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Abstract: Switching operations in intelligent substations generate a wide range of extremely strong
and asymmetric transient spatial electromagnetic fields, and this complex transient electromagnetic
field can have a coupling effect with the wireless network sink node equipment cables. We conducted
a study on the networking method of wireless network equipment in smart substations and analyzed
the types of sink node cables used. In the GIS room of the 110 kV GIS smart substation, the transient
spatial electromagnetic field generated by switching operation and the transient induced current
of the sink node cable under different operating conditions were tested and obtained, and the time
domain and frequency domain comparative analysis was performed. A near-field coupling model of
the asymmetric and non-uniform cable transient spatial electric field at the sink node is established,
and the validity of the model is verified by comparing and analyzing the measurement and simulation
results. The results of the study can provide a reference for transient electromagnetic disturbances in
110 kV GIS intelligent substations and contribute to improving the reliability of wireless network
equipment operation.

Keywords: intelligent substation; transient space electromagnetic field; sink node; common mode
induced current; electromagnetic compatibility

1. Introduction

In recent years, intelligent substations have developed rapidly. Intelligent substations
are based on the intelligent upgrading of traditional substations, which introduce wireless
sensor network technology into the existing systems to achieve seamless man-machine
connectivity. Intelligent substations can greatly improve the efficiency of operation and
overhaul, thus reducing the labor intensity of electric power workers.

In intelligent substations, there are not only wired communication methods such as
optical fiber and secondary control cable but also wireless communication methods using
short-distance wireless communication technology. Among them, wireless Internet of
things technology plays an increasingly important role in substations [1–8]. In intelligent
substations, wireless network equipment is often located near primary equipment, and
switching operations always produce a complex and strong electromagnetic field, which
makes the electromagnetic environment of wireless equipment extremely harsh [9–14].

With the development of electric internet of things technology, a large number of
wireless network communication devices are urgently needed in substations, which are
the core hubs of a power system. Different from the public wireless network [15,16], the
electromagnetic environment in the substation is complex and changeable. There is not only
the stable electromagnetic environment generated around the substation during normal
operation but also the transient electromagnetic effect caused by the sharp change of the
surrounding transient electromagnetic field caused by switching operation. At present,
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all UHV AC electric power transmissions in our country have been using gas-insulated
switchgear equipment. With the acceleration of power grid construction, their voltage
levels have gradually increased so that a strong transient electromagnetic field will be
produced when some switching devices such as circuit breakers, disconnecting switches
and grounding switches are operated, which will cause electromagnetic disturbance to
electrical equipment and communication cables outside GIS.

In the intelligent substation, the sink node is the central device of the whole wireless
communication network, which is responsible for collecting the information perceived
by the sensor unit and uploading it to the server terminal device. For the equipment of a
wireless network sink node in an intelligent substation, the meaning of EMC is: the equip-
ment or system of a wireless network sink node can work normally in its electromagnetic
environment; the electromagnetic interference they emit will not affect the normal operation
of other things in the environment. They will not produce electromagnetic interference in
the common electromagnetic environment and can complete their respective functions and
tasks. However, the complex transient space electromagnetic field in the substation will
disturb the cable core of the sink node by the coupling mode of the far field and the near
field, and finally, the amount of intrusion into the device port may cause abnormal work of
the device or even damage.

The coupling problem between electromagnetic fields and transmission lines has been
a hot topic for researchers at home and abroad. Many scholars have studied the field-line
coupling problem based on multi-conductor transmission line theory [17], Taylor’s field-
transmission line model [18], Agrawal’s field-transmission line model [19] and Rachidi’s
field-transmission line model [20] are used to analyze the field-line coupling problem. A
multi-conductor transmission line model is established, and the radiation sensitivity of
twisted pairs above the ground under a non-uniform/uniform electromagnetic field is
studied [21–25]. However, the coupling characteristics between the transient electromag-
netic field of the wireless network equipment and the interconnection cables of the sink
nodes have not been studied. In addition, in the field of measurement and experimental
research on the induced current of communication cable core, there is a lack of research
on the measurement of the disturbance voltage of intelligent substation transient space
electromagnetism to the new type of communication cable of wireless network equipment.

