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Abstract: In this study, we introduce a nonlinear leukemia dynamical system for a piecewise modified
ABC fractional-order derivative and analyze it for the theoretical as well computational works and
examine the crossover effect of the model. For the crossover behavior of the operators, we presume a
division of the period of study [0, t2] in two subclasses as I1 = [0, t1], I2 = [t1, t2], for t1, t2 ∈ R with
t1 < t2. In I1, the classical derivative is considered for the study of the leukemia growth while in I2

we presume modified ABC fractional differential operator. As a result, the study is initiated in the
piecewise modified ABC sense of derivative for the dynamical systems. The novel constructed model
is then studied for the solution existence and stability as well computational results. The symmetry
in dynamics for all the three classes can be graphically observed in the presented six plots.

Keywords: piecewise modified ABC derivative; leukemia mathematical model; existence of solutions;
Hyers–Ulam stability; crossover behavior

1. Introduction

The dynamics of real-world situations are investigated through the use of mathe-
matical modeling and simulation in the practical areas of science, engineering, biological
processes, and economics. They aid in the comprehension of the globe, the development
of reliable forecasting methods, and the introduction of novel methods and apparatus. In
mathematical modeling, the systems of the real world are represented by their abstract
mathematical counterparts. The models can range from something as simple as a set
of algebraic equations to being as complex as a set of differential or partial differential
equations. Intricate system behavior can be understood and predicted with the use of
mathematical models [1–3]. Simulations allow one to put mathematical models through
their paces and make predictions about how a system will react in different situations.
Mathematical modeling is used in computer simulations to predict the results. The results
of these simulations can be used to check the veracity of a model and improve it. The tools
of mathematical modeling and simulation can be used in many different contexts. They
are essential for engineers to devise new ways to build things like airplanes, bridges, and
chemical plants. In physics, they are used to simulate the actions of various substances and
small-scale components. They are very important in the field of biology, particularly in
the areas of disease research and medical care. Economists use them to predict how the
market will react to proposed changes in legislation and regulation. There are, however,
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limitations to mathematical modeling and simulation that must be recognized. Since they
are based on assumptions and simplifications, the quality of the input data greatly affects
their accuracy. In addition, the findings of simulations are not always easy to comprehend
and can be computationally expensive [4–6].

The origins of leukemia, a malignancy of the blood and bone marrow, are murky and
extend back hundreds of years. Rudolf Virchow, a German pathologist, originally used
the term “leukemia” to describe the disease in the 1840s. The sickness, however, has a
long history of written record. Leukemia-like symptoms were first described in ancient
Egyptian and Greek medical books, where they were referred to as “elephantiasis” or
“leucophlegmasia”. Leukemia frequently manifests with spleen and lymph node swelling,
which was suggested by these accounts [7,8].

The late 19th and early 20th centuries saw major developments in the study of
leukemia. Chemotherapy, first introduced by a German doctor named Paul Ehrlich in
the year 1900, is now an essential part of the standard treatment for leukemia. Radiation
therapy was developed in the 1940s, considerably enhancing the success rate of treatments.
In the middle of the 20th century, researchers identified and categorized various subtypes
of leukemia. The French, American, and British (FAB) classification system for leukemia
was developed in 1973 and uses cell shape and genetic factors to divide leukemia into
distinct subtypes. The insights gained from this categorization system were essential in
developing effective therapies [9,10].

Technological developments in fields like molecular biology and genetics have sig-
nificantly contributed to our knowledge of leukemia. More targeted medicines and in-
dividualized treatment techniques have emerged as a result of the discovery of chromo-
somal abnormalities and genetic alterations associated with leukemia subtypes. Today,
immunotherapies and targeted molecular treatments are at the forefront of ongoing re-
search to enhance outcomes for leukemia patients. Progress in understanding and treating
this complicated disease is being driven by collaboration between academics, physicians,
and organizations [11]. Numerous people of various populations are affected by leukemia,
making it a major global health concern. However, we can provide some background on
leukemia based on data collected up until 2021, which is as recent as we have access to. It
is estimated by the World Health Organization (WHO) that 2.8% of all cancer cases occur
due to leukemia. Incidence rates vary widely between locations, but overall, it ranks as the
eleventh most prevalent kind of cancer. According to the American Cancer Society, there
will be 437,033 new cases of leukemia worldwide in 2020. This is about 3% of all cancer
cases. They also calculated that around 309,006 people lost their lives to leukemia that
year. Certain forms of leukemia are more common in youngsters, whereas others are more
common in adults. In children, acute lymphoblastic leukemia (ALL) predominates, but in
adults, chronic lymphocytic leukemia (CLL) is more frequent. The incidence of leukemia
may vary among regions [7,12]. For instance, certain emerging regions have recorded
greater rates compared to Western countries. However, efforts are being made to enhance
data collection and reporting in a number of countries, which could lead to more precise
and timely statistics in the future. Please note that since our previous training update
in September 2021, some numbers may have altered. We suggest checking authoritative
resources, such the World Health Organization or national cancer registries, for the latest
and most reliable global data on leukemia [13,14].

