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Abstract: Parameter estimation for devices containing or supporting quantum systems is a field of
quantum metrology using quantum probe states to reach their characterization. Pauli channels are
ideal structures where qubits are transmitted or contained, commonly altering them with specific
fingerprints. The ultimate limit imposed on such estimation is addressed using the quantum Fisher
information, stating a lower bound for it. Although the most simple scheme suggests performing
such an estimation directly using the individual channel, other approaches have shown improved
outcomes by repeating identical copies of the channel for the characterization, or otherwise those
connected inside of specific circuit arrangements. These connections commonly include path super-
position or causal indefinite architectures. In addition, other improvements have been observed in
concrete channels when complementary unitary controls are included. The current research analyses
the complete set of Pauli channels under some of those architectures in a comparative approach to
reach a better estimation, thus stating hierarchies. It is observed that the use of those unitary controls
notably improves previous outcomes by several orders of magnitude.

Keywords: quantum parameter estimation; quantum Fisher information; Pauli channels

1. Introduction

Quantum systems are commonly characterized by parameters settling their struc-
ture. Such parameters drive their interactions with other external systems. In this process,
the information depicting their evolution exhibits features inherited from such interac-
tions and parameters. Thus, any kind of intermediate measurement should contain, in
a greater or lesser degree, information about those parameters [1]. Then, the knowledge
about those parameters becomes useful for characterising each channel, thus predicting its
behaviour [2].

Classical Fisher information is a statistical function comprising information involved
during a stochastic process [3]. It is then able to depict the information available to charac-
terise the parameters driving such a process. A quantum approach to Fisher information is
possible departing from the global density matrix of a specific system upon its interaction
with the external environment under study. Then, Quantum Fisher information (QFI) can
state a bound for the estimation of parameters belonging to that system or environment
involved in the interaction [4].

In fact, the Cramér–Rao Bound (CRB) [5,6] involves Fisher information (classical or
quantum) to set a limit for the variance associated with the quantum parameter estimation
using those processes. This bound assumes the existence of a set of parameters {αi}
characterising the system, the environment, and/or their interaction, which could, in
principle, be estimated through the statistical measurement of a set of observables {Xj}
fulfilling certain statistical distributions. Such a process is called quantum parameter
estimation (QPE).

In particular, we are interested in the characterization of quantum channels. If fact,
a quantum channel could be understood as an operation performed on a quantum state
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ρin. A set of parameters {αi} characterizes such an operation modifying the initial state ρin
of the target system into ρout as an outcome. A quantum channel could then represent a
medium or an environment where the quantum system remains or moves on. Then, those
parameters characterise the effect of each specific channel on a quantum probe state ρin,
being transformed into ρout. Such a transformation carries out information coming from
the {αi} parameters. The process is illustrated in Figure 1.

Figure 1. Process for QPE on a composed architecture involving a quantum channel as the interest
figure. An input quantum resource is sent through the channel emerging and carrying out information
about the channel in the output state. It is measured on a selected basis corresponding to certain
observables to then infer the nature of the channel.

Even when a single channel could be directly analysed in terms of Figure 1, we
could try to improve the last deployment by using scaffolding architectures where the
analysed channel becomes immersed. That immersion has been proposed to construct
more complex circuits in terms of sets of more simple circuits connected among them [7].
Such architectures could combine several identical channels to reinforce the information
storage of the parameters from the single channel to be extracted through a convenient
quantum probe state. Thus, sequential combinations, superposition channel paths, and
even indefinite causal order (ICO) [8] have been considered in the quest for the best QPE
processes [9,10].

Although ICO has demonstrated a higher efficiency in the improvement of commu-
nication processes (commonly analysed for the depolarising channel) [11], it could be an
undesired effect because for QPE purposes, some noisier effects could be preferred to
imprint a deeper fingerprint from the channel. Other practical alternatives have been tried
in terms of channel architectures. These circuits involve copies of the analysed channels
combined with complementary gates, such as unitary operations [12].

Regarding specific channels, a particular interest is in the simpler family of channels
for qubits, the Pauli channels. Although Pauli channels could be generalised to higher
dimensions, they are commonly intended for qubits, the most basic and spread quantum
states in quantum processing and communication. In the current approach, quantum
parameters estimation is analysed for the entire family of the two-dimensional Pauli
channels. In fact, Pauli channels have already been analysed in terms of the QFI in QPE,
but only using concrete channels implemented directly in the estimation procedure [13].
The QPE problem has also been analysed in the relativistic quantum processing arena by
considering the Unhru effect framework. Thus, noisy channels on an accelerated qubit–
qutrit system have analysed the QFI, particularly the maximum/minimum bounds of the
parameter estimation [14–16]. In other approaches, stochastic procedures using entangled
measurements provide an exponential advantage in quantum benchmarking [17] for Pauli
channel estimation implementing entangled steering procedures [18].
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Furthermore, Pauli channels have been analysed in general for the QPE problem, but
only using redundant applications of the direct channels or alternatively ICO arrange-
ments [9]. Thus, in previous work, it was settled that the advantage of ICO strategies
becomes limited as compared with sequential application in the estimation strategy. Dif-
ferently from the approach followed in [9], in this study, the analysis goes around the
implementation of more elaborated circuits involving copies of a concrete but arbitrary
Pauli channel, assisted by local unitary operations. This approach also considers path
superposition together with sequential and ICO arrangements. As in [9], the use of a
control system allows for a stochastic steering procedure as in [18]. As the single crossing
of the quantum state on each type of channel could still be insufficient to efficiently guess
the parameter values, alternative architectures not only involving identical copies of those
channels connected by coherent structures could be additionally scaffolded by additional
control operations to improve the quantum parametric estimation.

Thus, this article analyses the QPE problem using some composed and scaffolded
architectures recently proposed and becoming hierarchised in terms of their QFI-bound
values. The second section presents the basic concepts to attain the problem: the Pauli
channels concept and its Bloch representation, the Cramér–Rao bound and QFI, and some
useful relations to address the QPE-bound calculation in terms of the Bloch vector ~n
characterising the two-level output mixed state. With these elements, a generic theoretical
development is proposed in the third section to address the calculation of QFI for the
architectures involving the Pauli channel under study, together with a control system
addressing it. This also involves some parametrisable unitary operations used as inner
control support. Then, a stochastic process on the control is introduced to reach, via
post-measurement, the QFI of the communication process performed through the Pauli
channel with a certain probe state. Section 4 analyses the QPE problem for several situations
regarding single parametric and multiparametric estimations. Outcomes are hierarchised as
a result of the analysis. A complementary analysis of the selectable parameters (not under
the estimation analysis) is also performed. The fifth section deals with a final assessment of
the more optimal success of the stochastic process and its improvement. The final section
presents the conclusions.

