-art algorithms. However, our proposed DLNFN only considered the fuse
method for two blocks’ output, but fail to consider the split method for blocks’ input. So
our future work is trying to introduce a split method, such as the Clustering method [31],
to generate suitable inputs for two blocks, further improving the performance.

Author Contributions: Conceptualization, Y.L.; funding acquisition, Z.C.; methodology, Y.L.; writing—
original draft, Y.L.; writing—review & editing, Z.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China, un-
der Grant No. U2006228 and No. 61972241. This work was supported by Shanghai Soft Science
Research Project No. 23692106700. This work was supported by the Natural Science Foundation of
Shanghai under Grant No. 22ZR1427100.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2023, 15, 885 14 of 15

Appendix A

For better reading this paper, we provide part of the acronyms and notations used in
this paper in Table A1.

Table A1. The Acronyms and Notations.

Acronyms and Notations Description

SISR Single Image Super-Resolution
SR Super-Resolution
HR High-Resolution
LR Low-Resolution
ISR Super-Resolution image
ILR Low-Resolution image
IHR High-Resolution image

L(Θ) the loss function
In(·) the In block
FIn the output features of the In block

DLN(·) the DLN block
FDLN the output features of the DLN block
Rc(·) the Reconstruction block

DLNFN(·) our proposed DLNFN algorithm

Fi
DLN

the i-th iteration output of the DLN block with
dimension as LR

F_upi
DLN

the i-th iteration output of the DLN block with
dimension as SR

Fi
FB

the output of FB branch with dimension as LR in the
i-th iteration

Fi
CSNL

the output of CSNL branch with dimension as LR in
the i-th iteration

F_upi
FB

the output of FB branch with dimension as SR in the
i-th iteration

F_upi
CSNL

the output of CSNL branch with dimension as SR in
the i-th iteration

W i
FB the weight value of FB branch in the i-th iteration

Wi
CSNL the weight value of CSNL branch in the i-th iteration

concat(. . . ) concatenate all the inputs on feature dimension

References
1. Wang, Z.; Chen, J.; Hoi, S.C. Deep Learning for Image Super-resolution: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43,

3365–3387. [CrossRef] [PubMed]
2. Mao, X.; Shen, C.; Yang, Y. Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric

Skip Connections. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Barcelona, Spain, 5–10
December 2016; Curran Associates, Inc.: New York, NY, USA; pp. 2802–2810.

3. Li, Z.; Yang, J.; Liu, Z.; Yang, X.; Jeon, G.; Wu, W. Feedback Network for Image Super-Resolution. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 3867–3876. IEEE: Piscataway, NJ, USA. [CrossRef]

4. Mei, Y.; Fan, Y.; Zhou, Y.; Huang, L.; Huang, T.S.; Shi, H. Image Super-Resolution with Cross-Scale Non-Local Attention and
Exhaustive Self-Exemplars Mining. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 5690–5699. [CrossRef]

5. Chen, H.; Gu, J.; Zhang, Z. Attention in attention network for image super-resolution. arXiv 2021, arXiv:2104.09497.
6. Liang, J.; Sun, G.; Zhang, K.; Van Gool, L.; Timofte, R. Mutual affine network for spatially variant kernel estimation in blind

image super-resolution. In Proceedings of the IEEE/CVF International Conference on Computer Vision (CVPR), Nashville, TN,
USA, 21–24 June 2021; pp. 4096–4105.

7. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a Deep Convolutional Network for Image Super-Resolution. In Proceedings of the
Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Springer International Publishing: Cham, Switzerland;
pp. 184–199. [CrossRef]

8. Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [CrossRef]

9. Kim, J.; Lee, J.K.; Lee, K.M. Deeply-Recursive Convolutional Network for Image Super-Resolution. In Proceedings of the IEEE
Comput Soc Conf Comput Vision Pattern Recognit (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA;
pp. 1637–1645. [CrossRef]

10. Song, D.; Wang, Y.; Chen, H.; Xu, C.; Xu, C.; Tao, D. Addersr: Towards energy efficient image super-resolution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 15648–15657.

http://doi.org/10.1109/TPAMI.2020.2982166
http://www.ncbi.nlm.nih.gov/pubmed/32217470
http://dx.doi.org/10.1109/cvpr.2019.00399
http://dx.doi.org/10.1109/cvpr42600.2020.00573
http://dx.doi.org/10.1007/978-3-319-10593-2_13
http://dx.doi.org/10.1109/cvpr.2016.182
http://dx.doi.org/10.1109/cvpr.2016.181


Symmetry 2023, 15, 885 15 of 15

11. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need.
In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp.
5998–6008.

12. Li, B.; Xiong, S.; Xu, H. Channel Pruning Base on Joint Reconstruction Error for Neural Network. Symmetry 2022, 14, 1372.
[CrossRef]

13. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European conference
on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [CrossRef]

14. Li, B.; Lu, Y.; Pang, W.; Xu, H. Image Colorization using CycleGAN with semantic and spatial rationality. Multimed. Tools Appl.
2023, 82, 1–15. [CrossRef]

15. Zhao, H.; Kong, X.; He, J.; Qiao, Y.; Dong, C. Efficient image super-resolution using pixel attention. In Proceedings of the
Computer Vision–ECCV 2020 Workshops, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 56–72.