Modeling leukemia spread and simulations are currently rich research-oriented areas.
Leukemia is a malignancy of the blood and bone marrow that, when it progresses, can
have devastating effects on the human body. Bone marrow is the site of disease initiation,
since it is where abnormal white blood cells (leukemia cells) are created. These cells can
travel to the brain, spinal cord, lymph nodes, spleen, and liver through the circulatory
system. When leukemia cells multiply uncontrollably, they interfere with the body’s ability
to produce the normal amounts of several types of blood cells. Many different symptoms
and consequences can arise as a result of this disruption. Leukemia is characterized by an
impaired immune system. When aberrant white blood cells multiply out of control, the
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body loses its ability to fight off infections. People with leukemia are more susceptible
to infection, may become ill more frequently, and may be sick for longer periods of time.
Anemia, characterized by a low number of red blood cells, is another complication of
leukemia. This causes fatigue, weakness, shortness of breath, and a gray color to the skin.
Recently, Islam et al. [15] considered a double sliding mode control for leukemia disease.
Islam et al. [16] studied leukemia spread under monotonic and nonmonotonic functions
and analyzed the different aspects of treatment therapy via sliding mode control. Using the
literature, we are interested in the qualitative and computational studied of the following
piecewise leukemia model:

pmABCD$X1 = ψnX1 ln
(

Na

X1

)
− ηnX1 − pX1X2 −

X1X3

a1X2
3 + b1X3 + 1

,

pmABCD$X2 = ψlX2 ln
(

La

X2

)
− ηlX2 −

X2X3

a2X2
3 + b2X3 + 1

(1)

pmABCD$X3 = −ηhX3,

where X1 represents the number of normal cells, X2 represents the leukemic cells, and X3
is the quantity of chemotherapeutic agent. ψl > 0 and ψn > 0 is the reproduction rates
of leukemic cells and normal cells, respectively; ηl > 0 and ηn > 0 is the mortality rates
of leukemic cells and normal cells, respectively; and p > 0 is the infection rate in normal
cells caused by leukemic cells. Na > 0 and La > 0 indicate the limits of the normal cell
population and the leukemic cell population, respectively, while ηh > 0 reflects the rate at
which the therapeutic agent is dissipated. The modified piecewise ABC fractional structure
of the aforementioned model will be used to discuss the existence, uniqueness, stability, and
numerical simulations of this model, which will overcome the gap of crossover behavior of
the operator and the dynamics of the model.

Fractional calculus (FC) has been applied in almost all areas of science and engineering
in theoretical, numerical, and experimental works [17–20]. Further, Atangana and Araz re-
cently presented a new class of operators they call piecewise integrals and derivatives [21],
since the exponential and Mittag–Lefler kernels do not allow for specifying the crossover
time. Among the novel approaches to addressing these issues is the piecewise derivative,
which is discussed in [22]. Researchers now have a new way to investigate the crossover
behaviors exhibited by these operators. In the analysis of disease dynamics, extensive
use has been made of the concept of piecewise operators. Dengue virus transmission
within populations was studied using the fractional piecewise derivative and the piecewise
operator of fractional order by Ahmad et al. [23]. The literature cites additional examples
of the piecewise operator’s use in problem modeling in [24–26]. Simulations of fractional
differential equations rely heavily on symmetry. They take into account the harmony and
correspondence existing inside the system to provide facts about its operation. Researchers
can cut down on processing time and unearth previously unseen patterns by using sym-
metry features. The use of correct numerical methods, guaranteed by symmetry, allows
for precise and efficient simulations. It also helps in finding the conservation laws and
invariant values that explain the dynamics. By expanding our knowledge of symmetry
in fractional differential equations, we can make strides forward in many disciplines, in-
cluding physics, engineering, and finance. These simulations rely heavily on symmetry to
perform in-depth analysis and make accurate predictions [27–29].

Paper organization: This paper is organized in seven sections. In Section 1, the
introduction of the leukemia model and relevant literature are presented. In Section 2, the
preliminary results, definitions, and results for the piecewise operators are presented, which
help in the crossover behavior analysis study of the dynamical systems. In Section 3, the
proposed leukemia model (1) is expressed in its equivalent piecewise-integral version, two
essential assumptions are presented, and the presumed model is studied for the solution
existence and uniqueness. In Section 4, the stability analysis of HU-type is defined for
and proved based on certain assumptions for the system (1). A computational iterative
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scheme is produced with the help of Lagrange’s interpolation polynomial in Section 5.
Section 6 is reserved for the numerical data of the model for the piecewise version and the
crossover behavior is analyzed graphically for different fractional orders for τ1 = [0, 50]
and τ2 = [50, 200]. The work is summarized in Section 7.

