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Abstract: The two families of principal stress trajectories can be regarded as an orthogonal curvilinear
coordinate system under plane strain and axial symmetry. Under plane strain, the equilibrium
equations in conjunction with a yield criterion comprise a statically determinate system. Under
axial symmetry, a statically determinate system results from the above equations supplemented with
the hypothesis of Haar von Karman. In both cases, the compatibility equations for mapping the
principal line coordinate system to a given coordinate system show that the scale factors of the former
satisfy a simple algebraic or transcendental equation for many yield criteria. Using this equation,
one can develop a method for reducing boundary value problems in plasticity to purely geometric
problems. The method is independent of any flow rule that can be chosen to calculate displacement
or velocity fields, as well as independent whether elastic strains are included. The present paper
summarizes available results related to using principal stress trajectories in plasticity and emphasizes
the advantages of the method above.
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1. Introduction

In the case of plane strain and axisymmetric deformations, principal stress trajectories
can be regarded as the coordinate curves of an orthogonal coordinate system. This coordi-
nate system is named the principal line coordinate system. Typical constitutive equations
of plasticity include a yield criterion. In the case of isotropic perfectly plastic solids, the
yield criterion is an equation that involves stress invariants and constitutive parameters.
Depending on the yield criterion, the principal line coordinate system has remarkable
geometric properties in regions where the yield criterion is satisfied. The pioneering work
that discovered such properties was published in 1941 [1]. This paper has considered the
plane strain deformation of solids obeying Tresca’s yield criterion. The derivation is also
valid for an arbitrary pressure-independent yield criterion if the material is regarded as
rigid plastic. The present paper reviews the extension of the result reported in [1] to more
general yield criteria and axisymmetric deformation. The phrase ‘linear yield criterion’
means that the yield criterion is represented by a linear function of the principal stresses.
The theory has been completed for such yield criteria. The research on more general yield
criteria is ongoing. The first results are included in the present paper.

Besides geometric properties, various aspects of research related to principal stress
trajectories have been reported in the literature. Paper [2] has developed a principal line
theory of axisymmetric plastic deformation, assuming that a face regime of Tresca’s yield
criterion is operative. It has been emphasized in [3] that using principal line coordinates
proves advantageous for solving boundary value problems, including numerically. The
practical usefulness of principal line coordinates has also been noted in [4].
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The Ideal flow theory is a tool for designing metal-forming processes [5]. A property of
stationary bulk ideal flows is that principal stress trajectories coincide with streamlines [6,7].
A property of non-stationary bulk ideal flows is that principal stress trajectories are material
lines [8]. In both cases, calculating ideal flows is equivalent to calculating principal stress
trajectories.

2. Basic Equations
2.1. Coordinate Systems

The principal stress directions are orthogonal. Therefore, two families of the principal
stress trajectories can be regarded as a curvilinear orthogonal system in a generic flow
plane under plane strain. This coordinate system is denoted as (ξ, η). Besides, a Cartesian
coordinate system in the same plane will be used. This coordinate system is denoted as
(x, y). These two coordinate systems are depicted in Figure 1, where ψ is the orientation of
the ξ-lines relative to the x-axis, measured anticlockwise positive from the x-axis. The scale
factors of the ξ- and η-coordinate lines are denoted as hξ and hη , respectively. It is seen
from Figure 1 that

∂x
∂ξ

= hξ cos ψ,
∂x
∂η

= −hη sin ψ,
∂y
∂ξ

= hξ sin ψ,
∂y
∂η

= hη cos ψ. (1)
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Figure 1. Principal line coordinate system.

The compatibility equations are

∂2x
∂ξ∂η

=
∂2x

∂η∂ξ
and

∂2y
∂ξ∂η

=
∂2y

∂η∂ξ
. (2)

Equations (1) and (2) combine to give

∂hξ

∂η cos ψ− hξ sin ψ
∂ψ
∂η +

∂hη

∂ξ sin ψ + hη cos ψ
∂ψ
∂ξ = 0,

∂hξ

∂η sin ψ + hξ cos ψ
∂ψ
∂η −

∂hη

∂ξ cos ψ + hη sin ψ
∂ψ
∂ξ = 0.