In this paper, several intelligent substations are investigated, the networking methods
of wireless network equipment in substations are summarized and analyzed, the transient
electric field and the common-mode induced current of the cables at the sink nodes in a
110 kV GIS intelligent substation under different operating conditions are measured, and
the time-domain and frequency-domain analysis are carried out. A transient near-field line
coupling model is established by using the simulation software. The work of this paper
can contribute to the reliable operation of the intelligent substation sink node equipment.

2. Analysis of Intelligent Substation Net-Work and Coupling Path

In the complex and harsh electromagnetic environment of an intelligent substation,
wireless network equipment may be affected, which will affect the quality of communica-
tion and cause code errors and packet loss. In serious cases, it may damage the equipment,
resulting in the normal and reliable operation of the entire wireless network system. The
electromagnetic compatibility problem of wireless network equipment is becoming more
and more serious, which needs to be solved urgently. As the central equipment of the
whole wireless sensor network, on the one hand, the sink node needs to communicate
with the wireless sensor unit by wireless means. On the other hand, it is necessary to
transmit the information collected by the wireless sensor unit to the access node by wire.
The reliable and normal operation of the wireless sensor unit is the key link of the wireless
sensor network, playing a crucial role in wireless sensor network communications.
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2.1. Intelligent Substation Network

The communication protocol of the wireless network device studied in this paper is
LORA, which is a kind of Low Power Wide Area Network (LPWAN). Using LPWAN tech-
nology can achieve long-distance and low-power communication, realize longer-distance
communication and lower power consumption to the greatest extent, and save the cost of
additional repeaters. Building a wireless private network through LoRa wireless commu-
nication technology mainly needs four parts, namely, a base station (or gateway), server,
LoRa terminal and Internet of Things cloud. LoRa’s main frequency bands include 230, 470,
868, 915 MHz, etc. [26,27].

LoRa-based wireless communication features low cost, low power consumption, low
delay, anti-interference and long-distance transmission. The technical features are as
follows: (1) The standard followed by this technology is IEEE802.15.4g; (2) Its working
frequency is 230 MHz and 433 MHz; (3) Its transmission distance is related to the geograph-
ical environment and generally, it can reach 2~5 km in towns and 15 km; in the suburbs;
(4) Its modulation mode is based on spread spectrum technology, that is, it adopts linear
modulation spread spectrum (CSS), and has the capability of forward error correction
(FEC); (5) Its transmission rate ranges from tens to hundreds of Kbps, and the lower the
transmission rate, the longer the transmission distance; (6) Its security technology is AES128
encryption, which makes the data transmission process more secure and reliable.

Based on the field investigation and analysis of several smart substations, it is found
that due to the different voltage levels and internal structures of smart substations, the
networking methods of the wireless network devices used in the smart substations are
also different.

In the 110 kV GIS intelligent substation network mode, as shown in Figure 1 below,
the wireless sensor unit transmits the perceived data to the host through the wireless mode.
After the host receives the information perceived by the wireless sensor unit, the data is
uploaded to the serial port server by the wired way. The serial port server sends the data to
the security agent module through the Ethernet cable for the data security processing, then
the security agent module sends the processed data to the Customer Premise Equipment
(CPE) via Ethernet cable, and the CPE uploads the processed data to the base station via
wireless mode. Finally, the data is uploaded to the terminal server by the optical fiber from
the base station. This kind of network is relatively complex, using lots of equipment, and
there are also many types and quantities of cables used.
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Figure 1. 110 kV GIS intelligent substation networking method.

Although different types of intelligent substations have different networking meth-
ods, the function of sink node devices in intelligent substations is the same for wireless
communication networks. The sink node is the relay and convergence device of sensor
data in the Internet of things (IoT), the main communication node of the wireless sensor
in the IOT sensing layer, constituting the communication framework of the whole sensor
network. The sensing unit transmits the perceived state information of the electric power
equipment to the gathering node equipment through the wired or wireless communication
mode, different types of sink node devices communicate with each other through wire
communication, and the information is summarized, encrypted and processed. Finally, the
sink node device uploads the information to the terminal through wireless communication.

According to the investigation results, there are three types of converged node cables in
intelligent substations: Shielded and non-shielded cables used for communication between
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wireless network communication devices; A coaxial cable for communication between a
sink node and an external antenna; a power cord for supplying power to a sink node device.