2. Preliminaries

Crossover behavior is a phenomenon in dynamical models where the behavior of
a system changes from one state to another. A qualitative shift in the dynamics of the
system occurs when specific parameters or situations exceed a critical threshold. It is not
uncommon to observe crossover phenomena in the physical, biological, and economic
sciences. In physics, for instance, a system exhibiting crossover behavior is one that is
changing from one state of matter to another (e.g., from a solid to a liquid or a liquid to a gas).
Changes in stability, periodicity, or attractor patterns are all examples of crossover behavior
in dynamical models. The system behavior can undergo rapid changes, bifurcations, or
even chaos if the model’s parameters are tweaked slightly. Gaining insights into the
behavior of complex systems requires an understanding of crossover behavior, which can
aid in locating the system’s critical, threshold, or tipping points. By analyzing crossovers,
scientists can learn more about the system’s dynamics and forecast how it will respond
to changes in input parameters [30–32]. In order to capture the crossover behavior the IS
model (1), piecewise operators in the sense of modified Atangana–Baleanu derivative are
presented in parts of the article.

Definition 1 ([33,34]). For ζ ∈ (0, 1), and w ∈ L1(0, T), the modified ABC derivative is given
as follows:

mABCDζ
0w(t) =

B(ζ)
1− ζ

[
w(t)− Eζ(−µζ tζ)w(0)− µζ

∫ t

0
(t− s)ζ−1Eζ,ζ(−µζ(t− s)ζ)w(s)ds

]
.

For any constant C, we have mABCDζ
0C = 0; see in [33]. The corresponding integral is

given in the following definition.

Definition 2 ([33,34]). For ζ ∈ (0, 1), and w ∈ L1(0, T), the modified AB integral is given
as follows:

mAB Iζ
0 w(t) =

B(1− ζ)

B(ζ)
[
w(t)−w(0)

]
+
[RL Iζ

0 (w(t)− µζw(0))
]
. (2)

Lemma 1 ([33]). For w′ ∈ L1(0, ∞), and ζ ∈ (0, 1), we have:

mAB Iζ
0

mABC
Dζ

0w(t) = w(t)−w(0). (3)

Definition 3 ([21]). For a differentiable function w(t), the piecewise integral is:

PF
0 Itw(t) =


∫ t

0
w(s)ds, 0 < t ≤ t1,∫ t

t1

w(s)ds t1 < t ≤ t2.
,

Definition 4. Let us assume that w(t) be differentiable function, then the piecewise derivative of
w(t) in the integer and fractional-order modified ABC is defined as:

PF
0 Dζ

tw(t) =

{
w′(t), 0 < t ≤ t1,
mABC
0 Dζ

tw(t) t1 < t ≤ t2,
, (4)
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Definition 5. For a differentiable function w(t), the piecewise integration of classical and modified
AB integral is then given by:

PF
0 Itw(t) =


∫ t

0
w(s)ds, 0 < t ≤ t1,

B(1− ζ)

B(ζ)
[
w(t)−w(0)

]
+
[RL Iζ

0 (w(t)− µζ w(0))
]
, t1 < t ≤ t2,

,

where PF
0 Itw(t) represents integration of classical case in 0 < t ≤ t1 and for the modified AB sense

is given in t1 < t ≤ t2.

Lemma 2. The general piecewise differential equation for t ∈ (0, t2], where 0 < t1 ≤ t2:

PFC
0 Dζ

tw(t) = S(t, w(t)),

has the solution given by:

w(t) =



w0 +
∫ t

0
w(s)ds, 0 < t ≤ t1,

w0 +
1− ζ

B(ζ)
S(t, w(t)) +

ζ

Γ(ζ)B(ζ)

∫ t

0
(t− s)ζ−1S(s, w(s))ds

− 1− ζ

B(ζ)
S(0, w(0))

(
1 +

γζ

Γ(ζ + 1)
tζ
)

, t1 < t ≤ t2.

(5)

Proof. By applying the Definition 5 on (4) and putting the initial value h0, one can directly
get the solution (5).

3. Qualitative Analysis

Existence of solution and uniqueness analysis have been a trend in last few years in
the theoretical results of FDES. We highlight some useful works which are related to the
upcoming results in [35–44]. For simplicity in calculations, we can write the piecewise
modified Leukemia therapy-model (1) as:

pmABC
0 D

ζ
t (X1) =

{
D

ζ
t (X1(t)) = S1(X1, X2, X3, t), 0 < t ≤ t1,

mABC
0D

ζ
t (X1(t)) = S2(X1, X2, X3, t), t1 < t ≤ t2,

,

pmABC
0 D

ζ
t (X2) =

{
D

ζ
t (X2(t)) = S3(X1, X2, X3, t), 0 < t ≤ t1,

mABC
0D

ζ
t (X2(t)) = S2(X1, X2, X3, t1 < t ≤ t2,

, (6)

pmABC
0 D

ζ
t X3 =

{
D

ζ
0(X3(t)) = S3(X1, X2, X3, t), 0 < t ≤ t1,

mABC
0D

ζ
t (X3(t)) = S3(X1, X2, X3, t), t1 < t ≤ t2,

,

where S1 = ψnX1 ln
(

Na
X1

)
− ηnX1 − pX1X2 − X1X3

a1X2
3+b1X3+1

,S2 = ψlX2 ln
(

La
X2

)
− ηlX2 −

X2X3
a2X2

3+b2X3+1
, S3 = −ηhX3. Here, the EUS results of the presumed piecewise mABC

model (1) are discussed. The next thing that we need to do is determine whether or not
a solution can be found for the hypothetical piecewise derivable function, as well as the
particular solution characteristic that it holds. If a solution can be discovered, then we may
move on to the next step.