(3)

Multiplying the first equation by cos ψ, the second by sin ψ and summing gives

∂hξ

∂η
+ hη

∂ψ

∂ξ
= 0. (4)

Similarly, multiplying (3)1 by − sin ψ, (3)2 by cos ψ and summing gives

hξ
∂ψ

∂η
−

∂hη

∂ξ
= 0. (5)

Under axial symmetry, two families of the principal stress trajectories can be regarded
as a curvilinear orthogonal system in a generic meridian plane. This coordinate system is
denoted as (ξ, θ, η). Besides, a cylindrical coordinate system (r, θ, z) will be used. In a
generic meridian plane, these two coordinate systems are depicted in Figure 1, where ψ is
the orientation of the ξ-lines relative to the r-axis, measured anticlockwise positive from
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the r-axis. The (ξ, θ, η) coordinate system is a principal line coordinate system. The scale
factors of the ξ- and η-coordinate curves are denoted as hξ and hη , respectively. The scale
factor of the θ-coordinate lines is r. It is seen from Figure 1 that

∂r
∂ξ

= hξ cos ψ,
∂r
∂η

= −hη sin ψ,
∂z
∂ξ

= hξ sin ψ,
∂z
∂η

= hη cos ψ. (6)

The same line of reasoning that has led to Equations (4) and (5), starting from
Equation (1), can be used to show that (4) and (5) are valid under axial symmetry.

2.2. Plasticity

The models considered herein are perfectly plastic and statically determinate. The
latter means that the plastic flow rule and elastic deformation are immaterial for analyzing
the stress equations. The system of equations consists of the equilibrium equations and a
yield (or failure, or strength) criterion. The term yield will be used herein.

Let σξ and ση be the normal stresses referred to the principal line coordinate system.
These stresses are principal stresses. Under axial symmetry, the third principal stress is
denoted as σθ . The equilibrium equations are [9]

hη
∂σξ

∂ξ
+
(
σξ − ση

)∂hη

∂ξ
= 0 and hξ

∂ση

∂η
+
(
ση − σξ

)∂hζ

∂η
= 0 (7)

under plane strain and

∂σξ

∂ξ +
(
σξ − ση

) ∂hη

hη∂ξ +
(
σξ − σθ

)
∂r

r∂ξ = 0 and
∂ση

∂η +
(
ση − σξ

) ∂hξ

hξ ∂η +
(
ση − σθ

)
∂r

r∂η = 0
(8)

under axial symmetry.
Any isotropic plane strain yield criterion can be represented as

Φp
(
σξ , ση

)
= σ0. (9)

Here, Φp
(
σξ , ση

)
is an arbitrary function of its arguments satisfying the standard

requirements of plasticity theory and is σ0 a reference stress. Equations (4), (5), (7), and
(9) form a determinate system for hξ , hη , ψ, σξ , and ση . Under axial symmetry, piece-wise
differentiable yield criteria are considered. A typical yield criterion can be represented as

Φ(1)
a
(
σξ , σθ , ση

)
= σ0 and Φ(2)

a
(
σξ , σθ , ση

)
= σ0. (10)

It is assumed that the equations in (10) can be rewritten as

Φa
(
σξ , ση

)
= σ0 (11)

and
σξ = σθ or ση = σθ . (12)

The last equation expresses the hypothesis of Haar von Karman. Equations (4), (5), (8),
(11), and (12) form a determinate system for hξ , hη , ψ, σξ , ση , and σθ .

In what follows, it is assumed without loss of generality that

σξ > ση . (13)
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3. Relations between hξ and hη under Plane Strain
3.1. Tresca Yield Criterion

Tresca’s yield criterion is often used in metal plasticity [10]. Considering (13), this
yield criterion can be represented as

σξ − ση = 2k, (14)

where k is the shear yield stress. Eliminating σξ − ση in (7) using (14), one gets

hη
∂σξ

∂ξ
+ 2k

∂hη

∂ξ
= 0 and hξ

∂ση

∂η
− 2k

∂hξ

∂η
= 0. (15)

Each of these equations can be immediately integrated to give

σξ = −2k ln hη + 2kC1(η) and ση = 2k ln hξ + 2kC2(ξ). (16)

Here, C1(η) and C2(ξ) are arbitrary functions of η and ξ, respectively. However,
different choices of these functions merely change the scale of the coordinate curves.
Therefore, without loss of generality, it is possible to choose C1(η) = 0 and C2(ξ) = −1.
Then, Equation (16) becomes

σξ = −2k ln hη and ση = 2k ln hξ − 2k. (17)

Substituting (17) into (14) yields

hξ hη = 1. (18)

This relation between the scale factors has been derived in [1].