2. Quantum Channel Multiparameter Estimation Problem for Pauli Channels under
Composed Architectures

This section briefly develops the main previous basics to analyse Pauli channels in
the context of QPE as a valuable problem because qubits are the more viable resource for
quantum processing [19,20]. They are shortly presented to then state the problem of QPE in
terms of the Cramér–Rao bound and QFI. Such an approach will consider some composed
arrangements or architectures involving Pauli channels to improve their QPE.

2.1. Pauli Channels

Pauli channels are quantum channels depicting most quantum operations, including
classical communication for qubits with a proper geometry represented through a set of
parameters [21]. They have the form

ρout = Λ[ρin] =
3

∑
i=0

αiσ
iρσi†

, with :
3

∑
i=0

αi = 1 (1)

σi, i = 1, 2, 3 being the Pauli operators and σ0 the identity operator. Thus, their Kraus
operators [22] could be written as Ki =

√
αiσi, i = 0, . . . , 3. Due to the property

∑3
i=0 K†

i Ki = σ0,, ∑3
i=0 αi = 1. The parameters {αi} define each type of channel mod-

elled in (1). They have been analysed under indefinite causal order (ICO) arrangements,
sometimes exhibiting induced transparency [23].

These parameters could be experimentally estimated using convenient probe states ρin
as input by then analysing the output ρout. Then, a certain set of indicators {xi} extracted



Symmetry 2023, 15, 1097 4 of 24

from the last state should provide information about the parameter’s nature for each
specific channel [1].

2.2. Cramér–Rao Bound and Quantum Fisher Information

In agreement with the CRB, Fisher information [3] obtained from the statistical distri-
bution of such an indicator sets a lower bound for the joint variance of estimation [5]. In
terms of their quantum analogue, QFI:

3

∑
i=0

var(αi) ≥
1
N

Tr(F−1(ρout)) ≡
V
N

(2)

N being the size of sampling in a repeated experiment and F the QFI matrix. In our
following development, we will consider an analysis of the single experiment case, which
means N = 1→ V as bound. Although the QFI matrix is defined through the logarithmic
derivatives Li, i = 0, . . . , 3 of ρout:

Fij(ρout) =
1
2

Tr(ρout{Li, Lj}) (3)

where subscripts i, j refer to the ith and jth parameters, there is a more affordable expression
for the QFI matrix entries for systems admitting a Bloch representation of ρout. For instance,
for qubits ρout =

1
2 (σ0 +~nout ·~σ) [24,25], it is

Fab(ρout) =

{
(∂a~nout) · (∂b~nout) +

(~nout·∂a~nout)(~nout·∂b~nout)
1−|~nout|2

, |~nout| 6= 1 (mixed states)

(∂a~nout) · (∂b~nout), |~nout| = 1 (pure states)
(4)

where subscripts a, b refer to the ath and bth parameters, meaning αa, αb with a, b = 1, 2, 3
as the independent parameters. Then, ∂a refers to the partial derivative with respect to αa.

2.3. The Real and Mathematical Bounds for V
Clearly, the Fisher information matrix is symmetric. Moreover, because it is a vari-

ance matrix, F is positive semi-definite. This is an important issue because if λi are the
positive eigenvalues of F , then, by using the Cauchy–Schwartz inequality, it is possible to
show: ∑i λi ·∑j λ−1

j ≥ 32. This directly implies that V has a lower mathematical bound:

V ≥ 9Tr−1(F (ρout)) ≡ Vm. This bound, although not the best, sometimes is more conve-
nient because it is only centred on the trace of F , thus avoiding the calculation of F−1 or
the eigenvalues of F ; both problems are approximately equivalent.

In order to relate the last outcomes to the CRB, we consider the minimal real bound
on some other free parameters involved: Π = {π1, . . . , πm}. Then, such a real or hard
bound Vh = minΠ{V} is sought, but still limited by V ≥ Vh ≥ Vm. For this, we will
need to invert F and then trace it. Still seeking Vh or Vm, it is clear that the knowledge of
the eigenvalues of F (ρout) become crucial (see Appendix A for a theoretical approach to
solving this problem).

Although nontrivial, the problem of minimising V from (A1) with respect to a set of
m additional parameters, {πa|a = 1, . . . , m} (not with respect to those for which we are
pretending to obtain an estimation, αi, i = 1, 2, 3), becomes expressed in the following m
equations:

∂πa λ1

λ2
1

+
∂πa λ2

λ2
2

+
∂πa λ3

λ2
3

= 0, a = 1, . . . , m (5)

which is not an easy mathematical problem, so a numerical approach is in order. It can
still be performed by departing from the analytical expressions for ~nout, and still from
the analytical expressions for the Fisher matrix entries Fab(ρout). The process to obtain
eigenvalues λi, in general, could be complex, so departing from this point, a numerical
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approach is recommended as a function of the complexity to reach the optimisation. It will
be seen below. In any case, in the current analysis, it is pursued to obtain the real bound Vh
by using the previous outcomes.

Recently, a multiparameter analysis has been presented, analysing the CRB for the
parameters {αi} involved in this set of channels and using sequential and ICO arrangements
of every single channel [9]. In addition, other novel architectures or arrangements have
recently been proposed to improve the CRB for the depolarising channel, either involving
sequential, path superposition (PS), or ICO structures [26–28]. In particular, the introduction
of complementary structures by [28] has become a valuable strategy in the single parametric
case. In the next section, we present the problem of obtaining the Fisher matrix and its
associated QPE for several composed architectures, covering in the analysis the entire Pauli
channels family and additionally considering a multiparametric analysis.

2.4. QFI Treatment for Pauli Channels inside of Communication Architectures to Improve QPE

Consider the following general form for the Kraus operators under composed archi-
tectures, including Pauli channels:

Kij = ∑
α,β,γ∈{0,1}

Cij
αβ,γ|α0βC〉〈γ0|, i, j ∈ {0, . . . , 3} (6)

where the subscript 0 corresponds to the system (probe state) going through the channel
arrangement, while the subscript C is a possible control deciding alternative configurations.
In the following, Latin scripts run on 0, . . . 3, while Greek ones run on 0, 1. Such a set of
operators should fulfil the Kraus operators condition ∑i,j K†

ijKij = 1. Then:

∑
i,j
αβ

Cij ∗
αβ,γCij

αβ,γ′ = δγγ′ (7)

3. Bloch Representation for the Output State under Composed Architectures Involving
Pauli Channels

In this section, we present the framework used to analyse QFI for some composed
architectures involving Pauli channels to improve QPE using the Bloch representation for
the probe state.