One possible form for the solution to an equation including the piecewise mABC
derivative

pmABC
0 Dζ

tw(t) = S(t, w(t)), 0 < t ≤ T, (7)
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is

w(t) =



w0 +
∫ t

0
w(s)ds, 0 < t ≤ t1,

w0 +
1− ζ

B(ζ)
S(t, w(t)) +

ζ

Γ(ζ)B(ζ)

∫ t

0
(t− s)ζ−1S(s, w(s))ds

− 1− ζ

B(ζ)
S(0, w(0))

(
1 +

γζ

Γ(ζ + 1)
tζ
)

, t1 < t ≤ t2.

(8)

where

w(t) =


X1(t)

X2(t)

X3(t)

, w0 =


X1(0)

X2(0)

X3(0)

, wt1 =


X1(t1)

X2(t1)

X3(t1)

, S(t, w(t)) =


S1(X1, X2, X3, t),

S2(X1, X2, X3, t),

S3(X1, X2, X3, t).

(9)

Consider the set E = C[0, T] as a Banach space with

‖w∗‖ = max
t∈[0,T]

|w∗(t)|.

The following are presumptions are made for handling the nonlinear function S.

(C1) ∃ Lw∗ > 0; ∀ g, w∗ ∈ E, we arrive at:

|S(t, g)− S(t, w∗)| ≤ LS|w∗ − g|.

(C2) ∃ CS > 0 & MS > 0;
|S(t, w∗(t))| ≤ CS|w∗|+ MS.

Theorem 1. For the presumed function S, which is a piecewise continuous on 0 < t ≤ t1 and
t1 < t ≤ t2 as subintervals of [0, T], with the assumption of (C2), the IS model (7) has a solution.

Proof. We presume the following closed subset B of E,

B = {w ∈ E : ‖w‖ ≤ R, R > 0}.

Let F : B→ B and by the help of (8), such that

F(g)(t) =



w0 +
∫ t

0
w(s)ds, 0 < t ≤ t1,

w0 +
1− ζ

B(ζ)
S(t, w(t)) +

ζ

Γ(ζ)B(ζ)

∫ t

0
(t− s)ζ−1S(s, w(s))ds

− 1− ζ

B(ζ)
S(0, w(0))

(
1 +

γζ

Γ(ζ + 1)
tζ
)

, t1 < t ≤ t2.
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For the w∗ ∈ B, we have

|F(g)(t)| ≤



|w∗0 |+
∫ t1

0
|S(δ̄, g(δ̄))|dδ̄, 0 < t ≤ t1,

|wt1 |+
1− ζ

B(ζ)
|S(t, g(t))|+ ζ

Γ(ζ)B(ζ)

∫ t

0
(t− s)ζ−1|S(s, w(s))|ds

+
1− ζ

B(ζ)
|S(0, w(0))|

(
1 +

γζ

Γ(ζ + 1)
tζ
)

, t1 < t ≤ t2,

≤



|w∗0 |+ t1(CS|w∗|+ MS), 0 < t ≤ t1,

|wt1 |+
1− ζ

B(ζ)
(CS|w∗|+ MS) +

1
Γ(ζ)B(ζ)

tζ
2(CS|w∗|+ MS)|

+
1− ζ

B(ζ)
|(CS|w∗|+ MS)

(
1 +

γζ

Γ(ζ + 1)
tζ
2

)
, t1 < t ≤ t2,

≤
{
β1, 0 < t ≤ t1,

β2, t1 < t ≤ t2.
(10)

For β1 = maxt∈[0, t1]
{|w∗0 | + t1(CS|w∗| + MS)}, β2 = maxt∈[t1, t2]

{|wt1 | +
1−ζ
B(ζ) (CS|w∗| +

MS) +
1

Γ(ζ)B(ζ) tζ
2(CS|w∗|+ MS) +

1−ζ
B(ζ) |(CS|w∗|+ MS)

(
1 +

γζ

Γ(ζ+1) tζ
2

)
}. This implies that

F(B) ⊂ B. Thus, it shows that F is closed and complete operator. Now, for the completely
continuity of F, we consider tn > tm ∈ [0, t1], which gives us:

|F(w∗)(tn)− F(w)(tm)| =

∣∣∣∣ ∫ tn

0
S(s, w∗(s))ds−

∫ tm

0
S(s, w(s))ds

∣∣∣∣
≤

∫ tn

0
|S(s, w∗(s))|ds +

∫ tm

0
|S(s, w(s))|ds

≤
∫ tn

0
(CS|w∗|+ MS)ds−

∫ tm

0
(CS|w|+ MG)ds

≤ (CSw∗ + MS)tn + (CSw + MS)tm. (11)

Thanks to (11), when tm → tn, then

|F(w∗)(tn)− F(w)(tm)| → 0, as tm → tn.