3.2. Mohr-Coulomb Yield Criterion

The Mohr–Coulomb yield criterion is widely used for describing the deformation of
granular materials [11–13]. Considering (13), this yield criterion can be represented as

−p sin φ + q = k cos φ, (19)

where
p = −

σξ + ση

2
, q =

σξ − ση

2
, (20)

k is the cohesion, and φ is the angle of internal friction. Using (20), one can transform
the equations in (7) to

hη

(
∂q
∂ξ
− ∂p

∂ξ

)
+ 2q

∂hη

∂ξ
= 0 and hξ

(
∂p
∂η

+
∂q
∂η

)
+ 2q

∂hξ

∂η
= 0. (21)

Eliminating p in these equations employing (19) yields

hη

(
1− 1

sin φ

)
∂q
∂ξ

+ 2q
∂hη

∂ξ
= 0 and hξ

∂q
∂η

(
1 +

1
sin φ

)
+ 2q

∂hξ

∂η
= 0. (22)

Each of these equations can be immediately integrated to give

1
2

(
1− 1

sin φ

)
ln q = − ln hη + C1(η) and

1
2

(
1 +

1
sin φ

)
ln q = − ln hξ + C2(ξ). (23)

Here, C1(η) and C2(ξ) are arbitrary functions of η and ξ, respectively. However,
different choices of these functions merely change the scale of the coordinate curves.
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Therefore, without loss of generality, it is possible to choose C1(η) = 0 and C2(ξ) = 0.
Then, Equation (23) becomes

1
2

(
1− 1

sin φ

)
ln q = − ln hη and

1
2

(
1 +

1
sin φ

)
ln q = − ln hξ . (24)

Eliminating q between these equations results in

hm
ξ hη = 1, (25)

where m = (1− sin φ)/(1 + sin φ). This equation reduces to (18) at φ = 0.

3.3. Generalized Linear Yield Criterion

Generalized linear yield criteria are often adopted in the literature [14–19]. Considering
(13), a typical generalized linear yield criterion can be represented as

ση = tσξ − σ0, (26)

where t > 0 is a constitutive parameter. This equation reduces to (14) at t = 1. Therefore, it
is assumed in this section that t 6= 1. Eliminating ση in (7) using (26), one gets

hη
∂σξ

∂ξ
+
[
σξ(1− t) + σ0

]∂hη

∂ξ
= 0 and −

[
σξ(1− t) + σ0

]∂hξ

∂η
+ thξ

∂σξ

∂η
= 0. (27)

Integrating these equations leads to

1
(1−t) ln

[
σξ

σ0
(1− t) + 1

]
= − ln hη + C1(η) and

t
(1−t) ln

[
σξ

σ0
(1− t) + 1

]
= ln hξ + C2(ξ).

(28)

Here, C1(η) and C2(ξ) are arbitrary functions of η and ξ, respectively. However,
different choices of these functions merely change the scale of the coordinate curves.
Therefore, without loss of generality, it is possible to choose C1(η) = C2(ξ) = 0. Then,
Equation (28) becomes

1
(1− t)

ln
[

σξ

σ0
(1− t) + 1

]
= − ln hη and

t
(1− t)

ln
[

σξ

σ0
(1− t) + 1

]
= ln hξ . (29)

Eliminating σξ between these equations results in

h1/t
ξ hη = 1. (30)

This relation between the scale factors was derived in [19]. Equation (30) reduces to
(18) at t = 1.

3.4. General Yield Criterion

An adequate description of some materials requires non-linear yield criteria [19–22].
It is convenient to represent (9) as

q = f (p), (31)

where q and p are defined as in (20). Expressing the principal stresses in terms of p and q,
eliminating q by employing (31), and substituting the resulting expressions in the equations
in (7) leads to

∂hη

hη∂ξ + 1
2

[
1

f (p)
d f
dp −

1
f (p)

]
∂p
∂ξ = 0,

∂hξ

hξ ∂η + 1
2

[
1

f (p)
d f
dp + 1

f (p)

]
∂p
∂η = 0.