2.2. Coupling Path Analysis

Only the sensing node and primary equipment are installed on the surface of the pri-
mary equipment in the wireless network communication equipment, and the convergence
node equipment and base station are not directly connected with the primary equipment.
The wireless network communication equipment is different from the traditional commu-
nication equipment and communicates with each other as an independent system. The
convergence node equipment is installed in the intelligent component cabinet and has
no communication connection with the traditional secondary equipment. Therefore, the
directly conducted harassment from the primary equipment by the convergence node
equipment can be neglected.

There are many kinds and amounts of cables used in the gathering node equipment
of intelligent substations, in which the space is relatively small, the strong transient elec-
tromagnetic disturbance caused by switching operation can be radially coupled into the
power supply and data lines of the sink node, as shown in Figure 2, which may affect the
normal operation of the converging node, even cause equipment damage.
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There are two types of Ethernet cables used by sink node devices, namely shielded and
non-shielded. The standard used is YD/T1019-2013, which has eight cores and commonly
uses a pair of insulated wires in accordance with a certain density of mutual twisted manner
to reduce the outside electromagnetic wave interference on the signal, so also known as
twisted pair. Twisted-pair wrapped in the insulation skin inside eight signal lines, of which
four signal lines are for data transmission and reception, the other four signal lines as
a backup. The strong transient space electromagnetic field produced by the intelligent
substation during switching operation is coupled to the shielding layer of the shielded
network wire, which forms the amount of disturbance. This part of the disturbance will
generate induced voltage and induced current in the inner core wire through the transfer
admittance and transfer impedance between the shield layer and the inner core wire and
then transmit to the communication port of the sink node equipment through the cable,
which will cause error code, garbled code, quality degradation of the transmission signal
and could even damage the internal integrated circuit.

The 12 V and 2 A DC power supply is used for the equipment of the sink node.
The power supply line consists of two wires, which are connected to the power module
respectively. Each wire is made up of two parts: a PVC insulating layer and a conductor,
one of the power lines is the positive pole of the power supply, and the other is the negative
pole of the power supply. Because the power line has no shielding layer, the transient
electromagnetic field will directly couple with the inner core line to produce induced
voltage and induced current and then invade the power port of the terminal equipment,
which will affect the power port.
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The coaxial cable used by the sink node device completes the communication between
the sink node and the external antenna. Coaxial cable consists of a conductor, insulation
layer, copper wire braided shield layer and sheath. The induced voltage and current
generated by the coupling of the transient space electromagnetic field in the inner core
of the coaxial cable in the intelligent substation are transmitted to the antenna port of the
sink node equipment. Therefore, the wireless communication of sink node equipment
is affected.

3. Analysis of Test Results of Transient Space Electromagnetic Field under Different
Operating Conditions
3.1. Test System and Test Content

In order to study the amount of disturbance caused by the coupling of cables in the sink
node in the intelligent substation during the switching operation, in this paper, the transient
space electromagnetic field and common-mode disturbance current of communication
cables and power supply lines of sink nodes are measured in 110 kV GIS intelligent
substation under different operating conditions.

In order to make the test more targeted, the transient space electric field near the sink
node device is tested, and the transient induced current of the communication line and
the power supply line of the sink node equipment is measured in the online monitoring
cabinet of the GIS room of 110 kV GIS intelligent substation.

The device is installed in the intelligent component cabinet in the GIS room. The
transient electric field probe is arranged above the cabinet where the sink node equipment
is located, and the near-field source of the cable of the sink node cable is tested, as shown in
Figure 3. The current probe is clamped on the power and communication lines of the sink
node equipment, and the transient disturbance current of the sink node cable is obtained
by testing, as shown in Figure 4.
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3.2. Analysis of Test Results of Transient Space Electromagnetic Field under Different
Operating Conditions

In the 110 kV GIS intelligent substation, the disconnecting switch is opened and closed,
and the bus tie circuit breaker is operated. In this paper, the transient electric fields near
the sink nodes are measured in different operation modes, and the data are analyzed and
analyzed in the time domain and frequency domain. The typical transient electric field
waveforms in the time domain and frequency domain under different operation modes
and at different test locations are shown in Figures 5–7, respectively.
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The transient electromagnetic disturbance caused by the switching operation of the
GIS substation is a damped oscillation wave. Its single pulse characteristic parameters are
as follows.

Peak/peak value: the difference in amplitude between the positive peak and the
negative peak of the bipolar damped oscillation wave. When the positive and negative
peaks are far apart, the peak value can be used instead.