3.1. Output State and Bloch Vector for Some Composed Architectures Implementing QPE

We use the Bloch representation for the input state ρ = 1
2 (σ

0 +~n ·~σ) ≡ 1
2
~N ·~Σ, where

we have extended the three-dimensional Bloch vector~n (|~n| ≤ 1 ) into the four-dimensional
~N ≡ (1,~n) = (1, n1, n2, n3). In particular, it is possible to parameterise~n in terms of a pair
of angles as ~n = |~n|(sin θ cos φ, sin θ sin φ, cos θ). Similarly, ~Σ ≡ (σ0,~σ) = (σ0, σ1, σ2, σ3),
the identity and the Pauli operators. In such expressions,~σ = (σ1, σ2, σ3) traditionally. The
output state could be written as

Λ[ρ] = ∑
i,j

KijρK†
ij (8)

which includes the control system. There, by writing ρ in terms of ~N:

Λ[ρ] =
1
2
~N · ∑

i,j
α,β,γ

α′ ,β′ ,γ′

Cij
αβ,γCij ∗

α′β′ ,γ′ |α0βC〉〈γ0|~Σ|γ′0〉〈α′0β′C| (9)

=
1
2 ∑

k
Nk ∑

i,j
α,β,γ

α′ ,β′ ,γ′

Cij
αβ,γCij ∗

α′β′ ,γ′σ
k
γγ′ |α0βC〉〈α′0β′C| (10)
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where σk
γγ′ are the entries of σk. In addition, because

σk
αα′ = Tr(|α〉〈α′|σk) → |α〉〈α′| = 1

2 ∑
k

σk
αα′σ

k (11)

we then obtain

Λ[ρ]k′ =
1
4 ∑

i,j,k
α,β,γ

α′ ,β′ ,γ′

Nkσk′
α′αCij

αβ,γCij ∗
α′β′ ,γ′σ

k
γγ′ |βC〉〈β′C| (12)

where the component k′ of Λ[ρ] is expanded in a linear combination on~Σ. This also includes
the control system, which is in general entangled with the state going through the channel
arrangement. In particular, by using the property (7) and tracing the control system:

ρ0out ≡ Λ0[ρ] = TrC(Λ[ρ]) =
1
2
(σ0 +~nout ·~σ) (13)

with : noutk′ ≡
1
2 ∑

i,j,k
α,β,γ
α′ ,γ′

Nkσk′
α′αCij

αβ,γCij ∗
α′β,γ′σ

k
γγ′ (14)

3.2. A Projective Strategy on the Control State to Stochastically Reach QPE

Alternatively to the last strategy, we can project on a convenient control state ba-
sis {|ψγ

C〉|γ = 0, 1}; for instance, |ψγ
C〉 = ∑β cγ

β |βC〉. Then, the state arising if |ψδ
C〉 is

measured becomes

ρ0out = Λδ
0[ρ] =

1
2
~Nδ

0out
·~Σ (15)

with : N0
δ
outk′ =

1
2Pδ

∑
i,j,k

α,β,γ
α′ ,β′ ,γ′

Nkσk′
α′αCij

αβ,γCij ∗
α′β′ ,γ′σ

k
γγ′c

δ∗
β cδ

β′ (16)

where Pδ is the probability of success to obtain |ψδ
C〉:

Pδ =
1
2 ∑

i,j,k
α,β,γ
β′ ,γ′

NkCij
αβ,γCij ∗

αβ′ ,γ′σ
k
γγ′c

δ∗
β cδ

β′ (17)

which clearly implies N0
δ
out0 = 1, as expected. An easy election for that measurement basis

could be written as {|ψ0
C〉 =

√
q0|0C〉+

√
q1|1C〉, |ψ1

C〉 =
√

q1|0C〉 −
√

q0|1C〉}. Clearly, this
approach eases the mathematical problem for QPE because the global state comeback to
one is able to be written in the Bloch representation. In the following, we will assume that
the optimised solution corresponds to |ψ0

C〉, with an associated success probability P0. Thus,
our QPE process will become stochastic.

3.3. Some Concrete Architectures to Immerse Pauli Channels for the Improvement of QPE

Some cases of channel arrangements are shown in Figure 2. Those architectures have
been proposed in the context of quantum circuits architecture, in particular for QPE to
improve the parameter estimation [29], and additionally setting certain hierarchies in the
estimation. Some types of configurations have been analysed by generalising or involving
sequential and parallel channel processes and their superposition for a more effective
channel discrimination [30]. By combining those types of connections, together with PS
and/or ICO, they have been used to supersede channel noise or alternatively to improve
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QPE on certain specific channels as bit-flipping, depolarising, and amplitude damping [31].
In our current analysis, the use of some of these proposed architectures is considered for
the entire Pauli channels family.

Figure 2a corresponds to a sequential arrangement (S + U), including an intermediate
unitary control operation as that suggested by [28]: U = eiχn̂·~σ = cos χσ0 + i sin χn̂ ·~σ,
with n̂ = (sin δ cos ε, sin δ sin ε, cos δ). Figure 2a and b correspond to superposition paths
including the same previous unitary operation at the end (PS + U) or alternated (PSA + U)
after and before as a function of the path. Finally, Figure 2d presents an indefinite causal
order (ICO) arrangement (ICO + U) with the same intermediate unitary operation. Only
the sequential arrangement does not require a control system (otherwise, it will remain
separable through the process), which could be assumed to be prepared in the state |ψC〉 =√

p0|0C〉 +
√

p1|1C〉. However, we should work on ρC ⊗ ρ; our treatment has already
integrated the control system in (6).

(a) (b)

(c) (d)

Figure 2. Different architectures involving a defined Pauli channel and including a unitary operation
U. (a) Single sequential case, (b) PS of two channels followed by U, (c) PS alternated with U, and
(d) an ICO arrangement with U in an intermediate step.

Thus, the output state of the sequential arrangement is simply expressed as
the operation

Λ[ρ] = ∑
i,j

αiαjσ
jUσiρσiU†σj (18)

It still could be integrated into the scheme developed without depending on the
control system. Then, each one of the four cases presented in Figure 2 could be respectively
expressed as
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S + U : Ci0i1
αβ,γ =

√
pβαi0 αi1 [σi1Uσi0 ]αγ (19)

PS + U : Ci0i1
αβ,γ =

1
2

√
pβαiβ

[Uσiβ ]αγ (20)

PSA + U : Ci0i1
αβ,γ =

1
2

√
pβαiβ

[σβ·iβ Uσ(β⊕1)·iβ ]αγ (21)

ICO + U : Ci0i1
αβ,γ =

√
pβαiβ

αiβ⊕1 [σiβ⊕1Uσiβ ]αγ (22)

where brackets [A]αγ = Aαγ refer to the entry α, γ of A. Regarding U being unitary, it is
easy to show that all cases fulfil the condition (7). Such expressions Ci0i1

αβ,γ work as structure
constants from a transference function in (13) and (14) for each kind of channel. In those
expressions, pβ with β = 0, 1 are the probabilities for a control state defining the splitting
through paths or causal orders, respectively. Notice that for the S + U case, the control is
maintained just as a separable system to include it in the general procedure, and then its
state is nonmeaningful in this case. Note that such expressions are quite valuable because
expressions (6) and (8) allow for reaching Λ[ρin] directly from ρin.