(32)
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Each of these equations can be immediately integrated to give

ln hη + C1(η) =
1
2

p∫
0

dχ
f (χ) −

1
2 ln
[

f (p)
f (0)

]
,

ln hξ + C2(ξ) = − 1
2

p∫
0

dχ
f (χ) −

1
2 ln
[

f (p)
f (0)

]
.

(33)

Here, C1(η) and C2(ξ) are arbitrary functions of η and ξ„ respectively. However,
different choices of these functions merely change the scale of the coordinate curves.
Therefore, without loss of generality, it is possible to choose C1(η) = C2(ξ) = 0. Then,
Equation (33) becomes

ln hη = 1
2

p∫
0

dχ
f (χ) −

1
2 ln
[

f (p)
f (0)

]
,

ln hξ = − 1
2

p∫
0

dχ
f (χ) −

1
2 ln
[

f (p)
f (0)

]
.

(34)

These equations supply the relation between hξ and hη in parametric form with p
being the parameter. This relation was derived in [23]. It has been shown in this work that
(34) reduces to (18), (25), or (30) if the function f in (31) is chosen accordingly.

4. Relations between hξ and hη under Axial Symmetry
4.1. Tresca Yield Criterion

Considering (13), Equation (11) in the case of Tresca’s yield criterion becomes

σξ − ση = 2k. (35)

Eliminating σξ − ση and σθ in (8) using (12)1 and (14), one gets

hη
∂σξ

∂ξ
+ 2k

∂hη

∂ξ
= 0 and

∂ση

∂η
− 2k

(
∂hξ

hξ∂η
+

∂r
r∂η

)
= 0. (36)

Each of these equations can be immediately integrated to give

σξ = −2k ln hη + 2kC1(η) and ση = 2k ln
(
rhξ

)
+ 2kC2(ξ). (37)

Here, C1(η) and C2(ξ) are arbitrary functions of η and ξ, respectively. However,
different choices of these functions merely change the scale of the coordinate curves.
Therefore, without loss of generality it is possible to choose C1(η) = 0 and C2(ξ) = −1.
Then, Equation (37) becomes

σξ = −2k ln hη and ση = 2k ln
(
rhξ

)
− 2k. (38)

Substituting (38) into (35) yields

rhξ hη = 1. (39)

This relation between the scale factors was derived in [24]. Using the line of reasoning
above, one can derive Equation (39) employing (12)2 instead of (12)1.

4.2. Mohr-Coulomb Yield Criterion

Considering (13), Equation (11) in the case of the Coulomb–Mohr yield criterion
becomes

−p sin φ + q = k cos φ, (40)
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Using (12)1 and (20), one can transform Equation (8) to

hη

(
∂q
∂ξ
− ∂p

∂ξ

)
+ 2q

∂hη

∂ξ
= 0 and

∂p
∂η

+
∂q
∂η

+ 2q
(

∂hξ

hξ ∂η
+

∂hξ

r∂η

)
= 0. (41)

Eliminating p in these equations employing (40) yields

hη

(
1− 1

sin φ

)
∂q
∂ξ

+ 2q
∂hη

∂ξ
= 0 and

∂q
∂η

(
1 +

1
sin φ

)
+ 2q

(
∂hξ

hξ ∂η
+

∂hξ

r∂η

)
= 0. (42)

Each of these equations can be immediately integrated to give

1
2

(
1− 1

sin φ

)
ln q = − ln hη + C1(η) and

1
2

(
1 +

1
sin φ

)
ln q = − ln

(
rhξ

)
+ C2(ξ). (43)

Here, C1(η) and C2(ξ) are arbitrary functions of η and ξ, respectively. However,
different choices of these functions merely change the scale of the coordinate curves.
Therefore, without loss of generality, it is possible to choose C1(η) = 0 and C2(ξ) = 0.
Then, Equation (43) becomes

1
2

(
1− 1

sin φ

)
ln q = − ln hη and

1
2

(
1 +

1
sin φ

)
ln q = − ln

(
rhξ

)
. (44)