Thus, F is equicontinuous in [0, t1]. Consider tm, tn ∈ [t1, T] in the sense of modified ABC as
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|F(w∗)(tn)− F(w∗)(tm)| =

∣∣∣∣w0 +
1− ζ

B(ζ)
S(tn, w(tn))

+
ζ

Γ(ζ)B(ζ)

∫ tn

0
(tn − s)ζ−1S(s, w(s))ds

− 1− ζ

B(ζ)
S(0, w(0))

(
1 +

γζ

Γ(ζ + 1)
tζ
n

)
−

[
w0 +

1− ζ

B(ζ)
S(tm, w(tm))

+
ζ

Γ(ζ)B(ζ)

∫ tm

0
(tm − s)ζ−1S(s, w(s))ds (12)

− 1− ζ

B(ζ)
S(0, w(0))

(
1 +

γζ

Γ(ζ + 1)
tζ
m

)]∣∣∣∣
≤ 1− ζ

B(ζ)
|S(tn, w(tn))− S(tm, w(tm))|

+
ζ

Γ(ζ)B(ζ)

[ ∫ tn

0
(tn − s)ζ−1 −

∫ tm

0
(tm − s)ζ−1]∣∣S(s, w(s))

∣∣ds

+
1− ζ

B(ζ)
S(0, w(0))

(
1 +

γζ

Γ(ζ + 1)

∣∣tζ
n − tζ

m
∣∣)

≤ 1− ζ

B(ζ)
|S(tn, w(tn))− S(tm, w(tm))|+

|tζ
n − tζ

m|
Γ(ζ)B(ζ)

(CSw∗ + MS)

+
1− ζ

B(ζ)
S(0, w(0))

(
1 +

γζ

Γ(ζ + 1)

∣∣tζ
n − tζ

m
∣∣).

If tn → tm, then
|F(w∗)(tn)− F(w∗)(tm)| → 0, as tm → tn.

This demonstrates that F is equally continuous over the interval [t1, t2]. As a result, the
map T is equicontinuous. Completely and uniformly continuous and bounded, T is the
operator of interest due to the Arzel’a-Ascoli and Schauder theorems implying that the
piecewise TB model under consideration has a solution.

Theorem 2. Let (C1) hold true and Lg
( 1−ζ

B(ζ) +
1

B(ζ)
(t2−t1)

ζ

Γ(ζ)

)
< 1; if so, then the proposed piece-

wise mABC IS model has a unique solution.

Proof. As in the above proof, we have the piecewise continuity of F : B → B that,
furthermore, for g, w̄∗ ∈ B on [0, t1] implies

‖F(w∗)− F(w̄∗)‖ = max
t∈[0,t1]

∣∣∣∣ ∫ t1

0
S(s, w∗(s))ds−

∫ t1

0
S(s, w̄∗(s))ds

∣∣∣∣
≤ t1LS‖w∗ − w̄∗‖. (13)

From (13), we have

‖F(w∗)− F(w̄∗)‖ ≤ t1LS‖w∗ − w̄∗‖. (14)

Therefore, we have F is a contraction. By Banach’s result, the presumed TB system has a
unique solution in the given subinterval. Moreover, we have for t ∈ [t1, t2]
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‖F(w∗)− F(w̄∗)‖ = max
t∈[t1,t2]

∣∣∣∣w0 +
1− ζ

B(ζ)
S(tn, w(tn)) +

ζ

Γ(ζ)B(ζ)

∫ t2

t1

(t2 − s)ζ−1S(s, w(s))ds

− 1− ζ

B(ζ)
S(0, w(0))

(
1 +

γζ

Γ(ζ + 1)
tζ
)

−
[
w̄0 +

1− ζ

B(ζ)
S(t, w̄(t)) +

ζ

Γ(ζ)B(ζ)

∫ t2

t1

(t2 − s)ζ−1S(s, w̄(s))ds

− 1− ζ

B(ζ)
S(0, w(0))

(
1 +

γζ

Γ(ζ + 1)
tζ
)]∣∣∣∣ (15)

≤ 1− ζ

B(ζ)
Lg
∣∣g− ḡ

∣∣+ 1
B(ζ)

Lg
∣∣g− ḡ

∣∣ (t2 − t1)
ζ

Γ(ζ)

= Lg
(1− ζ

B(ζ)
+

1
B(ζ)

(t2 − t1)
ζ

Γ(ζ)
)∣∣g− ḡ

∣∣.
From (15), we have

‖F(w∗)− F(w̄∗)‖ ≤ Lg
(1− ζ

B(ζ)
+

1
B(ζ)

(t2 − t1)
ζ

Γ(ζ)
)∣∣g− ḡ

∣∣. (16)

Hence, F is a contraction. According to the Banach result, this means that there is exactly
unique solution to the considered model in the given subinterval. Accordingly, (14) and (16),
and the TB model in the piecewise nature has a unique solution for each subinterval.

4. Stability Analysis

Here, the proof of HU stability is the aim of the section. For this, we assume the
interval B = [0, T].

Definition 6. The piecewise model in the classical and modified ABC derivatives for the TB (1) is
HU stable if for each α > 0 and∣∣∣PCCDζ

t w∗(t)− F(t, w∗(t),PCC Dζ
t w∗(t))

∣∣∣ < α, f or all, t ∈ B, (17)

there is a unique solution w∗ ∈ Z withH > 0, a constant, such that∣∣∣∣w∗ −w∗
∣∣∣∣

Z ≤ Hα, f or all, t ∈ B. (18)

Also, if we possess a nondecreasing function Φ : [0, ∞)→ R+, satisfying that∣∣∣∣w∗ −w∗
∣∣∣∣

Z ≤ HΦ(α), at every, t ∈ B, (19)

where Φ(0) = 0, then the solution of the proposed piecewise model for the TB (1) is generally HU
stable.

