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Abstract: This paper proposes a new image hashing method, which uses histogram reconstruction
to solve the problem of the histogram not being sensitive to the change of pixel position, while
ensuring the robustness of the hashing algorithm against common content preservation attacks
(such as blurring, noise addition and rotation). The proposed algorithm can resist arbitrary angles
of rotation, possibly because the reconstructed histogram leverages the rotational symmetry and
its own invariance to rotation operations. We measure the similarity between different images by
calculating the Hamming distance of the hash vectors of different images. Our experiments show
that the proposed method performs well in robustness and discrimination compared with other
established algorithms. In addition, we conduct a receiver operating characteristic curve analysis to
further verify the superior overall performance of our image hash method.

Keywords: image hashing; histogram reconstruction; robustness; discrimination

1. Introduction

Due to the rapid advancement in computer and communication technology, there
has been a massive increase in multimedia information. This has resulted in several
challenges such as increased storage costs and difficulties in retrieving information. At
the same time, advancements in content creation technologies, such as Photoshop, have
made it more challenging to determine the authenticity of multimedia information. To
address these issues, image hashing technology can be utilized. The image hashing is
similar to the traditional cryptographic hash function, as it can also reduce the storage
requirements by compressing the image into a compact hash vector. Image hashing has been
extensively researched and applied for various purposes, including authentication [1–4],
identification [5–7], quality assessment [8,9], and tampering detection [10–13].

Image hashing has five important properties including robustness, discrimination,
one-way function, compactness and unpredictability [14,15]. One-way function indicates
that the attacker cannot deduce the content of the image from its final hash vector with an
appropriate hashing algorithm. The concept of compactness emphasizes that the dimen-
sionality of the hash vector should be significantly less than that of an image, indicating a
reduction in size for efficient representation. The unpredictability indicates that the keys
used for different hash vectors generation are different, thus ensuring the security of the
hashing algorithm to a certain extent. Robustness and discrimination are the two most
important properties. Robustness is described as follows:

P(Hm(T) ≈ Hm(Tc)) ≥ 1− α, 0 ≤ α < 1, (1)
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and discrimination is described as follows:

P(Hm(T) 6= Hm(T
′
)) ≥ 1− γ, 0 ≤ γ < 1. (2)

in addition, unpredictability can be described as follows:

P(Hm(T) 6= Hm′ (T)) ≥ 1− µ, 0 ≤ µ < 1, (3)

where T represents an original image, Tc expresses a copy of T and Hm(.) indicates an image
hashing function, which is related to the secret key m. Both α, γ and µ are close to zero. The
concept of robustness in image hashing pertains to the degree of similarity between the
hashes of images that share the same visual content. On the other hand, discrimination
refers to the ability of an image hashing algorithm to generate dissimilar hashes for images
that exhibit visual differences. Robustness refers to the ability of an image hash function to
generate consistent hash values for the same image despite variations in image content,
such as compression, noise, and other forms of distortion. A robust image hash function
should be able to withstand various types of attacks and preserve the original image’s
perceptual content. This property is particularly important in applications that involve
image authentication or identification, where the hash values should remain unchanged
even when the image undergoes some transformation or modification. Discrimination,
on the other hand, refers to the ability of an image hash function to generate unique hash
values for different images, such that even small changes in the image content result in
significantly different hash values. Discrimination is crucial in image retrieval applications,
where the goal is to find similar images in a large database, as well as in copyright protection
applications, where the hash values serve as unique identifiers for copyrighted images.
Ideally, a good image hash function should have both robustness and discrimination
properties. Such a function should be able to generate consistent and unique hash values
for different images, even in the presence of image distortions or modifications. Achieving
these properties can be challenging and often requires a careful balance between robustness
and discrimination, depending on the specific application requirements.

