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Abstract: Human activity recognition (HAR) is the process of interpreting human activities with
the help of electronic devices such as computer and machine version technology. Humans can
be explained or clarified as gestures, behavior, and activities that are recorded by sensors. In this
manuscript, we concentrate on studying the problem of HAR; for this, we use the proposed theory
of Aczel and Alsina, such as Aczel–Alsina (AA) norms, and the derived theory of Choquet, such
as the Choquet integral in the presence of Atanassov interval-valued intuitionistic fuzzy (AIVIF)
set theory for evaluating the novel concept of AIVIF Choquet integral AA averaging (AIVIFC-
IAAA), AIVIF Choquet integral AA ordered averaging (AIVIFC-IAAOA), AIVIF Choquet integral AA
hybrid averaging (AIVIFC-IAAHA), AIVIF Choquet integral AA geometric (AIVIFC-IAAG), AIVIF
Choquet integral AA ordered geometric (AIVIFC-IAAOG), and AIVIF Choquet integral AA hybrid
geometric (AIVIFC-IAAHG) operators. Many essential characteristics of the presented techniques are
shown, and we also identify their properties with some results. Additionally, we take advantage of
the above techniques to produce a technique to evaluate the HAR multiattribute decision-making
complications. We derive a functional model for HAR problems to justify the evaluated approaches
and to demonstrate their supremacy and practicality. Finally, we conduct a comparison between the
proposed and prevailing techniques for the legitimacy of the invented methodologies.

Keywords: interval-valued intuitionistic fuzzy sets; Choquet integral; Aczel–Alsina; human activity
recognition; decision making; fuzzy logic

1. Introduction

Human activity recognition (HAR) [1] is a diverse and universal field of investigation
and attention that engages the classification and identification of human activities in the
presence of information arranged from different sources, such as computers, the Internet,
cameras, sensors, and wearable devices [2,3]. The main theme of HAR is to detect and find
human actions, activities, or behaviors in order to know and employ human actions in
various contexts directly or automatically. Mostly, it involves working in pattern recogni-
tion procedures and machine learning to evaluate and explore the information arranged
from sensors or other sources. The arranged information will be given in the shape of
motion, orientation, acceleration, audio, video, or physiological signals [4,5]. The practical
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applications of HAR are diverse and many and can be discovered in various fields, for
instance, healthcare, sports and fitness, human–computer interactions, surveillance and
security, and ambient-assisted living. Overall, HAR plays a valuable and essential role in
considering human performance, qualifying context-conscious systems, and smoothing
relevance that needs automated interpretation and reaction to social activities [6,7].

A decision-making technique [8] or procedure signifies a logical approach or tech-
nique used to find data, address decisions, and talk about decisions in many complicated
situations. In practical applications, managing the symmetry or asymmetry that exists
among several sources of information is the main objective of decision-making procedures.
There are various decision-making procedures, each with its benefits and advantages, for
instance, rational decision making; strength, weakness, opportunities, and threats (SWOT)
analysis; cost-benefit analysis; the decision matrix; Pareto analysis; and the Delphi tech-
nique [9,10]. These techniques have been utilized by different scholars in various fields
in the presence of classical information. But, during the decision-making procedure, we
lose a lot of information because of classical information due to limited opinions, such as
zero or one. To improve the range of classical set theory, the major concept of fuzzy set
(FS) was addressed by Zadeh [11]. The numerical form of the truth grade in FS is given
by ΓI : X → [0, 1] , where ΓI (ν) ∈ [0, 1], ν ∈ X . FS theory and classical set theory have the
same structure but different features because the range of FS theory is wider compared to
crisp set theory. FS theory also has many limitations and restrictions because, in some cases,
the experts are faced with two types of information, such as truth and falsity, supporting
and opposing, and membership and non-membership. For FS theory, it is not possible to
evaluate such a kind of problem; therefore, Atanassov [12] explained the novel concept
of intuitionistic FS (IFS) that allows for the show of uncertainty and hesitation in various
decision-making techniques. Derived by Atanassov in 1983, IFS aims to depict not only
the truth grade but also the falsity of information and neutrality or hesitation between
these two data types. In traditional FS, an element can represent the grade of truth between
unit intervals. In IFS, however, an element is explained by two types of data called the
truth grade “ΓI (ν)” and the falsity grade “ΛI (ν)”, with 0 ≤ ΓI (ν) + ΛI (ν) ≤ 1. In many
research articles, FS theory has been employed in the form of combination, modification,
and utilization, such as a tribute to Zadeh’s extension principle [13], an extension principle
of Zadeh’s and fuzzy numbers [14], fuzzy superior Mandelbrot sets [15], continuous fuzzy
differential equations [16], Cauchy fuzzy differential equations [17], numerical solutions
of fuzzy differential and integral equations [18,19], the analysis of the stability of fuzzy
differential equations [20], and the analysis and classification of the rise and fall of fuzzy
fidelity in Europe [21].