Lemma 3. Consider the function

PCC
0 Dζ

t w∗(t) = F(t, w∗(t)), 0 < ζ ≤ 1. (20)
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The solution of (20) is:

w∗(t) =



w∗0 + Φ(w∗) +
∫ t1

0
F (s, w∗(s))ds +

∫ t1

0
φ(s)ds, 0 < t ≤ t1,

w0 +
1− ζ

B(ζ)
S(t, w∗(t)) +

ζ

Γ(ζ)B(ζ)

∫ t

0
(t− s)ζ−1S(s, w∗(s))ds

− 1− ζ

B(ζ)
S(0, w∗(0))

(
1 +

γζ

Γ(ζ + 1)
tζ
)

, t1 < t ≤ t2

It is simple for us to derive the inequality that is presented below.

∣∣∣∣F(w∗)− F(w∗)
∣∣∣∣ ≤



(
t1

1− LF
1−MF

)
α, t ∈ B1,[

Lg

α

(1− ζ

B(ζ)
+

1
Γ(ζ)B(ζ)

)]
α = Λα, t ∈ B2.

(21)

Theorem 3. Based on the lemma 3, if we have LF
1−M f

< 1, is the case, then the solution to our
considered model, which is denoted by (1) , will be HU stable as well as generalized HU stable.

Proof. Assume that w∗ ∈ Z be a solution of the piecewise TB system (1) and w∗ ∈ Z be an
approximation of (1), then
Case 1: for t ∈ B, we have

∣∣∣∣w∗ −w∗
∣∣∣∣ = sup

t∈B

∣∣∣∣w∗ −(w∗◦ + Φ(w∗) +
∫ t1

0
F
(
s, w∗(s)

)
ds̄ +

∫ t1

0
w∗(s)ds

)∣∣∣∣
≤ sup

t∈B

∣∣∣∣w∗ −(w∗◦ + Φ(w∗) +
∫ t1

0
F
(
s, w∗(s)

)
ds
)∣∣∣∣

+ sup
t∈B

∣∣∣∣Φ(w∗)−Φ(w∗) +
∫ t1

0
F(s, w∗(s))ds̄ +

∫ t1

0
F
(
s, w∗(s)

)
ds
∣∣∣∣

≤ t1α +
LF

1−M f

∣∣∣∣w∗ −w∗
∣∣∣∣

Z.

On further simplification:

∣∣∣∣w∗ −w∗
∣∣∣∣ ≤ (

t1

1− LF
1−MF

)
α. (22)

Case 2: for t ∈ B, we have

∣∣∣∣w∗ −w∗
∣∣∣∣ = sup

t∈B

∣∣w∗0 + 1− ζ

B(ζ)
S(t, w∗(t)) +

ζ

Γ(ζ)B(ζ)

∫ t2

0
(t2 − s)ζ−1S(s, w∗(s))ds

− 1− ζ

B(ζ)
S(0, w∗(0))

(
1 +

γζ

Γ(ζ + 1)
tζ
)

−
[
w∗0 +

1− ζ

B(ζ)
S(t, w̄∗(t)) +

ζ

Γ(ζ)B(ζ)

∫ t2

0
(t2 − s)ζ−1S(s, w̄∗(s))ds

− 1− ζ

B(ζ)
S(0, w∗(0))

(
1 +

γζ

Γ(ζ + 1)
tζ
)]∣∣ (23)

≤ sup
t∈B

∣∣∣∣1− ζ

B(ζ)
Lg‖w∗ − w̄∗‖

∣∣∣∣+ ζ

Γ(ζ)B(ζ)

∫ t2

0
(t2 − s)ζ−1‖S(s, w∗(s)− S(s, w̄∗(s)‖ds

g
(1− ζ

B(ζ)
+

1
Γ(ζ)B(ζ)

)
‖w∗ − w̄∗‖

= δ̄g‖w∗ − w̄∗‖α,
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for δ̄g =
Lg
α

( 1−ζ
B(ζ) +

1
Γ(ζ)B(ζ)

)
. Since, we have assume w∗, w̄∗ solutions of the piecewise

TB model (1), this implies, these are the fixed points of the operator F, or mathematically,
F(w∗) = g, and F(w̄∗) = w̄∗. Thus, from (23), we proceed to the following relation

‖F(w∗)− F(w̄∗)‖ ≤ δ̄g‖w∗ − w̄∗‖. (24)

Also, we have

|w∗ −w∗| = ‖w∗ − F(w∗) + F(w̄∗)−w∗‖ (25)

≤ ‖w∗ − F(w∗)‖+ ‖F(w∗)− F(w∗)‖.