The complexity should be clear now. Because of the large number of selectable param-
eters (those added to the αi parameters being estimated), the optimisation problem moves
into one of several variables: five (S + U) or even seven (for the remaining architectures).
Then, an approach such as the Monte Carlo method becomes more practical because of the
large number of selectable parameters.

4. Analysis of Vh Bounds and Stochastic Affordability Provided by
Several Architectures

To arrive at a comparison for the architectures being considered, we use the expres-
sion (4) to reach Fij(ρout). This is possible through the value of~nout coming from (12) by
considering the initial state~nin in ρin as function of θ, φ. The parameters p0 for the control
state (except for S + U) and q0 for the final measurement basis on this system could be
selected to improve the parameter estimation of αi, i = 1, 2, 3. Additionally, the parameters
δ, ε, χ are selectable for such a purpose. This implies five parameters for the S + U architec-
ture (ΠA = {θ, φ, δ, ε, χ}) and seven for the remaining ones (ΠB = {θ, φ, δ, ε, χ, q0, p0}).

4.1. A Cross-Sectional Insight about QPE Using the Proposed Architectures

In an initial analysis, we will consider the simpler case for αi = p, i = 1, 2, 3, p ∈ [0, 1
3 ]

(the central line in the Pauli channel parametric space introduced in [23]). Figure 3a again
reproduces that space as a reference, showing some emblematic Pauli channels: transparent
channel (αi = 0, i = 1, 2, 3) in the origin; depolarizing channel (αi =

1
4 , i = 1, . . . , 4); central

ICO channel (αi =
1
3 , i = 1, 2, 3); and the three main syndromes in the tetrahedron corners

(αi = 1 for just one i = 1, 2, 3 at the time). Then, recursively using the Monte Carlo method
on resizeable regions, we found the best set of five or seven parameters, minimising Vh for
each architecture and point on the green line in the parametric space of Figure 3a.

Figure 3b shows the outcomes comprising the four architectures. For reasons of
convenience, it has been represented as log10 Vh instead of Vh directly. The black line shows
the lower outcomes for the S + U case as a function of p. It exhibits certain expected
outcomes: Vh drops to lower values for the transparent channel and ICO central channel
but rises to infinity for the depolarising channel. In fact, it perfectly fits into the model
VS+U

h = 0.0264
(p−0.25)2 . Dashed blue and green lines respectively show the cases PS + U and

PSA + U. Similarly, they show dramatically different outcomes for Vh, providing much
better expectations than the S + U case in almost all ranges for p. Still, the PSA + U
case exhibits slightly better outcomes than the PS + U case, as can be seen in the lower
inset for those two cases in a direct scale for Vh. Interestingly, we found a discontinuity
on the plot around p = 2

30 ≈ 0.067. Discontinuities in QFI have been identified [32,33]
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generating this kind of outcome. Despite this, note the avoiding of the failed outcome
near the depolarising channel as occurred for the S + U case. Finally, the ICO + U case still
shows some improvements in some ranges. Near the transparent channel, this case does
not reach better outcomes than the previous cases (this was already noticed by [9], still
without the use of the added U transformations). One notable improvement occurs near
p = 0.045, 0.09. In this last value, this case shows a discontinuity. The case for p = 0.045
is not a discontinuity, but instead an effect of the log10-scale. Note the improved and the
best values near p ∈ [0.033, 0.150] and also near the ICO central channel. Comparing the
outcomes presented in [9], we conclude that the introduction of unitary operations in the
architectures improves the outcomes in the bound for QPE for Pauli channels. In addition,
here, we observe hierarchies as those observed and demonstrated by [28] for several similar
architectures using the amplitude damping channel.

(a) (b)

Figure 3. (a) Pauli channel parametric space with some emblematic channels and the central line in
green. (b) Best outcomes for Vh in each architecture, being presented in a log10-scale as a function of
parameter p through the central green line of the parametric space.

Table 1 reports some representative values for each architecture and several values
of p to set the dimensions represented in Figure 3. Prescriptions for other selectable
parameters θ, φ, δ, ε, χ, q0, p0 in each architecture case become nonmeaningful to be reported
because, in fact, there are multiple solutions for the optimisation, as it will be analysed
below. Our procedure of search is stochastic, but converging to the best solution with the
minimal Vh. Nevertheless, in most cases, several solutions were found. These values show
important improvements with respect to those obtained using just single sequential or ICO
arrangements in [9] because of the inclusion of U operations. A complete analysis of all the
Pauli channels is difficult in terms of computer processing times. However, the channels on
the central line are notable, and other cases of the channels with representative syndromes
are also of interest. In the next subsection, we develop an analysis around them to compare
the four architectures.

Table 1. Some representative values for Vh (on the central line as a function of p, and nearest to a
pure syndrome) in each type of architecture.

Central Line (p) Vh
S + U Vh

PS + U Vh
PSA + U Vh

ICO + U

0.001 0.377 0.034 0.034 0.377
0.034 0.260 0.357 0.357 0.236
0.067 0.846 0.000 0.001 0.052
0.100 1.195 1.908 0.001 0.891
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Table 1. Cont.

Central Line (p) Vh
S + U Vh

PS + U Vh
PSA + U Vh

ICO + U

0.133 1.938 1.687 1.603 1.175
0.166 3.742 1.636 1.589 1.618
0.199 10.140 1.554 1.624 2.142
0.232 81.385 1.498 1.498 2.855
0.265 117.189 1.564 1.564 3.186
0.298 11.446 1.498 1.498 2.239
0.331 4.024 1.294 1.294 1.018

Syndrome (αi = 1) 0.245865 0.037687 0.000023 0.243448

4.2. Analysis of QPE Using the Proposed Architectures around Typical Syndromes for
Pauli Channels

Error syndromes for Pauli channels correspond to the cases αi = 1 for each i = 1, . . . , 3
at the time: bit flipping noise (i = 1), dephasing noise (i = 3), and a combination of both
(i = 2). Note that all three cases should be analysed because QFI is invariant upon a
cyclic permutation of Pauli matrices (it is easy to notice because by a proper basis change,
σ1, σ2, σ3 become cyclically exchanged). Thus, we will analyse the case with 0.9 ≤ αi ≤ 1
near the syndrome i in agreement with the last description. It is a corner including the
Pauli channels nearest to one of those syndromes. By considering a uniform sample of
channels in that region for each architecture, we obtained an insight into the Vh behaviour.