IFS has a lot of applications in the shape of modification, utilization, and combina-
tion with other information; for instance, Atanassov [22] invented the interval-valued
IFS (IVIFS), Ejegwa and Agbetayo [23] exposed the similarity and distance measures,
Tripathi et al. [24] evaluated the divergence measures, Sharma et al. [25] presented the
analytical hierarchical process, Rani and Garg [26] derived the trigonometric operators,
Hezam et al. [27] examined the MAIRCA techniques, Gong and Wang [28] evaluated dif-
ferent types of inequalities, Jana and Pal [29] presented the decision-making problems,
Garg et al. [30] derived the Schweizer–Sklar prioritized operators, Mahmood et al. [31]
exposed the power aggregation operators, and finally, Shi et al. [32] examined the Aczel–
Alsina power operators.

A lot of scholars have been working on fuzzy set theory, and many of them have
utilized different types of operators, techniques, and measures based on fuzzy set theory
and its extensions. Additionally, the Choquet integral (CI) operator is one of them, and
it was invented by Choquet [33] in 1954. Choquet integral operators have been utilized
in fuzzy set theory; for instance, Meyer and Roubens [34] derived Choquet operators
based on fuzzy numbers. Moreover, Tan and Chen [35] evaluated CI operators for IFS
theory, where the weighted CI operators for IFS theory were exposed by Xu [36]. All
these techniques were derived based on algebraic norms. Here, we also talk about the
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modified version of algebraic norms, such as the Aczel–Alsina norms, which were derived
by Aczel and Alsina [37] in 1982. Further, the Aczel–Alsina norms have received a lot
of attention from different scholars; for example, Senapati et al. [38] evaluated the Aczel–
Alsina averaging operators for IFS theory. Senapati et al. [39] also examined the Aczel–
Alsina geometric operators for IFS theory. Ahmad et al. [40] derived the Aczel–Alsina
operators for intuitionistic fuzzy rough set theory. Furthermore, Xu [41] exposed the
averaging operators for AIFSs, Xu and Yager [42] derived the geometric operators for
AIFSs, and Wang et al. [43] presented the aggregation operators for AIVIFSs. Wang and
Liu [44] exposed the geometric operators for AIVIFSs. Garg et al. [45] derived the CI
operators for AIVIFSs, Meng et al. [46] proposed the geometric CI operators for AIVIFSs,
Senapati et al. [47] evaluated the Aczel–Alsina operators for AIVIFSs, and Senapati et al. [48]
exposed the Aczel–Alsina geometric operators for AIVIFSs. From the brief analysis above,
we noticed that every operator has its own merits, but they have some limitations as well.
For instance, the existing operational laws are restricted in nature, and also consider the
feature that all the interacting features are independent of each other.

In this paper, we utilize the concept of AIVIFS to model the uncertainties of information
and the generalized operational laws based on Aczel–Alsina to determine the membership
and nonmembership degrees of AIVIFNs. Also, we state the generalized aggregation
operators based on these laws and hence state an MADM algorithm to solve the decision-
making problems. The applicability of the proposed algorithm is demonstrated through a
numerical example.