Rise time tr: The time for the first single pulse instantaneous value to rise from 10%
to 90%.

Duration td: The time from the beginning to the end of a single pulse.
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Main frequency distribution DF: In the frequency band range, the frequency point
whose amplitude is 6 dB higher than other frequency components responds to the distribu-
tion of the main energy of the transient wave in the frequency domain.

Band range BW: using the relative criterion, i.e., the frequency component above the
background noise.
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The time-domain and frequency-domain statistical analysis of some of the data ob-
tained from the tests are shown in Table 1 below. The single pulse transient electric field
waveform of 110 kV GIS intelligent substation caused by isolating switch closing operation,
isolating switch opening operation, and circuit breaker closing operation is a damping
oscillation wave, the duration of which is about 1~3 µs. The peak value of the transient
space electric field caused by the switch closing operation is about 10 kV/m, and the rising
edge is NS class. The peak value of the transient space electric field caused by the circuit
breaker closing operation is 4.88 kV/m, and the duration is 1.41 µs. Compared with the
switch closing operation, the electromagnetic disturbance caused by the switch closing
operation is more intense.
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Table 1. Time and frequency domain analysis of the transient electric field at the sink node.

Type of
Operation

Main Characteristics
Time Domain Characteristics Frequency Domain Characteristics

Peak and Peak Value of
Transient Electric Field

(kV/m)

Rise Time
(µs)

Duration Time
(µs)

Main Frequency
Distribution

(MHz)

Frequency Range
(MHz)

Closing of
isolating switch 10.51 0.0151 2.90 12.29, 14.01, 15.74,

21.89, 26.69 0~52.99

Opening of
isolating switch 3.67 0.0123 1.21 1.92, 13.82, 15.74,

19.58, 25.92 0~53.18

Based on the analysis of the test results of the transient electromagnetic disturbance
near the installation location of the sink node of the intelligent substation, the main fre-
quency of the transient space electric field monopulse waveform caused by bus side
isolating switch closing operation, line-side isolating switch closing operation and circuit
breaker closing operation in 110 kV GIS intelligent substation is about 3 MHz, 10 MHz and
30 MHz respectively, which is consistent with the IEC61000-4-18 standard. However, there
are other frequency components not reflected in the standard, such as the main frequency
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up to 50 MHz; Compared with the operation of the disconnector, the frequency spectrum
of circuit breaker operation is more abundant.

3.3. Analysis of the Induced Current of the Sink Node Cables under Different Operating Conditions

When the 110 kV GIS intelligent substation is engaged in busbar-side isolating switch
closing operation, lineside isolating switch operation and circuit breaker operation, the
common-mode induced current data of the communication line and power line of the
sink node are obtained. Figures 8 and 9 show the time-domain and frequency-domain
waveforms of the common-mode induced current of the sink node cables during the
isolation switch closing operation, corresponding to the transient space electric field of the
operation type in Figures 5 and 6, respectively. Thus, the induced current of the cable in
the sink node under near-field excitation is obtained.
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Common-mode interference: harassment acting simultaneously on the input of sensi-
tive equipment, as shown in Figure 8.

The common-mode induced currents of the above-mentioned sink node cables under
different operation types are analyzed in the time domain, and the parameters of the
common-mode currents are shown in Table 2. The test results show that when the isolation
switch of 110 kV GIS intelligent substation is switched off, transient electric field strength
around the convergence node equipment is 10.5 kV/m, the common-mode induced current
peak values of communication line and power line are 0.8 A and 0.8 A; When the isolation
switch is switched on, transient electric field strength around the convergence node equip-
ment is 3.67 kV/m, the peak value of common-mode induced current of communication
line and the power line is 0.15 A and 0.025 A; While the peak value of common-mode
induced current of the communication line and power line is 0.025 A and 0.03 A when
the circuit breaker is operated. From the test results, it can be seen that both the tran-
sient electric field and the induced current waveform of the convergence node cable are
damped oscillation waves; the higher the electric field strength, the higher the peak induced
current of the convergence node cable, which indicates that the induced current of the
cable is indeed associated with the transient harassment generated by the operation of the
disconnect switch.