Figure 4 shows the outcomes. Each dot represents the outcome of a channel and
architecture. Outcomes are presented as a function of Vh and the distance d to the channel
exhibiting the pure syndrome just in the corner (αi, αj, αk), with αi = 1 and i, j, k a cyclic
permutation of 1, 2, 3. The dot colour represents the architecture used in agreement with
those colours used in Figure 3. Due to the different scales of the outcomes, a log10-scale has
been used again. They were generated by sampling the shadowed wedge region shown in
Figure 4a. Sampling was performed as Cartesian uniform in the region. The biggest points
on the left of Figure 4b correspond to the closest to the syndrome channel considered in
the corner.

(a) (b)

Figure 4. (a) Corner near the Pauli channel exhibiting a pure syndrome (αi = 1, with i, j, k a cyclic
permutation of 1, 2, 3). The shadowed wedge region was sampled in the analysis. (b) Best outcomes
of Vh (in a log10-scale) for each architecture inside the last wedge near the corner of syndrome i.
They are shown as a function of distance d to the corner, the biggest points being on the left, the
closest analysed.



Symmetry 2023, 15, 1097 11 of 24

In this case, the S + U (black points) and ICO + U (red points) cases give similar
outcomes for Vh. No deeper advantage is noticed by the use of ICO in the architecture. It
was already noticed in [9] for syndrome channels. In fact, the biggest black and red points
meet, but they were artificially displaced a little just to be distinguished on the plot. Instead,
the PS + U (blue points) and PSA + U (green points) cases exhibit much better outcomes
for QPE. However, the PSA + U architecture still improves the outcomes for the parameter
estimation near the syndrome channel, thus giving Vh values below 10−4. We note that the
PS + U case shows a two-fold approach near the syndrome channel, but finally converging
on the biggest blue point on the left. All values for Vh nearest to the syndrome channel
(biggest points in Figure 4b) have been reported in the last row of Table 1.

General Overview of QPE on the Entire Pauli Channels Parametric Space

Figure 5 presents for the multiparametric case an analysis of Vh for each architecture
in the overall parametric space of Pauli channels. Each panel exhibits the outcome for each
given architecture.

(a) (b)

(c) (d)

Figure 5. A general view on the entire parametric space of Pauli channels for the optimised values
of log10 Vh for (a) S + U, (b) PS + U, (c) PSA + U, and (d) ICO + U cases. Values are represented in
colour in agreement with the colour bar at the top.
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For this analysis, a couple of 12-core computers with processors of 3.4–3.5 GHz and
the evaluation for an optimised value of Vh following the recursive Monte Carlo method on
resizeable regions of convergence have been used. This is a computer task lasting between
2 and 5 min (depending on the architecture) for every single point on the parametric
space of the Pauli channel parameters. In this work, a sweep on the parametric space
has been developed by using 3000 evaluation points for each architecture to obtain a
representation of the optimised Vh there. To improve the detailed evaluation, the process
has used an interpolation function over those points based on the nearest neighbours
effectively calculated in the optimisation process. This interpolation has considered the
inverse quadratic distance to the interpolation point as weight. Thus, it provides a more
detailed three-dimensional map of that bound on the entire parametric space.

In these general views on optimised QPE for the overall Pauli channels, the previous
outcomes become consistent. Figure 5a shows the sequential case with the values for Vh
in colour, in agreement with the colour bar at the top. In this case, Vh is mostly near by
units, but much nearer to the depolarising channel (again, outcomes are presented using
a log10 scale in a proper range for each architecture to better notice the gradient). Only
the syndromes exhibit lower values, while in the remaining regions, Vh is around the
units. Figures 5b,c show the superposition path cases being considered, where PSA + U
has improved values but, in general, the best ranges among the four architectures. Note
particularly that the best outcomes for PSA + U in the channel syndromes are almost
unnoticed because, in their proximity, PS + U still provides better outcomes (see, as a
comparison, in Figure 4b, the group of blue dots with lower Vh values than those in green).
Note in both cases that the discontinuities are near the transparent channel in the origin.
For the ICO + U case, better outcomes are obtained in the central region of the tetrahedron,
together with comparable outcomes near the channel syndromes, as was already noticed in
Figure 4. In general, the poorest outcomes in the centre of the parametric space were already
observed for those configurations without the support of unitary operations [9]. Despite
this, these outcomes now show that the inclusion of complementary unitary operations
becomes valuable in the improvement of Vh and QPE.

An alternative two-dimensional view of the last outcomes has been constructed by
representing the values of log10 Vh as a function of α0 and the minimum distance to the
closer syndrome, ds (they are suggested by the three-dimensional plots in Figure 5). In
such a representation, dots become superposed. Figure 6 shows those representations
for (a) S + U, (b) PS + U, (c) PSA + U, and (d) ICO + U. In this case, the same colour
scale has been used to ease the comparison between the architectures. There, log10 Vh is
reported. In addition, the main emblematic channels have been signalled: transparent,
syndrome, depolarising, and central ICO channels. In this representation, the three borders
of the plotted region correspond to (a) the central line α1 = α2 = α3 analysed in Section 4.1
(upper frontier), (b) the line along each αi axis αj = αk = 0 (rightmost frontier), and (c) the
line connecting the central ICO channel with the syndrome αi = 1, meaning αj = αk
(leftmost frontier). This representation clearly exhibits the goodness of each architecture by
region. The observations fit with the previous discussion of Figure 5. Note particularly the
advantage of PSA + U very near to the syndrome and also the limited advantage of using
an architecture involving ICO.

A final analysis to set a hierarchy among the architectures could be obtained by com-
paring the bounds found for each channel. Thus, for the multiparametric case, Figure 7
shows the regions where each architecture provides the lowest bound. The S + U case
was omitted because, for every channel, it always provides the worst bounds. All other
architectures have channel regions with the best bound among the three cases: Figure 7,
(a) PS + U (blue); (b) PSA + U (green); and (c) ICO + U (red). Again, just one-third of the
entire parameter space is illustrated for clarity. The grainy structure of these regions is
notable (note particularly the entire picture in Figure 7d, already noticed in Figures 5 and 6,
instead of well-defined three-dimensional regions as those cases reported in [9], not consid-
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ering the support of unitary controls). In these architectures, control unitary operations
finally efficiently drive the manipulation process to address an improved QPE.

(a) (b)

(c) (d)

Figure 6. Flat representation of log10 Vh as function of α0 and the distance ds to the closer syndrome.
(a) S + U, (b) PS + U, (c) PSA + U, and (d) ICO + U cases. In all cases, a common colour scale for
log10 Vh is used to ease the comparison among the plots.