The proposed operational laws based on Aczel–Alsina norms are considered as the
generalization of several existing laws. In the current study, we considered the AIVIFNs
to represent the uncertainties in the data, while the Choquet integral-based Aczel–Alsina
norms were used to define their basic operational laws. The Aczel–Alsina explored the
theory of triangular norms in the form of Aczel–Alsina triangular norms. Aczel–Alsina
triangular norms are robust tools utilized to overcome the loss of information during the
aggregation of information. The major advantage of defining these operational laws is
that it generalizes the algebraic and Einstein t-norm operations. Another advantage of
the proposed method is the utilization of the Choquet integral (CI) to consider an inter-
relationship between the attribute information. This CI considers the fuzzy measures
during the measurement using ordered position. Finally, based on these proposed laws, we
summarized the various generalized aggregation operators, namely, weighted averaging
or geometric. The theory of Aczel–Alsina Choquet integral operators has many benefits
compared to existing operators because the averaging operators, geometric operators,
Choquet integral operators, averaging Aczel–Alsina operators, and geometric Aczel–Alsina
operators are the special cases of the proposed theory. Also, the proposed Aczel–Alsina
averaging and geometric aggregation operators based on FSs, IFSs, interval-valued FSs,
and interval-valued IFSs are the special cases of the derived theory. In addition to this, the
derived Aczel–Alsina Choquet integral-based aggregation operators under the existing
theories are also considered as a special case.

In a nutshell, the main objectives of this work are listed below:

(1) To define some weighted operators using Choquet integral Aczel–Alsina norm operations;
(2) To investigate the basic fundamental features of the proposed operators;
(3) To develop an MADM algorithm based on the stated operators to address the decision-

making problems;
(4) To illustrate the stated algorithm, using a numerical example related to HAR problems

to demonstrate its supremacy and practicality;
(5) To conduct a comparison between the proposed and prevailing techniques for the

legitimacy of the invented methodologies.

The rest of the manuscript is summarized as follows: In Section 2, we recall the idea
of fuzzy measure (FM), the Choquet integral (CI), Aczel–Alsina norms and their special
cases, AIVIFS, and their operational laws. In Section 3, we derive the AIVIFC-IAAA,
AIVIFC-IAAOA, AIVIFC-IAAHA, AIVIFC-IAAG, AIVIFC-IAAOG, and AIVIFC-IAAHG
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operators. Many essential characteristics of the presented techniques are shown, and we
also identify their properties with some results. In Section 4, we take advantage of the
above techniques to produce a technique to evaluate the HAR-MADM complications.
In Section 5, we derive a functional model for HAR problems to justify the evaluated
approaches and to demonstrate their supremacy and practicality. In Section 6, we conduct
a comparison between the proposed and prevailing techniques for the legitimacy of the
invented methodologies. Some final and concluding remarks are stated in Section 7.

2. Preliminaries

In this section, we revise the FM, CI, Aczel–Alsina norms, AIVIFS, and their oper-
ational laws, as this information is very valuable and beneficial for us to evaluate the
proposed techniques. Furthermore, all the symbols and their meanings that are used in this
manuscript are stated in Table 1.

Table 1. Meaning of different symbols used in this manuscript.

Symbol Meanings Symbol Meanings

n Function z Ordered of φ,
where φ = 1, 2, . . . z

X Universal sets $ ≥ 1 Scaler
P(X ) Power sets ζ ≥ 1 Scaler
Cn(R) Choquet integral

Definition 1. [33] A function n : P(X )→ [0, 1] is called a fuzzy measure if n is justified by the
following conditions:

n(φ) = 0, n(X ) = 1, (Boundary Condition) (1)

If Ξρ,B ∈ P(X ) and Ξρ ⊆ B, then n(Ξρ) ≤ n(B), (Monotonicity) (2)

where � is a universal set, P(X ) is a power set, and φ represents an empty set.

Definition 2. [33] Let � be a fuzzy measure, and for any H, J ∈ P(X ), we can define

�(H ∪ J) = �(H) +�(J) + λ�(H ∩ J)

where λ represents the interaction between the parameters. The basis features of � are additive,
subadditive, supermodular, and submodular.

Definition 3. [33] A positive real-valued function R on fixed set X with a fuzzy measure �. The
discrete CI of R based on � is demonstrated by:

C�(R) =
z

∑
ϕ=1

R(ϕ)

(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))
(3)

Notice that the (.)is stated the permutation on X , such as R(1) ≤ R(2) ≤ · · · ≤ R(z), where
Ξ$(ϕ) = {ϕ = 1, 2, . . . , z}, Ξ$(z+1) = φ.