Under the same operation type, the amplitude of the common-mode current on the
communication line of the sink node is lower than that of the common-mode induced cur-
rent on the power line. From the angle of cable structural characteristic, the shielding layer
of the communication line can restrain part of the external electromagnetic disturbance, the
shielded network line is adopted by the sink node communication line, and the unshielded
cable is adopted by the power line, so the shielding layer of the communication line can
suppress part of the external electromagnetic disturbance, and the coupling effect between
the transient space electromagnetic field and the inner core wire of the communication
line is reduced. In addition, the internal core wire of the sink node communication line
adopts the structure of two twisted pairs, which can also restrain external electromagnetic
disturbance. The transient electric field strength produced by the operation of the intelligent
substation disconnector is higher than that produced by the operation of the circuit breaker,
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and the amplitude of common-mode induced current is higher in the communication line
and power line of the sink node.
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Table 2. Time domain analysis of test results.

Type of Operation
Electric Field Intensity

Peak at the Same
Time (kV/m)

Time Domain Characteristics

Peak Induced Current of Sink
Node Communication Line (A)

Peak Induced Current of
Sink Node Power Line (A)

Closing of isolating switch 10.5 0.8 0.8
Opening of isolating switch 3.67 0.15 0.025

Circuit breaker operation 4.88 0.025 0.03

The frequency domain characteristics of the common-mode induced currents in
the above-mentioned sink node cables under different operation types are shown in
Tables 3 and 4.

Table 3. Main frequency distribution of test results.

Type of Operation
Electric Field Intensity

Peak at the Same
Time (kV/m)

Main Frequency Distribution of
Induced Current in

Communication Line (MHz)

Main Frequency Distribution of
Induced Current in Power

Line (MHz)

Closing of
isolating switch 10.5 10.5, 12.8, 14.5, 19.84, 29.04, 55.23 10.5, 14.45, 19.74, 29.09, 55.18

Opening of
isolating switch 3.67 0.65, 10.90, 12.55, 14.10, 29.09 0.29, 0.85 1.35 2.05, 3.25, 6.20, 9.09, 14.85

Circuit breaker
operation 4.88 0.49, 1.10, 1.45, 3.29, 10.55, 23.59 0.54 1.15, 1.4, 1.79, 3.24, 10.6, 23.34,

28.54, 44.44

The test results show that when the isolation switch is operated, the main frequency
of the induced current on the communication line and power line of the sink node is
distributed at about 1 MHz, 3 MHz, 10 MHz and 30 MHz; When the circuit breaker is
operated, the main frequency distribution of the induced current on the communication
line and power line of the sink node is more complex than the operation of the isolation
switch. The main frequency component of the induced current on the power line is more
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complex than that on the communication line because the structural characteristics of the
communication line of the sink node can suppress some electromagnetic disturbances.

Table 4. Frequency range of test results.

Type of Operation Electric Field Intensity Peak
at the Same Time (kV/m)

Frequency Range of Induced
Current of Communication

Line (MHz)

Frequency Range of Induced
Current of Power

Line (MHz)

Closing of isolating switch 10.5 0~55.23 0~55.18
Opening of isolating switch 3.67 0~29.09 0~53.38

Circuit breaker operation 4.88 0~26.14 0~44.44

4. Sink Node Cable Near-Field Line Coupling Modeling Simulation Analysis
4.1. Simulation Model

In order to reveal the coupling mechanism of the transient spatial electromagnetic
field in the intelligent substation to wireless network sink node cable disturbance, based
on the theory of field-line coupling and the method of multi-conductor transmission line,
this paper establishes the cable model of communication line and power line of sink node
according to the cable type and structure in the intelligent substation in the CST software,
as shown in Figure 10 below, and the simulation model of field-line coupling is also
established, which is shown in Figure 11 below. The common-mode induced current of the
sink node cable is calculated.

According to the equipment layout, cable direction and length of the intelligent
substation sink node, a three-dimensional model with the same direction and length as the
field sink node cable is established in the CST simulation software.

In the field test, the switch operating position of the intelligent substation is less than
1/6 wavelength (λ/2π) from the sink node cable, in which case the space electromagnetic
field can be used as a near field. In this paper, a dipole antenna is established to simulate
the near-field excitation source. The size of the dipole antenna is calculated according to
the main frequency of the transient space electric field.

From the analysis of the characteristic parameters in the frequency domain of the
space electric field measured above, it can be seen that the main frequency distribution
of the space electric field is 27.84 MHz, 26.69 MHz, 29.76 MHz under different operation
types, and these frequencies are in the IEC61000-4-18 standard in the vicinity of 30 MHz
damping oscillations. Therefore, the size of the dipole half-wave dipole antenna is 5 m at
30 MHz frequency.