The set of parameters ΠA = {θ, φ, δ, ε, χ} for S + U and the set ΠB = {θ, φ, δ, ε, χ, q0, p0}
for PSA + U, PS + U, and ICO + U admit several optimal values in the analysis because the
solutions are nonunique. It will be interesting to analyse them for the sake of some impor-
tant possible correlations among those selectable parameters for the optimal solutions.

Figure 8 shows some of those outcomes corresponding to all the solutions presented
in Figure 5. They have been paired to reveal some possible correlations among those
selectable parameters. Figure 8a compares, for each architecture identified in colour as
the upper legends remark, the solutions for the pair θ, φ. Although many of those pairs
become uniformly dispersed, certain accumulation points exist for PS + U (blue), PSA + U
(green), and ICO + U (red). Be aware of some shadowing among the point groups for
each architecture meeting in the same region. However, this behaviour is not observed for
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the S + U (black) case. Those accumulation points are real considering that the sampling
was performed using the Haar measure. Similar accumulation points were also noticed
in previous analyses for probe states not using the support of unitary operations as in the
current proposals [9]. In any case, comparing those outcomes with the current ones, we
observe the valuable introduction of those complementary operations in the lowering of
the CRB for Pauli channels.

In another view, the pairs δ, ε are presented in Figure 5b. It is clear that in any case
there are no evident correlations between this pair of parameters, which now are completely
and uniformly distributed. This indicates that unitary operations (rotations on the Bloch
ball) do have not a privileged direction relating each parameter with another. Finally,
Figure 5c shows the relation between q0 and p0 for PS + U (blue), PSA + U (green), and
ICO + U (red) cases. Notably, many optimised solutions exhibit the relation q0 ≈ 1− p0, as
it becomes evident from the plot.

(a) (b)

(c) (d)

Figure 7. Best architectures for QPE by channel represented in the parametric space. (a) PS + U
(blue), (b) PSA + U (green), and (c) ICO + U (red). Panel (d) shows the entire picture with all the best
architectures by channel.
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(a)

(b) (c)

Figure 8. Graphical comparisons among some paired selectable parameters ΠA or ΠB in the QPE
process: (a) θ, φ correlation; (b) ε, δ correlation; and (c) p0, q0 correlation. The outcomes for each
architecture presented are shown in a different colour as the upper legends remark.

Because for S + U, the form (19) has been maintained, including a control remaining
separable from the system, to then follow the same computational procedure as in the other
architectures, certain values for q0 were obtained (the initial state for the control was fixed
in this particular case as p0 = p1 = 1

2 ), but in this case, they are expected to be random.
Thus, in a different representation, for such an S + U case (black), the leftmost fringe is
included in the same plot for comparison to verify this expected behaviour. This presents
the solutions for q0 in the S + U case, using only the vertical axis. There, each solution
was randomly displaced through the fringe widely, using the nonmeaningful horizontal
direction, to exhibit the corresponding and expected uniform distribution for q0 values.

4.3. Some Final Considerations Related to the Success Probability P0

Appendix B reports the expressions for P0 in each architecture. Unfortunately, the
expressions for~nout are very complex when they are expressed in terms of the parameter
sets ΠA and ΠB to be reported there. In this subsection, an analysis of the P0 values is
performed. Figure 9 synthetically reports the analysis. In this analysis, clearly, for the
reasons previously discussed, the case S + U has not been considered.
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(a)

(b)

(c)

Figure 9. Dispersion plot of P0 correlated with log10 Vh for: (a) single parametric case αi = p,
i = 1, . . . , 3, (b) multiparametric case. Dots are coloured in agreement with their architecture as the
upper legends remark. (c) Probabilistic distributions f (P0) for P0 values in [0, 1] for each architecture.

Considering that the optimisation problem exhibits multiple solutions in spite of the
number of selectable parameters, it is not expected that P0 consistently exhibits the largest
possible values. Thus, the outcomes for the previous analysis have simply been used to
analyse the behaviour of the success probability P0. Because the concrete values for the
parameters p or α1, α2, α3 will hardly show a certain correlation with P0, the analysis for
this value is correlated with the value of Vh (or log10 Vh in the plots). Thus, for the reduced
number of solutions obtained in the single parameter case characterized by p, Figure 9a
shows the corresponding correlations between P0 and log10 Vh. Again, each architecture is
coloured as before. Each dot represents one solution through the central lines for a given
architecture. All cases PS + U, PSA + U, and ICO + U exhibited P0 values regularly over
P0 > 0.5 in most cases.

With the multiparametric case (see Figure 9b), because of the large number of solutions
analysed, previous behaviours become confirmed. Those architectures show values barely
centred on P0 ≈ 0.5–0.6, thus providing certain effectivity. In particular, the case PSA + U
appeared providing the highest values for P0. Considering that the optimal solutions in
the entire space of parameters ΠB were obtained from a uniform distribution of them, the
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last observations can be verified in Figure 9c. There, numerical probabilistic distributions
f (P0), P0 ∈ [0, 1] for P0 values in the Monte Carlo procedure have been obtained for each
architecture through the three panels. Interestingly, the ICO + U case shows a two-peaked
distribution (a double-check was made to verify this fact). Otherwise, the PS + U case
shows a narrower distribution than the PSA + U one, which has little advantage in the
mean. In any case, all distributions are right-skewed. These outcomes suggest that among
the multiple solutions for the optimisation problem for Vh), the values for P0 (without
additional optimisation) have on average reasonable values favouring the stochastic process
on the control system to perform the channel parameters estimation. Still, an improved
search could reach both optimisations, on Vh and P0.

5. Discussion of Outcomes and Improving the Stochastic Affordability

In spite of the previous outcomes and comparing them with those presented in [9], it
becomes clear that the use of control unitary operations provides notable outcomes for QPE
for single Pauli channels when they are combined under architectures using sequential,
superposition paths, or even ICO Pauli channel arrangements. Because of the number
of parameters, even with our numerical approach used in the optimisation process, the
existence of multiple solutions became evident. Because the procedure is stochastic, its
affordability is linked to the possible P0 values of success. These solutions should require
parallel optimisation for such variables. Clearly, we avoid the S + U case because of the
absence of control.

In the current section, the previous outcomes in QPE are analysed for some emblematic
channels under the architectures presented, but this time, the analysis emphasises the role
that P0 plays in the entire process. Then, a different analysis will be performed. Because the
previous optimal outcomes are multiple, our previous analysis was free, in some sense, of
the specific selectable parameters’ values (more than the optimisation for the lower bound
of Vh). Thus, in the current analysis, sets of identical optimal solutions providing the same
lowest bound for each case analysed will be gathered to analyse their feasibility as given
by P0. In such a case, each element of the set of optimal solutions for the QPE problem will
provide a different value for P0, some of them becoming more convenient in the process
as a consequence. For such a purpose, only the transparent, depolarising, central ICO,
and syndrome (bit-flipping) channels will be considered as exemplary channels. For each
channel, a wide set of optimal solutions in terms of Vh will be newly obtained. For instance,
Figure 10 presents the outcomes for the transparent channel in terms of several analysis
parameters defined as follows.