Definition 4. [31] A mapping TTN : [0, 1]× [0, 1]→ [0, 1] is called a t-norm if:

1. TTN(Ξ, Θ) = TTN(Θ, Ξ);
2. TTN

(
Ξ, TTN

(
Ξ′, Θ

))
= TTN

(
TTN

(
Ξ, Ξ′

)
, Θ
)
;

3. If Ξ ≤ Ξ′and Θ ≤ Θ′, then TTN(Ξ, Θ) ≤ TTN
(
Ξ′, Θ′

)
;

4. TTN(Θ.1) = Θ.

Definition 5. [31] A mapping STCN : [0, 1]× [0, 1]→ [0, 1] is called a t-conorm if:
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1. STCN(Ξ, Θ) = STCN(Θ, Ξ);
2. STCN

(
Ξ, STCN

(
Ξ′, Θ

))
= STCN

(
STCN

(
Ξ, Ξ′

)
, Θ
)
;

3. If Ξ ≤ Ξ′ and Θ ≤ Θ′, then STCN(Ξ, Θ) ≤ STCN
(
Ξ′, Θ′

)
;

4. STCN(Θ.1) = Θ.

Definition 6. [37] The mathematical and theoretical shape of an Aczel–Alsina t-norm and t-conorm
is stated by:

T $TN(Ξ, Θ) =


T D

TN(Ξ, Θ) $ = 0
min(Ξ, Θ) $ = ∞

e−((−logΞ)$+(−logΘ)$)
1
$ otherwise

(4)

S$TCN(Ξ, Θ) =


SD

TCN(Ξ, Θ) $ = 0
max(Ξ, Θ) $ = ∞

1− e−((−log (1−Ξ))$+(−log (1−Θ))$)
1
$ otherwise

(5)

where v > 1, T D
TN and SD

TCN are represented by the discrete t-norm and t-conorm, such as

T D
TN(Ξ, Θ) =


Ξ Θ = 1
Θ Ξ = 1
0 otherwise

(6)

SD
TCN(Ξ, Θ) =


Ξ Θ = 0
Θ Ξ = 0
1 otherwise

(7)

Notice that Ξ, Θ ∈ [0, 1].

Definition 7. [22] The expression of the AIVIFS I i f is constructed by:

I i f =
{([

ΓI
−
(ν), ΓI

+
(ν)
]
,
[
ΛI

−
(ν), ΛI

+
(ν)
])

: ν ∈ X
}

(8)

The information in the pair
([

ΓI
−
(ν), ΓI

+
(ν)
]
,
[
ΛI

−
(ν), ΛI

+
(ν)
])

represents the member-

ship and nonmembership degrees with a suitable condition: 0 ≤ ΓI
+
(ν) + ΛI

+
(ν) ≤ 1. Moreover,

we construct the neutral/refusal information, such as
ηI (ν) =

[
ηI
−
(ν), ηI

+
(ν)
]
=
[
1−

(
ΓI

+
(ν) + ΛI

+
(ν)
)

, 1−
(

ΓI
−
(ν) + ΛI

−
(ν)
)]

.
Finally, the AIVIFV is constructed in the form of

I i f
ϕ =

([
ΓI
−

ϕ , ΓI
+

ϕ

]
,
[
ΛI

−
ϕ , ΛI

+

ϕ

])
, ϕ = 1, 2, . . . , z

Definition 8. [22] For any two AIVIFVs, the basic operational laws are stated as

I i f
1 ⊕ I

i f
2 =

([
ΓI
−

1 + ΓI
−

2 − ΓI
−

1 ΓI
−

2 , ΓI
+

1 + ΓI
+

2 − ΓI
+

1 ΓI
+

2

]
,
[
ΛI

−
1 ΛI

−
2 , ΛI

+

1 ΛI
+

2

])
(9)

I i f
1 ⊗ I

i f
2 =

([
ΓI
−

1 ΓI
−

2 , ΓI
+

1 ΓI
+

2

]
,
[
ΛI

−
1 + ΛI

−
2 −ΛI

−
1 ΛI

−
2 , ΛI

+

1 + ΛI
+

2 −ΛI
+

1 ΛI
+

2

])
(10)