By the help of (23), (24), and (25), we have

‖w∗ −w∗‖ ≤ α∗

1− δ̄g
= Hα∗. (26)

ForH = 1
1−δ̄g

. Thus, the presumed model is Hyers–Ulam stable. Furthermore, replacing α

by Φ(α) the system (20) implies∣∣∣∣w∗ −w∗
∣∣∣∣

Z ≤ HΦ(α), at each t ∈ B.

Now Φ(0) = 0, this implies the solution of the piecewise TB model (1) is generalized HU
stable.

5. Numerical Scheme

In this part of the article, we will derive a numerical scheme for the model that we
proposed in (1), and we will proceed to implement it. We were able to obtain the piecewise
integral by employing it on (6), which allowed us to reach our objective.

X1(t) =



X1(0) +
∫ t1

0
S1(s, X1)ds, 0 < t ≤ t1,

X1(t1) +
1− ζ

B(ζ)
S1(t, X1(t)) +

ζ

Γ(ζ)B(ζ)

∫ t2

0
(t2 − s)ζ−1S1(s, X1(s))ds

− 1− ζ

B(ζ)
S1(0, X1(0))

(
1 +

γζ

Γ(ζ + 1)
tζ
)

, t1 < t ≤ t2,

X2(t) =



X2(0) +
∫ t1

0
S2(s, C)ds, 0 < t ≤ t1,

X2(t1) +
1− ζ

B(ζ)
S2(t, X2(t)) +

ζ

Γ(ζ)B(ζ)

∫ t2

0
(t2 − s)ζ−1S2(s, X2(s))ds

− 1− ζ

B(ζ)
S2(0, X2(0))

(
1 +

γζ

Γ(ζ + 1)
tζ
)

, t1 < t ≤ t2,

X3(t) =



X3(0) +
∫ t1

0
S3(s, X3)ds, 0 < t ≤ t1,

X3(t1) +
1− ζ

B(ζ)
S1(t, X3(t)) +

ζ

Γ(ζ)B(ζ)

∫ t2

0
(t2 − s)ζ−1S3(s, X3(s))ds

− 1− ζ

B(ζ)
S3(0, X3(0))

(
1 +

γζ

Γ(ζ + 1)
tζ
)

t1 < t ≤ t2.
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At t = tn+1, we deduce it for the system (27), as under:

X1(tn+1)) =


X1(0) +

∫ t1

0
S1(s, X1)ds, 0 < tn+1 ≤ t1,

X1(t1) +
1

Γ(ζ)

∫ tn+1

t1

(t− s)ζ−1S1(s, X1)ds, t1 < tn+1 ≤ t2.
. (27)

Now, the equation (27) can be expressed by using Lagrange’s interpolation polynomial
for the modified ABC part of the piecewise operator, we presume k ∈ {1, 2, . . . , n} in the
following scheme:

X1(tn+1) =



X1(0) +

{
i

∑
K=2

[
5

12
S1(tK−2, X1)−

4
3
S1(U1, tK−1)δ̄t + S1(U, tK)

]
, 0 < tn+1 ≤ t1,

X1(t1) +



+
1− ζ

B(ζ)
S1(tk, X1(tk))

+
ζ1hζ

Γ(ζ + 2)
Σn

k=1

[
S1(tk, X1(tk))

(
(n + 1− k)ζ(n− k + ζ + 2)

− (n− k)ζ(n + 2− k + 2ζ)

)
− S1(tk−1, X1k−1)

(
(n− k + 1)ζ+1

− (n− k)ζ(n− k + 1 + ζ)

)]
− 1− ζ

B(ζ)
S1(0, X1(0))

(
1 +

γζ(kh)ζ

Γ(ζ + 1)

)
,

t1 < tn+1 ≤ t2.



(28)

X2(tn+1) =



X2(0) +


i

∑
K=2

[
5

12
S2(tK−2, X2)δ̄t

− 4
3
S2(tK−1, X2)δ̄t + S2(tK, X2)

]
, 0 < t ≤ t1,

X2(t1) +



+
1− ζ

B(ζ)
S2(tk, X2(tk))

+
ζ1hζ

Γ(ζ + 2)
Σn

k=1

[
S2(tk, X2(tk))

(
(n− k + 1)ζ(n + 2− k + ζ)

− (n− k)ζ(n + 2− k + 2ζ)

)
− S2(tk−1, X2k−1)

(
(n− k + 1)ζ+1

− (n− k)ζ(n− k + 1 + ζ)

)]
− 1− ζ

B(ζ)
S2(0, X2(0))

(
1 +

γζ(kh)ζ

Γ(ζ + 1)

)
,

t1 < tn+1 ≤ t2,



(29)
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X3(tn+1) =



X3(0) +


i

∑
K=2

[
5

12
S3(tK−2, X3)δ̄t

− 4
3
S3(tK−1, X3)δ̄t + S3(tK, X3)

]
, 0 < t ≤ t1,

X3(t1) +



+
1− ζ

B(ζ)
S3(tk, X3(tk))

+
ζ1hζ

Γ(ζ + 2)
Σn

k=1

[
S3(tk, X3(tk))

(
(n + 1− k)ζ(n + 2− k + ζ)

− (n− k)ζ(n + 2− k + 2ζ)

)
− S3(tk−1, X3k−1)

(
(n− k + 1)ζ+1

− (n− k)ζ(n + 1 + ζ − k)
)]
− 1− ζ

B(ζ)
S3(0, X3(0))

(
1 +

γζ(kh)ζ

Γ(ζ + 1)

)
,

t1 < tn+1 ≤ t2.