(a) (b) (c)

Figure 10. P0 dispersion for random sets of 500 optimal solutions minimising Vh (with mean µ and
standard deviation σ) in the parameter estimation process for the neighbourhood of the transparent
channel by using (a) PS + U, (b) PSA + U, and (c) ICO + U. η is a general normalised dispersion
measure from the average of the selectable parameters for the set. The dots’ colour is an RGB mixture
as a function of the composed variances for parameters in the probe state (β1) and unitary control
(β2) (see the colour scale on the top).
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Through the analysis, we will deal with several parameters. In each case, we obtain a
set of 500 optimised solutions for each channel estimation and architecture used, each one
gathering the same optimal bound but delivering different values for P0. We tracked the
selectable parameters of optimisation to determine P0 through the formulas reported in
Appendix B. Because the procedure to obtain those solutions is stochastic, tiny numerical
variations on Vh could be obtained. Thus, to assess such a fact, each set was characterized
by its mean µ and standard deviation σ (expected to be small), which are reported on
the left top of each panel plot. In addition, for each set, the geometric average for each
one of the seven selectable parameters ΠB

= {θ, φ, δ, ε, χ, q0, p0} was calculated. Then
the parameter:

η =
1

ηmax
||ΠA −ΠA|| (23)

was calculated by each solution (dot). There, ηmax = maxΠA{||ΠA −ΠA||} =
√

2 + 14π2

is the maximum distance in the seven parameter dimensions. Such a parameter provides
information about how far each solution is from the average in the set. Additionally, we
have grouped the parameters into three groups: g1 = {θ, φ}, g2 = {α, ε, χ}, g3 = {q0, p0}.
Then, by obtaining the composed variance of each set vi =

1
Ci

∑j∈gi
var({πj}), Ci being the

cardinality of each subset gi. Then, the three parameters βi are defined as

βi =
vi

∑3
i=1 vi

(24)

Clearly, β1 + β2 + β3 = 1. Each one of these parameters independently reflects the
variation of each set of parameters with respect to their averages. Thus, because of the
normalisation introduced, the larger will denote the main source of variation in each set
of solutions. Thus, in the following Figures 10–13, the dot colour for each set represents
a red–green–blue (RGB) mixture reflecting that balance: the probe state (red), the unitary
control (green), or the control state definition and its optimal measurement (blue). The
colour is then settled by the colour scale in the triangular chart at the top right as a function
of β1 and β2 (β3 = 1− β1 − β2). Thus, Figure 10 presents several facts. First, parameters P0
appear upper-bounded approximately by 0.65 for the PS + U and PSA + U cases. This is
not observed for the ICO + U case. Dispersion around the average is comparable for the
three cases (values of η). In addition, the main source of variation is due to the unitary
control U parameters for PS + U and PSA + U (β2 ≈ 1). For the ICO + U case, the variation
due to the probe state becomes a little more important than in the previous cases. Almost
no variation is due to the control state. The parameters µ and σ show only tiny variations
obtained by our optimisation procedure to reach the optimised solutions.

For the depolarising channel in Figure 11, the consistency of the sets (given by µ
and σ) is also high. Note that in general, for the overall cases analysed, the µ values are
consistent with our previous analysis outcomes in Sections 4.1 and 4.2. In this case, the
three architectures show upper-bounded values for P0, being better for the PSA + U case
and the worst for the PS + U one. The selectable parameters’ source of variation is barely
similar to those of the transparent channel. With similar structural characteristics, Figure 12
shows the corresponding outcomes for the central ICO channel, noting in all cases upper
bounds for P0, the worst for the ICO + U case, and the best for the PSA + U case. This last
case exhibits a little higher variation due to the probe state. Note how the set of solutions
for the ICO + U case overlaps recurrently. As for the depolarising channel, and as for
the central ICO one, the dispersion provided by η becomes comparable. In this case, the
variation for the ICO + U case is more strongly dependent on the probe state.

Finally, Figure 13 presents the corresponding outcomes for the pure syndrome case
(currently, the bit-flipping channel was analysed). In this particular case, we note that the
probe state introduces a more important source of variation than in all previous cases, thus
changing the dot colours. Again, only for the ICO + U architecture, the P0 values become
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not bounded. Interestingly, different from all the previous cases, the ICO + U architecture
used for the pure syndrome estimation exhibits a two-peak narrow distribution for η,
instead of the single observed previously. Again, the values reported for µ are consistent
with our previous discussion for the syndromes case.

(a) (b) (c)

Figure 11. P0 dispersion for random sets of 500 optimal solutions minimising Vh (with mean µ and
standard deviation σ) in the parameter estimation process for the neighbourhood of the depolarising
channel by using (a) PS + U, (b) PSA + U, and (c) ICO + U. η is a general normalised dispersion
measure from the average of the selectable parameters for the set. The dots’ colour is an RGB mixture
as a function of the composed variances for parameters in the probe state (β1) and unitary control
(β2) (see the colour scale on the top).

(a) (b) (c)

Figure 12. P0 dispersion for random sets of 500 optimal solutions minimising Vh (with mean µ and
standard deviation σ) in the parameter estimation process for the neighbourhood of the central ICO
channel by using (a) PS + U, (b) PSA + U, and (c) ICO + U. η is a general normalised dispersion
measure from the average of the selectable parameters for the set. The dots’ colour is an RGB mixture
as a function of the composed variances for parameters in the probe state (β1) and unitary control
(β2) (see the colour scale on the top).
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(a) (b) (c)

Figure 13. P0 dispersion for random sets of 500 optimal solutions minimising Vh (with mean µ and
standard deviation σ) in the parameter estimation process for the neighbourhood of a pure syndrome
channel by using (a) PS + U, (b) PSA + U, and (c) ICO + U. η is a general normalised dispersion
measure from the average of the selectable parameters for the set. The dots’ colour is an RGB mixture
as a function of the composed variances for parameters in the probe state (β1) and unitary control
(β2) (see the colour scale on the top).

6. Conclusions

In the previous sections, an analysis to address the QPE problem on Pauli channels
was developed by combining each channel under analysis together with other identical
channels and additional local control operations, always within composed arrangements
or architectures. These architectures include additional free parameters not under analysis,
but instead selected to improve the QPE outcome. The architectures considered include
parallel paths and indefinite causal structures, while local operations U are located inside
the arrangements.