The histogram of an image provides a statistical representation of the distribution
of pixel values. It is a useful tool for various applications, such as image retrieval and
authentication, as it captures the characteristics of an image’s color, brightness, and con-
trast. One of the advantages of using histograms in image processing is their resilience to
geometric transformations such as rotation or shearing [16]. This means that the shape of
the histogram remains unchanged even when the image is transformed. This property is
important in applications where image authentication or retrieval needs to be performed
on transformed images. In watermarking applications, the histogram is often used to
identify appropriate pixel groups for embedding a watermark [17]. This is achieved by
selecting pixel groups that have similar characteristics based on the mean of pixel values.
By doing so, the watermark can be embedded in areas of the image that are less likely to
be perceptually significant. Another approach to using the histogram in image hashing
is to divide it into multiple levels and generate the image hash based on these levels [18].
This can be useful in applications where a more fine-grained comparison of images is
required. However, while the histogram provides valuable information about the statistical
characteristics of pixels in an image, it does not take into account the relationship between
pixels. This means that certain types of image manipulation, such as those that alter the
spatial arrangement of pixels, may not be captured by the histogram alone. Therefore,
it is important to use complementary techniques, such as those that analyze the spatial
relationships between pixels, in combination with the histogram for more robust image
processing applications.

This study proposes an innovative method for the reconstruction of histograms that
overcomes the constraints associated with conventional histograms. Extensive experimen-
tation has been conducted using a diverse set of images to evaluate the effectiveness of
our algorithm. The results demonstrate its robustness against common non-malicious
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image manipulations such as rotation and blurring, as well as its remarkable discriminatory
capability. A comparison with existing methods highlights the superiority of our image
hashing scheme.

The forthcoming sections of this article are structured as follows: Section 2 provides
a comprehensive survey of recent progress. In Section 3, we explicate the algorithmic
methodology in detail. Section 4 presents and evaluates the results of the experiments
conducted. Finally, we concludes our contribution to the research in the Section 5.

2. Literature Review

Image hashing has found widespread applications across various domains, including
image quality evaluation. Over time, researchers have introduced various image hashing
techniques that leverage different features. By categorizing existing algorithms, there exist
several categories of image hashing methods, which include transform-domain-feature-
based approaches, spatial-feature-based approaches, statistical-feature-based approaches,
and matrix-factorization-based approaches.

2.1. Transform Domain Feature

The robustness of transform-based methods is better than some spatial image hashing
methods, because it takes less time to extract features in the transform domain. Ram et al.
proposed an effective method to generate image hashing by combining singular value de-
composition (SVD) and discrete wavelet transform (DWT) [19]. The author firstly converts
the image to HSV space and applies 2D-DWT on V components. SVD is employed to obtain
the singular value. Finally, the first right and left singular values are concatenated to form
a hash vector. Based on the results of the experiments, it can be concluded that this scheme
possesses a high level of robustness against image modifications such as brightness and
contrast adjustments, JPEG compression, rotation, watermarking, and others. Furthermore,
it is also sensitive to malicious modifications. Moreover, this scheme has the ability to detect
and locate tampered areas. From the experimental results, we conclude that this scheme
has great robustness on brightness and contrast adjustment, JPEG compression, rotation,
watermark, etc. This technology is also sensitive to malicious operations. In addition, this
scheme can locate the tampered area. Tang et al. used weighted DWT to assess images
quality [8]. Tang extracts the edge image using Canny operator and then divided the edge
image into several sub-blocks. For each block, different sub-bands are obtained by applying
2D-DWT. Then assign different weights to sub-bands where the sum of weights is 1. Finally,
these weighted DWT features are concatenated and quantized to generate image hashing.
Experiments show that this method is resistant to most content-preservation operations
except for large angle rotations. In [20], Lei et al. employed radon transform (RT) to design
an image hashing scheme. In this scheme, RT operations are first carried out and the
moment features are calculated to resist these transformations. Following this, feature
points undergo a discrete Fourier transform (DFT), and the resulting DFT coefficients are
concatenated to produce the hash. Empirical evaluations have shown the efficacy of this
hashing method in withstanding typical non-malicious attacks.

2.2. Spatial Feature

Local feature points are very important image features and have attracted extensive
attention from scholars. Ouyang and colleagues [21] proposed a novel image hashing
method that leverages quaternion Zernike moments (QZMs) in combination with the scale
invariant feature transform (SIFT) for enhanced performance. Specifically, the QZMs were
employed as global features to facilitate image retrieval, while the SIFT features were
utilized to pinpoint regions of tampering. This approach represents a notable advancement
in the field of image hashing. Abbas and colleagues [22] proposed a perceptual image
hashing approach that employs Noise Resistant Local Binary Pattern (NRLBP) and Discrete
Cosine Transform (DCT) to improve fidelity. Initially, the input image was partitioned into
several blocks, with DCT coefficients subsequently extracted from each sub-block. The
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NRLBP algorithm was then applied to calculate the corresponding histogram for each
sub-block, and these histograms were subsequently concatenated to generate the hash
vector. This scheme is resistant to several non-malicious attacks except rotation. Moreover,
this scheme can detect the tampering area, which is less than 3% of the original image size.
Xue et al. designed a scheme employing the key points and local region features [23]. The
algorithm extracted the key points according to SIFT and saliency detection. Then, they
extracted local binary pattern (LBP) operator as local feature points according to these key
points. Finally, they combined the key points and local area feature into a hash vector.