The measured space electric field is introduced into the antenna port of the near-field-
line coupling model to simulate the coupling characteristics of the sink node cables in the
near-field space. After setting up the excitation source and near-field-line coupling model,
the corresponding field-line coupling equivalent circuit model is generated in CST software,
and the probe is set up, as shown in Figure 12 below.

4.2. Comparison and Analysis of Simulation and Measured Results

The transient electric field measured in a 110 kV GIS intelligent substation is used
as the excitation source in the near-field coupling model, and the near field-line coupling
model is established according to the types, lengths and trends of cables of the sink nodes
in the field, then field-road collaborative simulation is carried out on the simulation model.
The transient common-mode induced currents of the sink node wires and the power supply
wires under near-field excitation are obtained by time-domain simulation. The results are
shown in Figures 13–15 below. The common-mode current simulation results for sink node
cables are shown in Tables 5 and 6.
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Figure 10. Time domain and frequency domain waveforms of the sink node cable induced current
during disconnect switch breaking operation. (a) the time-domain waveform of the induced current
of the sink node network wire. (b) the frequency domain waveform of the induced current of the sink
node network wire. (c) the time-domain waveform of the induced current of the sink node power
line. (d) the frequency domain waveform of the induced current of the sink node power line.
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The simulation results of the communication line and the power line of the sink node
are compared with the measured results. It is shown that the changes in the peak value
and the amplitude value of the two lines are basically consistent in the time domain, and
the peak value of the common-mode induced current is 0.8 A for both the network line
and the power line; In the frequency domain, both of them are distributed around 10 MHz
and 30 MHz of the main frequency. However, there are some differences between the
simulation results and the measured ones. First, the excitation source of the simulation
is the measured one-dimensional transient electric field waveform, while the transient
electric field is actually three-dimensional. Secondly, the simulation model can not be
completely consistent with the layout and structure of the substation. Third, the induced
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current of the sink node cable measured in the substation is the result of many kinds of
complex electromagnetic disturbances, including near-field electromagnetic waves, far-field
electromagnetic waves, transient disturbances, steady-state disturbances, etc. However, the
simulation results only show the transient near-field disturbance characteristics of the sink
node cables.
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Table 5. Time domain characteristics of common-mode current simulation results for sink node cables.

Type of Operation
Time Domain Characteristics

Peak Induced Current of Sink Node
Communication Line (A)

Peak Induced Current of Power Line of
Sink Node (A)

Closing of isolating switch 0.8 0.8
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Table 6. Frequency domain characteristics of common-mode current simulation results for sink
node cables.

Type of Operation

Frequency Domain Characteristics

Dominant Frequency Distribution (MHz) Bandwidth (MHz)

Induced Current of
Communication Line

Induced Current of
Power Line

Induced Current of
Communication Line

Induced Current of
Power Line

Closing of isolating
switch

14.43, 16.58, 19.55, 22.9,
26.98, 30.84

10.58, 14.47, 19.58,
22.94, 29.3, 30.69 0~39.38 0~39.21
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5. Conclusions

In this paper, the research on the networking mode of wireless network equipment
in the intelligent substation is carried out, and the use types of sink node cables such as
Ethernet cable, DC power line and coaxial cable are summarized and analyzed.

In this paper, in the GIS room of a 110 kV GIS intelligent substation, the transient
electric field generated by switch operation under different operating conditions near the
sink node equipment of the wireless network is tested and obtained. At the same time, the
common-mode induced current of the sink node cable is also tested, and the time-domain
and frequency-domain comparison analysis is carried out. The test results show that the
peak value of the transient electric field near the sink node can reach 10.5 kV/m, the rising
edge is NS class, and the main frequency is distributed around 3 MHz, 10 MHz and 30 MHz;
The peak value of transient common-mode disturbance current of communication line and
power line of the sink node can reach up to 0.8 A.

In this paper, a near-field coupling model of the transient space electric field to the
cable of the sink node is established, and the transient common-mode induced current
response of the communication line and the power line of the sink node is simulated and
calculated. Furthermore, in this paper, the measured and simulated results are compared
and analyzed, and the characteristics of transient near-field disturbance to the sink node
cables are obtained.
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