(30)

In the next section, this scheme for the leukemia dynamics are applied for assumptions
from the available literature. For other numerical techniques, the authors may refer to the
work in [45–50].

6. Computational Discussion for the Leukemia Model

Because of recent developments in genomic profiling and molecular characterization,
distinct genetic abnormalities in leukemia cells have been identified. Tyrosine kinase
inhibitors (TKIs) and monoclonal antibodies are two examples of targeted medicines that
have greatly improved the treatment of some types of leukemia. Rituximab is used to treat
B-cell acute lymphoblastic leukemia (B-ALL), whereas imatinib is used to treat chronic
myeloid leukemia (CML). Increased response rates and increased survival times are the
results of these medicines’ ability to selectively block abnormal signaling pathways.

Here, we present the application of the numerical scheme for the simulation of the
fractional-order IS model (1) with the parametric values given X1 = 1.8× 108, X2 = 1.8× 108,
X3 = 0, ψn = 0.15, ηn = 0.04, ηl = 0.04, Na = 1010, La = 1010, a1 = 2.5, a2 = 1.4,
b1 = b2 = 0.01. For details, see [15,16].

Figure 1 shows the simulation results for the presumed piecewise mABC model for
the classical case or integer order as a joint solution.
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Figure 1. Graphical representation of X1 in piecewise model (1) with t1 = 50 keeping ψn = ψl = 0.04.
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The simulations are carried out in the figures and explained here. Our proposed differ-
ential operator and integral operator are in the piecewise combination of the classical and
the modified ABC operators. For this, we have considered the interval of study as for two
hundred units; that is, I = [0, 200]. This interval is divided into two subintervals. The first
is I1 = [0, 50] and the second is [50, 200]. Thus, t1 = 50 while t2 = 200. The first graph is for
X1(t), in which we can see the simulations for the dynamics are representing the crossover
behavior given in the Figure 1. This class shows a sudden fall in its population after 100 days.
The fractional orders are considered in the second subinterval [50, 200]. Crossover behavior is
apparently observed in the simulations. In Figure 2 that follows, we have dynamics for the
X2, which is described in two intervals I1 and I2. In the I1, the dynamics are presented for
the classical derivative of order 1, while in the second interval I2, the modified ABC fractional
derivative is considered. A clear crossover behavior of the X2 is observed at the time 50. The
fractional orders are considered as 1, 0.95, 0.90, 0.85. There is initially an increase in leukemic
cells. In Figure 3, the chemotherapeutic agents are presented, which are decreasing with
respect to the time. In these three figures, we have considered the reproduction of normal cells
and leukemic cells identical as ψn = ψl = 0.04 and per the references [15,16]. In the next three
figures, we have presumed that ψn = ψl = 0.08, which affects the fall in the accumulation
of normal cells, and there is a comparatively rapid increase in leukemic cells, which can be
observed in the Figures 4 and 5, respectively.
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Figure 2. Graphical representation of X2 in piecewise model (1) with t1 = 50 keeping ψn = ψl = 0.04.
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Figure 3. Graphical representation of X3 in piecewise model (1) with t1 = 50 keeping ψn = ψl = 0.04.
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Figure 4. Graphical representation of X1 in piecewise model (1) with t1 = 50 keeping ψn = ψl = 0.08.

In Figure 1, we have given results for the X1, which represents the class of normal cells.
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Figure 5. Graphical representation of X2 in piecewise model (1) with t1 = 50 keeping ψn = ψl = 0.08.

7. Conclusions

In this article, a leukemia piecewise fractional-order model is constructed and pre-
sented for theoretical as well computational works. In theoretical works, the theory of fixed
points is considered for the solution existence, and solution uniqueness and stability are
obtained with the classical notions. The numerical work is based on our computational
scheme carried out with the help of Lagrange’s polynomial. The model is studied for two
different cases. In the first case, we have considered the values of ψn = ψl = 0.04, as per
classical case. And the computational results are presented in three graphs as Figures 1–3.
Then, the values are modified to ψn = ψl = 0.08, and further new computations are pre-
sented in Figures 4–6. With the increase in these values, we observe the loss in the normal
cells with a further increase and the shift to leukemia growth, which even falls under the
role of chemotherapy. Recent chemotherapeutic developments in leukemia have opened
up promising new treatment options for patients. Due to their remarkable effectiveness,
targeted treatments, immunotherapies, and combination regimens are gradually displacing
conventional chemotherapy in some patient populations. Drug resistance and toxicity are
two problems that still need to be addressed. To further improve the efficacy and safety
of leukemia chemotherapy, future studies should concentrate on improving treatment
regimens, discovering predictive biomarkers, and generating novel drugs. One can extend
the work in the stochastic version with the help of [50].
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Figure 6. Graphical representation of X3 in piecewise model (1) with t1 = 50 keeping ψn = ψl = 0.08.
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