In the analysis, an analytical approach was presented to construct the Kraus operators
of those combinations as expressed through Formulas (19)–(22). For Pauli channels (and
channels for local n−level systems), the expression (4) for QFI exploits the Bloch representa-
tion of those systems to obtain an affordable expression for the analysis. Thus, the channel
effect is reduced to analyse the change on the Bloch state vector~nin into~nout coming out
from it. Nevertheless, although expressions for the QFI matrix Fab(ρout) are achievable,
due to their complexity, they should still be analysed to reach Vh (inverting and tracing)
due to the presence of a large number of selectable parameters ΠA or ΠB (in addition to the
estimation parameters αi). The first parameters should be numerically analysed to optimise
the QPE by minimising Vh, which represents a complex analytical problem in general.

By proceeding numerically, we swept the selectable parameters under a numerical
stochastic approach to reach the optimal values of ΠA or ΠB for each possible Pauli channel.
This outcome is notable because, under the same analysis, the entire Pauli channels family
has been analysed, instead of only particular channel cases. Upon the consideration of a
single-parameter approach p = αi ∈ [0, 1

3 ], i = 1, 2, 3, a first insight for the four architectures
considered (S + U, PS + U, PSA + U, and ICO + U) was reached. In that region, the PS + U
and PSA + U arrangements exhibited a certain superiority, minimising Vh for most of the p
values. Despite this, the ICO + U scheme shows regions of superiority (see Figure 3).

For the multiparametric estimation, the analysis also already denotes the advan-
tages of PS + U and PSA + U in the neighbourhood of pure syndrome channels, more
highly remarked for the latter scheme over several magnitude orders for Vh. Then, for the
global analysis, the advantage or hierarchy among schemes shows a patched structure (see
Figures 5–7), always superseding the sequential scheme. In general, by comparing those
outcomes in [9] with the current ones, including the support of the local control operations
U, it is clear that in general, several magnitude orders of improvement are reached. For
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certain channels, the inclusion of more than two identical channels, as in [9], could still
improve the outcomes presented if control operations U are already considered.

In the architectures regarded, due to a large number of selectable parameters, it is
found that multiple optimal solutions for the minimum of Vh exist. In addition, because
a stochastic solution is used, which is based on the control measurement to dispose of
it (which clearly simplifies the analysis), it imposes limitations under a more general
approach. In any case, those selectable parameters only exhibit partial correlations for the
selection of the probe state (in particular, for architectures other than S + U), but more
remarkably for the relation between the control state used and their optimal pretended
outcome measurement. On the other hand, the selection of U as the key element in this
analysis appears to attend more to each channel’s own characteristics instead of another
underlying pattern.

The success of the stochastic procedure (introduced by the control measurement), as
measured by P0, becomes relatively affordable for a unit probe (considering each experiment
can be repeated N times), exhibiting values around 0.6 upon a nonplanned selection.
Nevertheless, the number of parameters also allows improved solutions to be reached for
P0 (see Figure 9c) in addition to Vh. Still, such selection becomes limited in several cases
not reaching perfect values (see Figures 10–13). The variability of those solutions becomes
remarkably imposed by the selection of U than from the probe state selection. This fact fits
with the outcome presented by Figure 8b.

As a final remark for the analysis presented, note that the existence of architectures
with improved lower bounds for the QPE variances only states the possibility to reach more
accurate estimations for the channels’ parameters. Still, on the other hand, novel techniques
to set proper estimators experimentally reaching the estimation problem are in order [34].
In addition, upon an unknown channel, it could be difficult to impose the prescriptions
found here because they precisely depend on the channel’s nature. Instead, a multistep
procedure in the estimation should be followed to first reach a certain insight into the
channel as the quantum benchmarking approach [17] or other more direct approaches [35],
and then more complex and elaborate approaches in terms of the current architectures
should be pursued.
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Appendix A. Eigenvalues Finding Procedure for the QFI Matrix in the
Current Approach

Because F is a 3 × 3 symmetric real matrix, it is possible to obtain an affordable
expression for Vh,Vm. Considering the eigenvalues of F : λ−1, λ0, λ1, then [36,37]
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V =
1

∑
i=−1

1
λi

(A1)

with : λk =
α

3
+ 2

1

∑
k=−1

(−1)k

√
|p|
3

cos
φ + kπ

3
(A2)

where φ, p, q are defined as

p = −
(

α2 + 3β

3

)
, q = −

(
2α3

27
+

αβ

3
+ γ

)
, cos φ = − q

2

(
3
|p|

)3/2
(A3)

and they are calculated from the invariants of F :

α = TrF , β = −
3

∑
i=1

CFii , γ = DetF (A4)

CFij being the cofactors of F .

Appendix B. Expressions for the Success Probabilities P0 for Each Architecture

In this section, the expressions for P0 in each architecture being analysed are reported.
Thus, for the PS + U case:

PPS+U
0 = q0 p0 + q1 p1 +

1
2
√

p0 p1q0q1 + (A5)

√
p0 p1q0q1α0

(√
α1 sin θ cos φ +

√
α2 sin θ sin φ +

√
α3 cos θ

)
A similar development shows for the PSA + U case:

PPSA+U
0 = q0 p0 + q1 p1 +

1
2
√

p0 p1q0q1 · (A6)(
1− 2α1(cos2 δ sin2 χ + sin2 δ sin2 ε sin2 χ)−

2α2(cos2 δ sin2 χ + sin2 δ cos2 ε sin2 χ)−

2α3(sin2 δ sin2 χ) +

√
α0α1

(
sin2 χ cos ε(sin 2δ cos θ + 2 sin2 δ sin θ cos(ε− φ))+

sin 2χ(cos δ sin θ sin φ− sin δ cos θ sin ε) + 2 sin θ cos2 χ cos φ
)
+

√
α0α2

(
cos θ(sin 2δ sin2 χ sin ε + sin δ sin 2χ cos ε) +

sin θ(2 sin2 δ sin2 χ sin ε cos(ε− φ)− cos δ sin 2χ cos φ) +

2 sin θ cos2 χ sin φ
)
+

√
α0α3

(
cos θ(1 + sin2 δ cos 2χ + cos2 δ) +

sin θ
(

sin ε(sin 2δ sin2 χ sin φ + sin δ sin 2χ cos φ)+

cos ε(sin 2δ sin2 χ cos φ− sin δ sin 2χ sin φ)
))
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while, for the ICO + U case,

PICO+U
0 = q0 p0 + q1 p1 + 2

√
p0 p1q0q1 · (A7)(

1 + 4α2
1 sin2 χ(sin2 δ sin2 ε + cos2 δ) + 4α2

3 sin2 δ sin2 χ−

4α3(α2 cos 2χ + sin2 δ sin2 χ)− 4α1(α2 + α3) cos 2χ−
(1− α2)α2 sin2 χ(3 + 2 sin2 δ cos 2ε + cos 2δ)−

α1 sin2 χ(3− 2 sin2 δ cos 2ε + cos 2δ)
)

observing that such probability is independent of the probe state.
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