Eliminating q between these equations results in(
rhξ

)mhη = 1. (45)

The definition of m is provided after Equation (25).
Employing (12)2 instead of (12)1 and using the line of reasoning above, one gets

rhηhm
ξ = 1. (46)

4.3. Generalized Linear Yield Criterion

Considering (13), Equation (11) in the case of a typical generalized linear yield criterion
becomes

ση = tσξ − σ0, (47)

As in Section 3.3, it is assumed in this section that t 6= 1. Eliminating ση and σθ in (8)
using (12)1 and (47), one gets

1[
σξ(1− t) + σ0

] ∂σξ

∂ξ
+

∂hη

hη∂ξ
= 0 and − t[

σξ(1− t) + σ0
] ∂ση

∂η
+

1
rhξ

∂
(
rhξ

)
∂η

= 0. (48)

Integrating these equations leads to

σξ

σ0
=

[
1− C1(η)ht−1

η

]
t− 1

and
ση

σ0
=

[
1− C2(ξ)

(
rhξ

)(1−t)/t
]

t− 1
. (49)

Here, C1(η) and C2(ξ) are arbitrary functions of η and ξ, respectively. However,
different choices of these functions merely change the scale of the coordinate curves.
Therefore, without loss of generality, it is possible to choose C1(η) = C2(ξ)/t = 1. Then,
Equation (49) becomes

σξ

σ0
=

(
1− ht−1

η

)
t− 1

and
ση

σ0
=

[
1− t

(
rhξ

)(1−t)/t
]

t− 1
. (50)
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Substituting (50) into (47) results in(
rhξ

)1/thη = 1. (51)

Employing (12)2 instead of (12)1 and using the line of reasoning above, one gets

rhηh1/t
ξ = 1. (52)

Equations (51) and (52) have been derived in [25].

5. Final Equation Systems under Plane Strain
5.1. Linear Yield Criteria

Equations (18), (25), and (30) can be represented as

h−τ
ξ hη = 1, (53)

where τ = −1 in Equation (18), τ = −m in Equation (25), and τ = −1/t in Equation (30).
Equation (53) can be rewritten in the form

hξ = h and hη = hτ . (54)

Then, Equations (4) and (5) become

∂h
∂η

+ hτ ∂ψ

∂ξ
= 0 and

∂ψ

∂η
− τhτ−2 ∂h

∂ξ
= 0. (55)

Using a standard technique, one can find the characteristic curves as

dξ

dη
= ±
√
−τhτ−1. (56)

It is seen from this equation that the characteristics are real if τ < 0. The hyperbolic
regimes are most important in perfectly plastic solids [26]. Therefore, it is assumed that
τ < 0 in the reminder of the present paper. Note that this inequality is automatically
satisfied in the case of Equations (18) and (25). In the case of Equation (30), the inequality
τ < 0 is equivalent to t > 0.

The characteristic coordinates are denoted as (α, β). The upper sign in (56) corre-
sponds to the β-curves and the lower sign to the α-curves. Using a standard technique, one
can find the characteristic relations as

dψ−
√
−τ dh

h = 0 along the α− lines,
dψ +

√
−τ dh

h = 0 along the β− lines.
(57)

These equations can immediately be integrated to give

ψ−
√
−τ ln h = 2g1(β) and ψ +

√
−τ ln h = 2g2(α). (58)

Here, g1(β) is an arbitrary function only of β and g2(α) is an arbitrary function only of
α. The equations in (58) can be solved for ψ and h. As a result,

ψ = g1(β) + g2(α) and
√
−τ ln h = g2(α)− g1(β). (59)

If both families of the characteristic lines are curved, one can choose g1(β) = c
√
−τβ

and g2(α) = c
√
−τα, where c is constant. Then, the equations in (59) become

ψ = c
√
−τ(α + β) and ln h = c(α− β). (60)
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The equations in (56) can be rewritten as

∂ξ

∂α
+
√
−τhτ−1 ∂η

∂α
= 0 and

∂ξ

∂β
−
√
−τhτ−1 ∂η

∂β
= 0. (61)

Eliminating h in these equations using the second equation in (60) yields

∂ξ
∂α +

√
−τ exp[c(τ − 1)(α− β)]

∂η
∂α = 0 and

∂ξ
∂β −

√
−τ exp[c(τ − 1)(α− β)]

∂η
∂β = 0.