2.3. Statistical Features

For image hashing, the most commonly used statistical features are histograms and
invariant moments. Xiang [16] designed a geometric robust scheme using a histogram.
Xiang found that the relative relationship between different bins remains unchanged in a
geometrical attack. Based on Xiang’s research, researchers reconstruct histograms in differ-
ent ways to enhance the shape invariance of histograms [3,18,24–26], thereby enhancing the
robustness of perceptual hash algorithms. Choi [18] divided the histogram into different
levels and assigns different weight factors according to the levels. Tang [24] computed
the color vector angle of image pixels, extracted the histogram and then compressed the
histogram to generate image hashing. Gharde [25] used a fuzzy color histogram to design
an image authentication scheme. Overall, this method achieves a satisfactory performance
for geometrical attacks. However, the discrimination of this algorithm has the potential
to be improved. Besides histograms, moment invariants [27] are also useful image fea-
tures. Tang [28] integrated a saliency map and moment invariants to generate hashing.
The method can resist a variety of content-preservation operations. Zhao [29] employed
Zernike moments as a means of identifying manipulated regions within an image. To ac-
complish this, Zhao partitioned the original image into multiple sub-blocks and computed
the Zernike moments of each sub-block. The resultant values were subsequently combined
to create a hash. This approach offers the capacity to both identify and localize instances of
image tampering. A novel method based on a Gaussian Hermite moment is proposed [30].
This method is formed by computing Gaussian Hermite moments of grayscale images
and extracting invariants of different orders of moments. In summary, statistical feature
extraction methods utilize the symmetry and invariance properties present in images or
data to enhance robustness against rotation or other geometric attacks. By leveraging the
symmetry of objects and the invariance to geometric transformations, these methods extract
stable and discriminative feature representations, enabling algorithms to maintain accuracy
and stability when confronted with rotation or other geometric attacks. In other words,
image hashing based on statistical features has a satisfactory performance on robustness.

2.4. Matrix Decomposition

The matrix decomposition methods often used in image hashing are SVD, non-
negative matrix decomposition (NMF), etc. From Kozat’s [31] point of view, the content-
keeping operations are part of the linear operators. Kozat regards the spectral matrix
invariants as features and employs twice SVD to conduct hashing. Monga [32] found that
geometric attacks can be thought of as independent and identically distributed noises of
images. So, Monga extracted the image hash by employing NMF. Tang [10] proposed
a model by combining NMF and ring partition. The input image is divided into some
rings. The method has a great classification performance. Wu [33] incorporated a salient
region (SR) with NMF to generate hashing. The SR-NMF hashing is very resistant to most
content-preserving operations in addition to rotation. Combining center-symmetric local
binary patterns (CSLBP) and SVD, Davarzani [34] designed an image hashing algorithm.
Davarzani extracted CSLBP from the original grayscale image. The SVD-CSLBP hash is
resistant to JPEG compression, blurring, and brightness changes. Moreover, this scheme
has the ability to locate tampered regions. The researchers [35] present an image hashing
algorithm based on tensor decomposition. The researchers first extract features from multi-
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ple views, including structure, edge, and color features. Then, they construct a high-order
tensor based on these views. Next, they apply the Tucker decomposition algorithm to
generate a hash code from the tensor. The experimental results demonstrate that this
algorithm exhibits strong robustness.

3. The Proposed Scheme

The algorithmic procedure encompasses three distinct stages. The initial step in image
processing involves pre-processing, which comprises several operations such as image
graying, resizing, and Gaussian low-pass filtering. The next stage involves histogram
reconstruction of the images, followed by the third step, which entails extracting image
hashing from the reconstructed histogram. This process is a common approach in the field
of image processing and computer vision to extract features and information from images.
By applying pre-processing techniques and reconstructing the histogram, it is possible to
identify significant visual features that can be used for image recognition and analysis. The
whole process is shown in Figure 1.