ζI i f
ϕ =

([
1−

(
1− ΓI

−
ϕ

)ζ
, 1−

(
1− ΓI

+

ϕ

)ζ
]

,
[(

ΛI
−

ϕ

)ζ
,
(

ΛI
+

ϕ

)ζ
])

(11)

(
I i f

ϕ

)ζ
=

([(
ΓI
−

ϕ

)ζ
,
(

ΓI
+

ϕ

)ζ
]

,
[

1−
(

1−ΛI
−

ϕ

)ζ
, 1−

(
1−ΛI

+

ϕ

)ζ
])

(12)
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Using Equations (9)–(12) and using the idea in Equation (3), Garg et al. [45] exposed the
following theory:

AIVIFCI
(
I i f

1 , I i f
2 , . . . , I i f

z

)
= I i f

1

(
�
(

Ξρ(1)
)
−�

(
Ξρ(2)

))
⊕ I i f

2

(
�
(

Ξρ(2)
)
−�

(
Ξρ(3)

))
⊕ . . .

⊕I i f
z

(
�
(

Ξρ(z)
)
−�

(
Ξρ(z+1)

))
=

z
∑

ϕ=1
I i f

ϕ

(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))

=




1−

z
∏

ϕ=1

(
1− ΓI

−
ϕ

)(�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))
,

1−
z

∏
ϕ=1

(
1− ΓI

+

ϕ

)(�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))

,

[
z

∏
ϕ=1

(
ΛI

−
ϕ

)(�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))
,

z
∏

ϕ=1

(
ΛI

+

ϕ

)(�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))
]



(13)

Our aim is to construct the CI in consideration of the Aczel–Alsina t-norm and t-conorm
instead of the algebraic norms; therefore, for this, we used the proposed work of Senapati et al. [47]
for the AIVIFVs. The operational laws are defined as the following:

Definition 9. For AIVIFVs I i f
1 =

([
ΓI
−

1 , ΓI
+

1

]
,
[
ΛI

−
1 , ΛI

+

1

])
and

I i f
2 =

([
ΓI
−

2 , ΓI
+

2

]
,
[
ΛI

−
2 , ΛI

+

2

])
andζ > 0 be a real number, then

I i f
1 ⊕ I

i f
2 =



1− e−((−log (1−ΓI
−

1 ))
$
+(−log (1−ΓI

−
2 ))

$
)

1
$

,

1− e−((−log (1−ΓI
+

1 ))
$
+(−log (1−ΓI

+
2 ))

$
)

1
$

,

[
e−((−logΛI

−
1 )

$
+(−logΛI

−
2 )

$
)

1
$

, e−((−logΛI
+

1 )
$
+(−logΛI

+
2 )

$
)

1
$

]
 (14)

I i f
1 ⊗ I

i f
2 =



e−((−log (ΓI
−

1 ))
$
+(−log (ΓI

−
2 ))

$
)

1
$

,

e−((−log (ΓI
+

1 ))
$
+(−log (ΓI

+
2 ))

$
)

1
$

,

e−((−log (1−ΛI
−

1 ))
$
+(−log (1−ΛI

−
2 ))

$
)

1
$

,

e−((−log (1−ΛI
+

1 ))
$
+(−log (1−ΛI

+
2 ))

$
)

1
$




(15)

ζI i f
1 =


[

1− e−(ζ(−log (1−ΓI
−

1 ))
$
)

1
$

, 1− e−(ζ(−log (1−ΓI
+

1 ))
$
)

1
$

]
,[

e−(ζ(−logΛI
−

1 )
$
)

1
$

, e−(ζ(−logΛI
+

1 )
$
)

1
$

]
 (16)

(
I i f

ϕ

)ζ
=


[

e−(ζ(−log (ΓI
−

1 ))
$
)

1
$

, e−(ζ(−log (ΓI
+

1 ))
$
)

1
$

]
,[

1− e−(ζ(−log (1−ΛI
−

1 ))
$
)

1
$

, 1− e−(ζ(−log (1−ΛI
+

1 ))
$
)

1
$

]
 (17)