(62)

It is convenient to introduce the new quantities, ε and ν, as

ε = ξ exp[n(β− α)] and ν = η exp[n(α− β)], (63)

where n is constant. Differentiating these expressions with respect to α and β, one gets

∂ξ
∂α =

(
∂ε
∂α + εn

)
exp[n(α− β)], ∂ξ

∂β =
(

∂ε
∂β − εn

)
exp[n(α− β)],

∂η
∂α =

(
∂ν
∂α − νn

)
exp[n(β− α)], ∂η

∂β =
(

∂ν
∂β + νn

)
exp[n(β− α)].

(64)

Equations (62) and (64) combine to give(
∂ε
∂α + εn

)
exp[n(α− β)] +

√
−τ exp[m(τ − 1)(α− β)] exp[n(β− α)]

(
∂ν
∂α − νn

)
= 0,(

∂ε
∂β − εn

)
exp[n(α− β)]−

√
−τ exp[m(τ − 1)(α− β)] exp[n(β− α)]

(
∂ν
∂β + νn

)
= 0.

(65)

Put
c =

2n
τ − 1

. (66)

Then, the equations in (65) become(
∂ε

∂α
+ εn

)
+
√
−τ

(
∂ν

∂α
− νn

)
= 0 and

(
∂ε

∂β
− εn

)
−
√
−τ

(
∂ν

∂β
+ νn

)
= 0. (67)

It is convenient to introduce the new quantities, ω and µ, as

ω = ε +
√
−τν and µ = ε−

√
−τν. (68)

Then, the equations in (67) transform to

∂ω

∂α
+ nµ = 0 and

∂µ

∂β
− nω = 0. (69)

Put
n = −1 (70)

The equations in (69) become

∂ω

∂α
− µ = 0 and

∂µ

∂β
+ ω = 0. (71)

These equations are equivalent to the two telegraph equations:

∂2ω

∂α∂β
+ ω = 0 and

∂2µ

∂α∂β
+ µ = 0. (72)

Each of these equations is integrated by the method of Riemann.
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Using (66) and (70), one can transform (60) and (63) to

ψ = 2
√
−τ

(1−τ) (α + β), ln h = 2
(1−τ) (α− β),

ε = ξ exp(α− β), ν = η exp(β− α).
(73)

The derivatives with respect to α and β can be represented as

∂

∂α
=

∂

∂ξ

∂ξ

∂α
+

∂

∂η

∂η

∂α
and

∂

∂β
=

∂

∂ξ

∂ξ

∂β
+

∂

∂η

∂η

∂β
. (74)

Using (64) and (70), one can express the derivatives ∂ξ/∂α, ∂ξ/∂β, ∂η/∂α, and ∂η/∂β
as

∂ξ
∂α =

(
∂ε
∂α − ε

)
exp(β− α), ∂ξ

∂β =
(

∂ε
∂β + ε

)
exp(β− α),

∂η
∂α =

(
∂ν
∂α + ν

)
exp(α− β), ∂η

∂β =
(

∂ν
∂β − ν

)
exp(α− β).

(75)

Equations (1) and (54) combine to give

∂x
∂ξ

= h cos ψ,
∂x
∂η

= −hτ sin ψ,
∂y
∂ξ

= h sin ψ,
∂y
∂η

= hτ cos ψ. (76)

Substituting (75) and (76) into (74) and eliminating h employing (73) yields

∂x
∂α =

[
cos ψ

(
∂ε
∂α − ε

)
− sin ψ

(
∂ν
∂α + ν

)]
exp

[(
1+τ
1−τ

)
(α− β)

]
,

∂x
∂β =

[
cos ψ

(
∂ε
∂β + ε

)
− sin ψ

(
∂ν
∂β − ν

)]
exp

[(
1+τ
1−τ

)
(α− β)

]
,

∂y
∂α =

[
sin ψ

(
∂ε
∂α − ε

)
+ cos ψ

(
∂ν
∂α + ν

)]
exp

[(
1+τ
1−τ

)
(α− β)

]
,

∂y
∂β =

[
sin ψ

(
∂ε
∂β + ε

)
+ cos ψ

(
∂ν
∂β − ν

)]
exp

[(
1+τ
1−τ

)
(α− β)

]
.