Figure 1. Flow diagram of the proposed hashing.

3.1. Pre-Processing

In most cases, a color image is composed of pixels corresponding to the red (R), green
(G), and blue (B) color channels. The combination of pixel values across these three channels
generates a vast array of distinct colors. However, this process also results in the generation
of a considerable amount of extraneous or redundant information that is of limited utility.
Since our scheme does not require color information, we convert the three-channel color
image into a grayscale image. The three channels are converted into one channel by the
following equation:

Gray(x, y) = (R(x, y) + G(x, y) + B(x, y))/3. (4)

After converting an image to grayscale, we employ bilinear interpolation to resize
it to a fixed size of M × M. This is a common technique used to preserve the aspect
ratio of the original image while increasing or decreasing its size. Bilinear interpolation
involves computing new pixel values based on the weighted average of neighboring pixels.
The resulting image has smoother edges and more accurate color representation than
other interpolation methods. Overall, this process helps to standardize images for further
analysis and processing. Furthermore, the resize operation can withstand the impact of
scaling operations.

To significantly reduce the effects of noise or filtering, Gaussian low-pass filtering [33]
will be employed. The Gaussian filtering is calculated as follows:

Iσ = I ∗Gσ, (5)
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where I is the image, * means convolution operation, and Gσ is defined as

Gσ =
1

2πσ
e−

(x2+y2)
2σ2 , (6)

where σ is the standard deviation.

3.2. Reconstructing Histogram

The frequency distribution of pixels within an image can be captured by the histogram,
which has been shown to be effective in resisting a range of geometric attacks when
utilized for image hashing [3,16,18,24–26]. Nevertheless, the histogram solely represents
the probability of occurrence for each gray value pixel within the image, and loses the
information about the location of pixels. This means the histogram cannot distinguish
location-based attacks. There is an extreme example shown in Figure 2. Figure 2b is
obtained by Arnold scrambling [36] from Figure 2a. Arnold scrambling is a transformation
that alters the pixel’s location while maintaining its original value. As depicted in Figure 2,
a significant visual dissimilarity exists between Figure 2a and b. However, upon inspecting
the histograms of the two figures, they are found to be identical. To address this issue, a
histogram reconstruction method is proposed through the relationship between pixels and
surrounding pixels. This relationship of reconstruction can be described as the number of
surrounding pixels belonging to different bins with a pixel at the center.

Consider an image I with dimensions M×M, where each pixel has a neighborhood of
size N × N that is odd. The relationship Re(x, y) for a given point (x, y) can be computed
using Formula (7). To express this in a more formal and technical manner, one could
say that for a discrete image with dimensions M × M, each pixel is linked to an odd-
sized neighborhood of N × N. The relationship between the pixel at point (x, y) and its
neighborhood can be determined using a mathematical formula denoted as Re(x, y), which
is computed according to Formula (7).

Re(x, y) =
n

∑
i=−n

n

∑
j=−n

G(x, y, i, j), (7)

where n = N/2 and G(x, y, i, j) is defined as expression (8).

G(x, y, i, j) =

{
1 i f Bin(x, y) 6= Bin(x + i, y + j)
0 otherwise

, (8)

where Bin(x, y) indicates the bin which the pixel p(x, y) belongs to and Bin(x, y) can be
calculated as Formula (9).

Bin(x, y) =
p(x, y)

W
. (9)

This expression uses the notation p(x, y) to denote the pixel located at the (x, y) coordinates,
while W refers to the width measurement of each bin. The formula provides a mathematical
expression for computing the bin of a given pixel in a precise and rigorous manner.

During the process of histogram reconstruction, we need to iterate over each pixel,
denoted as p(x, y). Then, based on Equation (9), we calculate the index i corresponding to
the bin to which the current element belongs. We denote the bin to which the current pixel
belongs as hw(i). Next, using Equation (7), we calculate the relationship Re(x, y) between
the current pixel and its surrounding pixels. Finally, we add Re(x, y) to hw(i). All the
hw(i) are then concatenated to form the final reconstructed histogram. The reconstructed
histogram of an image can be described as follows:

HW = [hW(1), hW(2), . . . , hW(K)]. (10)
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Next, the reconstructed histogram HW is randomly permuted by a key. We use
the random generator where the seed is a key to generate K pseudorandom numbers.
These pseudorandom numbers are arranged in ascending order and then we store the
original positions in the array Z. Thus, we can generate permuted elements through the
following formula:

hkey
W (i) = hW(Z[i])(1 6 i 6 K). (11)

The final reconstructed histogram can be represented as follows:

Hkey
W = [hkey

W (1), hkey
W (2), . . . , hkey

W (K)]. (12)

(a) (b)
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(d)

Figure 2. Image and its corresponding histogram. (a) Kangaroo, (b) Kangaroo with Arnold Scram-
bling, (c) Histogram of kangaroo, and (d) Histogram of kangaroo with Arnold Scrambling.

3.3. Pixel Selecting

In digital image processing, it is known that after a rotational transformation, the pixels
within the inscribed circle of an image stay within the circle. Based on this observation,
our approach involves using only the pixels within the inscribed circle of the image to
reconstruct its histogram. This ensures that the histogram is more accurate and reliable,
especially when the image undergoes a rotational transformation. By focusing on the pixels
within the circle, we can reduce errors or artifacts that may occur when considering the
entire image. This technique is useful in scenarios where rotational invariance is important
in image analysis or processing. The set P of eligible pixels is described as follows:

P = {p(x, y)|dx,y 6 r}. (13)
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In the given context, the symbol p(x, y) refers to the value assigned to the pixel situated
at the coordinates (x, y) within the image. Additionally, the distance between the pixel at
(x, y) and the image’s center (xc, yc) can be represented as dx,y, which is computed utilizing
the Euclidean distance [8] formula.

dx,y =
√
(x− xc)2 + (y− yc)2. (14)

The calculation of the radius of the inscribed circle, which is represented by the symbol r,

r =

√
M
2

, (15)

where M the width of the image. In addition, some redundant pixels are filled around the
image after rotation operation. The populations of some bins are changed by the operation.
In some bins, the population is zeros or a few [16]. In our scheme, we need to filter out
these bins. Taking into account this situation, we reconstruct the histogram in a selected
gray scale range, which is determined by the mean of the pixels. The gray range B can be
selected as follows:

B = [(1− α)Ē, (1 + α)Ē], (16)

where α is a positive number and Ē is the mean of pixel values. The number of bins, K, is
determined by the following formula.

K =
2αĒ
W

, (17)

in which W means the width of bins.

3.4. Hash Generation

The last step in our method is generating the hash vector with the reconstructed
histogram Hkey

W , which is calculated as Formula (12). Suppose a group including two

different bins represented as {hkey
W (i), hkey

W (j)}. For the group {hkey
W (i), hkey

W (j)}, a binary
vector can be generated according to the following formula.

bit =

{
1 i f hkey

W (i) > hkey
W (j)

0 otherwise
. (18)

The number of group L is calculated as follows:

L =
K× (K− 1)

2
. (19)

3.5. Similarity Metric

In image hashing schemes, distance is a commonly employed metric for indicating the
degree of similarity that exists between two given images. Here, the Hamming distance [18]
dham is used as a similarity in our scheme. Hamming distance is calculated as follows:

dham =
L

∑
i=1
|Hash1(i)− Hash2(i)|, (20)

where Hash1 and Hash2 represent the hash values of two images. L can be calculated
according to Formula (19). Then, compare dham and threshold T, and judge whether the
images are similar according to the results. This process can be described as follows.

Result =

{
Similar i f dham 6 T
Di f f erent otherwise

, (21)
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4. Simulation Results

Within this section, we aim to carry out a range of experiments that will serve to verify
the efficacy of our hashing approach. In the pre-processing stage, the initial step involves
resizing the input image to a uniform size of 512× 512, as per the established standards.
Following this, we implement a Gaussian filter to smooth noise. In the process of histogram
reconstruction, the width of bins is set to 4. In addition, in Equation (16), the value of
α is 0.6 and the value of Ē is 120. In Equation (11), the key is randomly generated. The
robustness experiment is presented in Section 4.1. The aspect of discrimination is covered
in Section 4.2, with the analysis of tamper detection in Section 4.3 and a discussion on the
impact of neighborhood size in Section 4.4. Section 4.5 of our study involves a comparative
analysis between our proposed scheme and four other advanced algorithms. In Section 4.6,
we undertake a detailed examination of the key sensitivity aspects of our proposed scheme.