16. Niu, B.; Wen, W.; Ren, W.; Zhang, X.; Yang, L.; Wang, S.; Zhang, K.; Cao, X.; Shen, H. Single image super-resolution via a holistic
attention network. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August
2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 191–207.

17. Xia, B.; Hang, Y.; Tian, Y.; Yang, W.; Liao, Q.; Zhou, J. Efficient non-local contrastive attention for image super-resolution.
In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Online, 22 February–1 March 2022; Volume 36, pp.
2759–2767.

18. Mei, Y.; Fan, Y.; Zhou, Y. Image super-resolution with non-local sparse attention. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 3517–3526.

19. Behjati, P.; Rodriguez, P.; Fernández, C.; Hupont, I.; Mehri, A.; Gonzàlez, J. Single image super-resolution based on directional
variance attention network. Pattern Recognit. 2023, 133, 108997. [CrossRef]

20. Liu, Y.; Chu, Z.; Li, B. A Local and Non-Local Features Based Feedback Network on Super-Resolution. Sensors 2022, 22, 9604.
[CrossRef] [PubMed]

21. Liu, J.; Zhang, W.; Tang, Y.; Tang, J.; Wu, G. Residual Feature Aggregation Network for Image Super-Resolution. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2359–2368.
[CrossRef]

22. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity.
IEEE Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

23. Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced Deep Residual Networks for Single Image Super-Resolution. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 136–144. [CrossRef]

24. Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image Super-Resolution Using Very Deep Residual Channel Attention
Networks. In Proceedings of the European Conference on Computer Vision (ECCV), Rupnagar, India, 26–28 November 2018;
pp. 286–301. [CrossRef]

25. Bevilacqua, M.; Roumy, A.; Guillemot, C.; Alberi-Morel, M.L. Low-Complexity Single-Image Super-Resolution based on
Nonnegative Neighbor Embedding. In Proceedings of the 23rd British Machine Vision Conference (BMVC), Surrey, UK, 3–7
September 2012. [CrossRef]

26. Zeyde, R.; Elad, M.; Protter, M. On Single Image Scale-Up using Sparse-Representation. In Proceedings of the International
Conference on Curves and Surfaces, Avignon, France, 24–30 June 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 711–730.
[CrossRef]

27. Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A Database of Human Segmented Natural Images and its Application to Evaluating
Segmentation Algorithms and Measuring Ecological Statistics. In Proceedings of the Eighth IEEE International Conference on
Computer Vision. ICCV 2001, Vancouver, BC, Canada, 7–14 July 2001; Volume 2, pp. 416–423. [CrossRef]

28. Huang, J.B.; Singh, A.; Ahuja, N. Single Image Super-resolution from Transformed Self-Exemplars. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5197–5206. [CrossRef]

29. Matsui, Y.; Ito, K.; Aramaki, Y.; Fujimoto, A.; Ogawa, T.; Yamasaki, T.; Aizawa, K. Sketch-based manga retrieval using manga109
dataset. Multimed. Tools Appl. 2017, 76, 21811–21838. [CrossRef]

30. Gu, J.; Dong, C. Interpreting Super-Resolution Networks with Local Attribution Maps. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 9199–9208. [CrossRef]

31. Xiong, S.; Li, B.; Zhu, S. DCGNN: A single-stage 3D object detection network based on density clustering and graph neural
network. Complex Intell. Syst. 2022, 9, 1–10. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/sym14071372
http://dx.doi.org/10.1007/978-3-030-01234-2_1
http://dx.doi.org/10.1007/s11042-023-14675-9
http://dx.doi.org/10.1016/j.patcog.2022.108997
http://dx.doi.org/10.3390/s22249604
http://www.ncbi.nlm.nih.gov/pubmed/36559973
http://dx.doi.org/10.1109/cvpr42600.2020.00243
http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://dx.doi.org/10.1109/cvprw.2017.151
http://dx.doi.org/10.1007/978-3-030-01234-2_18
http://dx.doi.org/10.5244/c.26.135
http://dx.doi.org/10.1007/978-3-642-27413-8_47
http://dx.doi.org/10.1109/ICCV.2001.937655
http://dx.doi.org/10.1109/cvpr.2015.7299156
http://dx.doi.org/10.1007/s11042-016-4020-z
http://dx.doi.org/10.1109/ cvpr46437.2021.00908
http://dx.doi.org/10.1007/s40747-022-00926-z

	Introduction
	Related Works
	The Dynamic Fusion of Local and Non-Local Features-Based Feedback Network (DLNFN) for SR
	The Network Overall Architecture of Our DLNFN
	The Dynamic Fusion of Local and Non-local Features-Based Feedback Block (DLN Block)
	Other Implementation Details

	Experimental Results
	Datasets, Reuse Strategy, and Evaluation Metrics
	Ablation Study
	Comparisons With State-of-the-Arts
	Visualized Analysis

	Conclusions
	Appendix A
	References