(77)

The equations in (68) can be solved for ε and ν. Then, utilizing (71), one can find

∂ε
∂α − ε = 1

2

(
∂µ
∂α −ω

)
, ∂ε

∂β + ε = 1
2

(
∂ω
∂β + µ

)
,

∂ν
∂α + ν = − 1

2
√
−τ

(
∂µ
∂α −ω

)
, ∂ν

∂β − ν = 1
2
√
−τ

(
∂ω
∂β + µ

)
.

(78)

Equations (77) and (78) combine to give

∂x
∂α = 1

2

[
cos ψ

(
∂µ
∂α −ω

)
+ sin ψ√

−τ

(
∂µ
∂α −ω

)]
exp

[(
1+τ
1−τ

)
(α− β)

]
,

∂x
∂β = 1

2

[
cos ψ

(
∂ω
∂β + µ

)
− sin ψ√

−τ

(
∂ω
∂β + µ

)]
exp

[(
1+τ
1−τ

)
(α− β)

]
,

∂y
∂α = 1

2

[
sin ψ

(
∂µ
∂α −ω

)
− cos ψ√

−τ

(
∂µ
∂α −ω

)]
exp

[(
1+τ
1−τ

)
(α− β)

]
,

∂y
∂β = 1

2

[
sin ψ

(
∂ω
∂β + µ

)
+ cos ψ√

−τ

(
∂ω
∂β + µ

)]
exp

[(
1+τ
1−τ

)
(α− β)

]
.

(79)

In these equations, ω and µ are known functions of α and β due to a solution of the
equations in (72). Moreover, ψ is a known function of α and β due to (73). Therefore, the
dependence of x and y on α and β can be found by integrating (79) along any path in the
(α, β)-space.

5.2. General Yield Criterion

It is understood in this section that hξ and hη are the known functions of p given in the
equations in (34). Then, Equations (4) and (5) become

dhξ

dp
∂p
∂η

+ hη
∂ψ

∂ξ
= 0 and hξ

∂ψ

∂η
−

dhη

dp
∂p
∂ξ

= 0. (80)
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Using a standard technique, one can find the characteristic directions as

dξ

dη
= ± exp

 p∫
0

dχ

f (χ)

√1− d f /dp
1 + d f /dp

. (81)

It is seen from this equation that the system is hyperbolic if

|d f /dp| < 1. (82)

It is assumed that this inequality is satisfied in what follows. Using a standard
technique, one can find the characteristic relations as

dψ +

√
1−(d f /dp)2

2 f (p) dp = 0 along the α− lines,

dψ−
√

1−(d f /dp)2

2 f (p) dp = 0 along the β− lines.
(83)

These equations can immediately be integrated to give

ψ + Φ(p) = 2g1(β) and ψ−Φ(p) = 2g2(α), (84)

where

Φ(p) =

p∫
0

√
1− (d f /dχ)2

2 f (χ)
dχ. (85)

The equations in (84) can be solved for ψ and Φ. As a result,

ψ = g1(β) + g2(α) and Φ(p) = g1(β)− g2(α). (86)

If both families of the characteristic lines are curved, one can choose g1(β) = β and
g2(α) = α. Then, the equations in (86) become

ψ = α + β and p = Φ−1(β− α). (87)

Here, Φ−1 is the function inverse to Φ. The equations in (81) can be rewritten as

∂ξ
∂α + exp

[
p∫

0

dχ
f (χ)

]√
1−d f /dp
1+d f /dp

∂η
∂α = 0 and

∂ξ
∂β − exp

[
p∫

0

dχ
f (χ)

]√
1−d f /dp
1+d f /dp

∂η
∂β = 0.

(88)

In these equations, p can be eliminated using the second equation in (87). Therefore,
the equations in (88) constitute the system of two equations for ξ and η.