4.1. Perceptual Robustness

In this section, five images are selected to evaluate the ability to resist non-malicious
attacks. They are “Woman”, “Baboon”, “House”, “Lena” and “Peppers”, and all of these
images’ sizes are 512× 512. Each image is attacked by eight common content keeping
manipulations. These manipulations include filtering, JPEG compression, salt and pepper
noise, scaling, X-Shearing, and rotation. Every manipulation includes several parameters
and 67 different attacks are used in total. A detailed introduction is shown in Table 1.
These parameters indicate the number of operations to be performed on the attacked
images. It follows that as the parameter value increases, the intensity of the attack also
increases, consequently resulting in a poorer quality of the image, with the exception
of rotation and JPEG compression. For JPEG compression, as the parameter becomes
smaller, the quality of the image becomes worse. For rotation, the parameter indicates
the angle of rotation. For example, −5 means the image is rotated five degrees clockwise
and 5 means the image is rotated five degrees counterclockwise. Therefore, the number
of duplicate images is 5× 67 = 335. To assess the similarity between each pair of visually
similar images, the corresponding Hamming distance is computed by using Formula (20).
The analysis of the findings is illustrated through Figure 3, which depicts a graphical
representation of the results. The x-axis of the graph indicates the operations performed,
while the corresponding Hamming distance is displayed on the y-axis. Our observations
from the graphical representation of Figure 3 demonstrate a direct correlation between
the increase in attack intensity and the corresponding increase in Hamming distance. As
shown in Figure 3b,d, the maximum Hamming distance is more than 20, but not more
than 30. The Gaussian filtering and JPEG compression reduce qualities of the attacked
images with different parameters. However, the shape of the reconstructed histogram
changes little with less qualities, and the Hamming distance changes little. In average
filtering and median filtering, Hamming distance increases with the growth of parameters
as shown in Figure 3a,c. The higher filter sizes lead to the large reconstructed histogram
being changed. In a scaling attack, the Hamming distance is basically unchanged with the
increase in parameters as shown in Figure 3f, because the resizing operation is adopted
in the pre-process and an appropriate width of a histogram can resist the influence of
interpolation. In a salt and pepper noise attack, with increasing the density, the shape
of the reconstructed histogram has been changed, which leads to a higher Hamming
distance as shown in Figure 3e. Although noise takes new information into the image, the
reconstructed histogram can handle such impacts. As shown in Figure 3g, the Hamming
distance changed little with the angle becomes larger, which means X-Shearing has little
influence on the reconstructed histogram. For rotation attack, when the rotation angle
changes, the Hamming distance fluctuates within a certain range. This may be because the
rotation operation creates many padding data. Additionally, the maximum distance is 50,
as we can see in Figure 3h.
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Figure 3. Evaluation of robustness performance under various operations using five standard
benchmark color images.
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To determine the threshold for distinguishing images with different contents in the
proposed method, a dataset with 63 different color images is constructed. All images are
attacked with the same operations as 5 images and 67× 63 = 4221 images with similar
content are generated. We extract hash vectors of all images and calculate each pair of hash
vectors’ Hamming distance. The statistical result is illustrated in Table 2. As we can see
from Table 2, the minimum distance is 0 and the maximum distance is 63. The mean is
less than 40. If the threshold T equals 40, 3.13% similar images are falsely detected. When
T = 50, the error rate will be reduced to 0.83%. If T = 63, the error rate is 0. This means all
similar images are correctly detected. It is clear that, as the threshold becomes larger, the
robust performance becomes better.

Table 1. Digital operations and parameters.

Non-Malicious Attacks Description Parameter Value Number

Average filtering Filter size 3, 5, 7 3
Median filtering Filter size 3, 5, 7, 9 4

3 × 3 Gaussian low-pass filtering Standard deviation 0.3, 0.4, . . . , 1.0 8
JPEG compression Quality factor 30, 40, . . . , 100 8

Salt and pepper noise Density 0.001, 0.002, . . . , 0.007 7
Scaling Ratio 0.5, 1.5, 2.0, . . . , 5.0 9

X-Shearing Angle 1, 2, . . . , 8 8
Rotation Rotation angle ±5, ±10, ±15, . . . , ±45, ±90 20

Table 2. Statistical analysis of Hamming distance using 63 color images.