Equations (1) and (74) combine to give

∂x
∂α = hξ cos ψ ∂ξ

∂α − hη sin ψ
∂η
∂α , ∂x

∂β = hξ cos ψ ∂ξ
∂β − hη sin ψ

∂η
∂β ,

∂y
∂α = hξ sin ψ ∂ξ

∂α + hη cos ψ
∂η
∂α , ∂y

∂β = hξ sin ψ ∂ξ
∂β + hη cos ψ

∂η
∂β .

(89)

One can express the right-hand sides of these equations as functions of α and β
employing (34) and (87). Therefore, the dependence of x and y on α and β can be found by
integrating (89) along any path in the (α, β)-space.



Symmetry 2023, 15, 981 12 of 14

6. Final Equation Systems under Axial Symmetry

Equations (39), (45), and (51) can be represented as(
rhξ

)−τhη = 1, (90)

where τ = −1 in Equation (39), τ = −m in Equation (45), and τ = −1/t in Equation (51).
Equation (90) can be rewritten in the form

hξ = h and hη = (rh)τ . (91)

Then, Equations (4) and (5) become

∂h
∂η

+ (rh)τ ∂ψ

∂ξ
= 0 and

∂ψ

∂η
− τhτ−2rτ ∂h

∂ξ
= τrτ−1hτ cos ψ. (92)

Here, the second equation in (6) has been used to eliminate the derivative ∂r/∂ξ. Using
a standard technique, one can find the characteristic curves as

dξ

dη
= ±
√
−τhτ−1rτ . (93)

It is seen from this equation that the characteristics are real if τ < 0. It is assumed
that this inequality is satisfied. The characteristic coordinates are denoted as (α, β). The
upper sign in (93) corresponds to β-curves and the lower sign to α-curves. Using a standard
technique, one can find the characteristic relations as

dψ−
√
−τ dh

h = τrτ−1hτ cos ψdη along the α− lines,
dψ +

√
−τ dh

h = τrτ−1hτ cos ψdη along the β− lines.
(94)

Equations (6), (74), and (91) yield

∂r
∂α

= h cos ψ
∂ξ

∂α
− (hr)τ sin ψ

∂η

∂α
and

∂r
∂β

= h cos ψ
∂ξ

∂β
− (hr)τ sin ψ

∂η

∂β
. (95)

The equations in (93) can be rewritten as

∂ξ

∂α
+
√
−τhτ−1rτ ∂η

∂α
= 0 and

∂ξ

∂β
−
√
−τhτ−1rτ ∂η

∂β
= 0 (96)

and the equations in (94) as

∂ψ

∂α
−
√
−τ

h
∂h
∂α

= τrτ−1hτ cos ψ
∂η

∂α
and

∂ψ

∂β
−
√
−τ

h
∂h
∂β

= τrτ−1hτ cos ψ
∂η

∂β
. (97)

Equations (96) and (97), together with one of the equations in (95), constitute the
system of five equations for h, ψ, ξ, η, and r. The equation for z follows from (6), (74), and
(91) as

∂z
∂α

= h sin ψ
∂ξ

∂α
+ (hr)τ cos ψ

∂η

∂α
and

∂z
∂β

= h sin ψ
∂ξ

∂β
+ (hr)τ cos ψ

∂η

∂β
. (98)

Equations (39), (46), and (52) can be treated similarly. In particular, Equation (90)
should be replaced with

rhηh−τ
ξ = 1, (99)

where τ = −1 in Equation (39), τ = −m in Equation (46), and τ = −1/t in Equation (52).



Symmetry 2023, 15, 981 13 of 14

7. Conclusions

The present paper has reviewed and summarized the available results on geometric
properties of principal stress trajectories in regions where a yield criterion is satisfied. Plane
strain and axisymmetric problems have been considered. The final result for each yield
criterion is a relation between the scale factors of the principal line coordinate system.
Having these relations, one can reduce the boundary value problems in plasticity to purely
geometric problems of finding orthogonal coordinate systems. The latter problems are
represented by standard systems of partial differential equations, as described in Section 5.
In most cases, these systems are hyperbolic.

The above is one of several available methods for solving boundary value prob-
lems. This method has not yet been employed for solving specific boundary value prob-
lems. Free surface problems constitute an important class of boundary value problem
in plasticity [27,28]. Since a free surface coincides with an ξ- or η-coordinate curve, the
method described in the present paper can efficiently solve free surface problems.
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