Non-Malicious Attack Minimum Maximum Mean Standard Deviation

Average filtering 0 63 16.71 13.14
Median filtering 0 62 18.12 12.82

Gaussian filtering 0 47 9.12 8.75
JPEG compression 0 33 6.66 5.76

Salt and pepper noise 0 62 10.35 10.16
Scaling 0 49 4.72 6.36

X-Shearing 1 40 11.5 8.12
Rotation 0 57 17.16 13.07

4.2. Discrimination

In the present section, a total of 200 images were gathered to evaluate the discrimina-
tive performance of our algorithm. We began by extracting the hashes of these 200 color
images, followed by calculating the Hamming distance between each image and the rest
of the images. So, there are 200× (200− 1)/2 = 19,900 Hamming distances in total. This
distribution of the Hamming distances is depicted in Figure 4. From the graphical represen-
tation, it has been determined that the Hamming distance between the given data points
is at least 26, the maximum distance is 601, the mean distance is 296.05, and the standard
deviation is 110.89. In particular, the mean value significantly exceeds the defined threshold
of T = 63. This indicates that our scheme has a good discrimination performance. The
collision probability under different thresholds is calculated and the results are illustrated
in Table 3. The analysis demonstrates a positive correlation between the threshold value
and collision probability, signifying that lower thresholds result in a decreased rate of
misclassification, but at the cost of reduced robustness in the system.
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Figure 4. Distribution analysis of Hamming distance for discrimination.

Table 3. Collision probabilities under different thresholds.

Threshold Collision Probability

40 5.03× 10−4

42 6.03× 10−4

45 7.04× 10−4

48 1.01× 10−3

51 1.26× 10−3

54 1.61× 10−3

57 2.31× 10−3

60 3.07× 10−3

63 3.62× 10−3

4.3. Tamper Detection Test

If the content of the image is partially falsified, the image is considered to be a different
image from the original [1,2,17,37,38]. Content-keeping manipulations are considered
non-malicious, while tampering operations are considered malicious. Identifying tampered
images is a key capability of image hashing. To test the algorithm’s ability to detect
tampered images, six images are selected from CASIA [39], which are shown in Figure 5.
The Hamming distance is computed, and subsequently compared against a predetermined
threshold value of T. The outcomes of the experiment are presented in Table 4. Based on
the outcomes obtained, it can be observed that the measured distances surpass the value of
63. This indicates that our approach possesses the capacity to identify manipulated images,
provided that the threshold T is established at 63.

(a) (b)

Figure 5. Cont.
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(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 5. Original and tampered images for tamper detection. The left column contains 6 original
images (a,c,e,g,i,k), and the right column contains 6 corresponding tampered images (b,d,f,h,j,l).

Table 4. Computation of Hamming distance for tampering detection.

Images Hamming Distance

(a)–(b) 107
(c)–(d) 72
(e)–(f) 153
(g)–(h) 93
(i)–(j) 199
(k)–(l) 133



Symmetry 2023, 15, 1088 14 of 18

4.4. Influence of Neighborhood Size on Hash Performances

This section presents an analysis of the impact of neighborhood size on the perfor-
mance of our methodology, as evaluated through the receiver operating characteristic
(ROC) graph [40]. The ROC curve plots the False Positive Rate (FPR) against the True
Positive Rate (TPR), with FPR displayed on the x-axis and TPR on the y-axis. The values
for FPR and TPR are obtained by using Formulas (22) and (23), respectively.

PFPR =
n1

N1
, (22)

PTPR =
n2

N2
, (23)

where the dataset contains N1 images with diverse visual content, among which n1 images
are misclassified as being similar. The number of images with identical or nearly identical
visual content is represented by N2, and the algorithm accurately categorizes n2 images
as being visually identical. When considering two ROC curves, the proximity of a curve
to the upper left corner is indicative of the level of comprehensiveness of its performance.
Specifically, a closer proximity to the upper left corner is suggestive of better performance.

To calculate the TPR and FPR, 20 images are selected and generate the similar images
according to the operations illustrated in the Table 1. This dataset includes 1340 images.
In the experiments, we normalize all images to 512× 512. Three neighborhood sizes were
used, i.e., 3× 3, 5× 5 and 7× 7. For each neighborhood size, we firstly extract hashes, then
calculate their hamming distance and compute the TPRs and FPRs by exploiting different
thresholds finally. The results are shown in the Figure 6. The curve 5× 5 is closest to the
upper left corner among the three curves. This shows that the neighborhood size 5× 5 has
better performance than others. It can be explained that a smaller size utilizes few features,
which will weaken discrimination. On the contrary, a bigger size utilizes more features,
which will weaken robustness. The neighborhood size 5× 5 is a great balance between
discrimination and robustness.
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Figure 6. ROC analysis of the impact of neighborhood size on algorithm performance.
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4.5. Performance Comparison

In order to authenticate the superior efficacy of our algorithms, we conducted a
comparative analysis of our image hashing technique with four prevalent algorithms,
including histogram-based [18], weighted DWT [8], Laplacian pyramids [41] and salient
region-NMF [33].

In [8,18,33], in the preprocessing phase, all input images are resized to 512 × 512.
In [41], the images are resized to 256× 256. In [18] the histogram is merged five times.
In [8], the researchers divided the image into 64 sub-blocks in which the size is 64× 64.
In [41], the level of the Laplacian pyramid is 4. In [33], all parameters are defined the
same as in [33]. In this experiment, the same images used in Section 4.4 are also used.
In order to compare as fairly as possible, the raw similarity measure of the comparison
algorithm is also used. The comparison results are displayed in Figure 7. To show the
results clearly, the lower right sub-graph shows the magnified upper left curve. According
to the results, our method’s curve is closest to the upper left corner compared to the other
four curves, indicating superior performance. To further analyze the results objectively, we
calculate the area under the curve (AUC) for each curve. The algorithm exhibiting a larger
AUC value is indicative of superior performance. The AUCs of weighted DWT, Laplacian
pyramids, salient region-NMF and Hier-histogram are 0.8728, 0.8093, 0.8449 and 0.9987,
respectively. According to our evaluation metrics, the AUC of our hashing algorithm is
0.9992, which is the highest among all the algorithms tested. This suggests that our hashing
algorithm exhibits superior performance compared to the other algorithms in terms of
its ability to accurately differentiate between classes and maintain its effectiveness under
various conditions.
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Figure 7. ROC curve for performance comparison.

4.6. Key Sensitivity

In order to validate the sensitivity of the secret key, 100 different keys were used on
4 images including “Woman”, “Baboon”, “Lena” and “Peppers”. To be more precise, we
initially derive the image’s hash value with a unique key and establish it as the reference
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point. Subsequently, we generate distinct hashes using diverse keys and measure the
Hamming distance between them. The depicted graphical representation in Figure 8
illustrates the computed distances. The horizontal axis represents the varied keys utilized,
whereas the vertical axis indicates the Hamming distance values obtained. The statistical
analysis of four images, “Woman”, “Baboon”, “Lena”, and “Peppers”, reveals the following
information regarding the minimum, maximum, and mean distance values. The minimum
distance for “Woman” is 252, the maximum distance is 300, and the mean distance is 279.7.
Similarly, for “Baboon”, the minimum distance is 274, the maximum distance is 338, and
the mean distance value is 299.8. “Lena” has a minimum distance of 276, a maximum
distance of 354, and a mean distance of 315.7. Lastly, “Peppers” shows a minimum distance
of 286, a maximum distance of 348, and a mean distance of 315.9.
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Figure 8. The impact of different key indices on hash values in key sensitivity experiment.

5. Conclusions

The present study presents a novel image hashing method founded on histogram
reconstruction. Our devised scheme exhibits strong resilience owing to its utilization of
Gaussian low-pass filtering and preservation of histogram shape invariance. Based on
empirical evidence, our scheme has demonstrated resilience to typical content-preserving
operations, such as blurring and rotation, among others. Our scheme exhibits a particularly
strong resistance against rotation attacks at any angle, and it is highly sensitive to changes
in the keys. These characteristics indicate that our proposed scheme is secure. The ROC
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curve reveals that our scheme outperforms several well-known image hashing algorithms.
Future investigations in the area of image hashing will prioritize augmenting the capacity
to identify and pinpoint unauthorized alterations in images. Furthermore, we will consider
the specific applications of image hashing in certain domains, such as the medical field.
We will explore how to embed image hash values as watermarks into medical images to
protect their copyright and privacy. Additionally, we will further utilize image hashing
techniques for the classification and analysis of medical images, aiming to improve the
efficiency and accuracy of healthcare practices.
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