Definition 10. For any AIVIFV I i f
ϕ =

([
ΓI
−

ϕ , ΓI
+

ϕ

]
,
[
ΛI

−
ϕ , ΛI

+

ϕ

])
, the score and accuracy

functions are stated as:
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iSV
(
I i f

ϕ

)
=

1
2

(
ΓI
−

ϕ + ΓI
+

ϕ −ΛI
−

ϕ −ΛI
+

ϕ

)
∈ [−1, 1] (18)

iAV
(
I i f

ϕ

)
=

1
2

(
ΓI
−

ϕ + ΓI
+

ϕ + ΛI
−

ϕ + ΛI
+

ϕ

)
∈ [0, 1] (19)

Definition 11. To compare the two different AIVIFNs I i f
1 and I i f

2 , an order comparison between
them is stated below:

(a) If iSV
(
I i f

1

)
> iSV

(
I i f

2

)
, then I i f

1 > I i f
2 ,

(b) If iSV
(
I i f

1

)
= iSV

(
I i f

2

)
, and iAV

(
I i f

1

)
> iAV

(
I i f

2

)
, then I i f

1 > I i f
2 .

3. Proposed C-IAA Aggregation Operators for AIVIFSs

In this section, we aim to evaluate the theory of AIVIFC-IAAA, AIVIFC-IAAOA,
AIVIFC-IAAHA, AIVIFC-IAAG, AIVIFC-IAAOG, and AIVIFC-IAAHG operators. Many
essential characteristics of the presented techniques are shown, and we also identify their
properties with some results. Throughout this paper, we used the family of AIVIFSs
I i f

ϕ =
([

ΓI
−

ϕ , ΓI
+

ϕ

]
,
[
ΛI

−
ϕ , ΛI

+

ϕ

])
, ϕ = 1, 2, . . . , z.

Definition 12. For the family of AIVIFSs I i f
ϕ , an AIVIFC-IAAA operator is demonstrated by:

AIVIFC− IAAA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
= I i f

1

(
�
(

Ξρ(1)
)
−�

(
Ξρ(2)

))
⊕ I i f

2

(
�
(

Ξρ(2)
)
−�

(
Ξρ(3)

))
⊕ . . .⊕ I i f

z

(
�
(

Ξρ(z)
)
−�

(
Ξρ(z+1)

))
=

z
∑

ϕ=1
I i f

ϕ

(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))
= ⊕z

ϕ=1I
i f
ϕ

(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))
(20)

Theorem 1. For the family of AIVIFSs, the aggregated value by theAIVIFC− IAAAoperator is
also AIVIFV and given as

AIVIFC− IAAA
(
I i f

1 , I i f
2 , . . . , I i f

z

)

=



1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

−
ϕ ))

$
)

1
$

,

1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

+
ϕ ))

$
)

1
$

,

e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

−
ϕ ))

$
)

1
$

,

e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

+
ϕ ))

$
)

1
$




(21)

The proof of Theorem 1 is given in Appendix A.
To demonstrate the functioning of the proposed AIVIFC-IAAA operator, we consider four

AIVIFNs as

I i f
1 = ([0.40, 0.41], [0.30, 0.31]); I i f

2 = ([0.50, 0.51], [0.10, 0.11])

I i f
3 = ([0.59, 0.60], [0.39, 0.40]); I i f

4 = ([0.70, 0.71], [0.20, 0.21])
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To aggregate these numbers, we utilize Equation (21) and obtain the aggregated number as

AIVIFC− IAAA
(
I i f

1 , I i f
2 , I i f

3 , I i f
4

)
= ([0.3386, 0.3463], [0.5035, 0.5156]).

Further, the proposed operator AIVIFC − IAAA satisfies certain properties, which are
listed below.

Property 1. When I i f
ϕ = I i f =

([
ΓI
−

, ΓI
+
]
,
[
ΛI

−
, ΛI

+
])

, ϕ = 1, 2, . . . , z, thus

AIVIFC− IAAA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
= I i f (22)

The proof of Property 1 is given in Appendix B.

Property 2. When I i f
ϕ ≤ I∗

i f
ϕ , ϕ = 1, 2, . . . , z, then

AIVIFC− IAAA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
≤ AIVIFC− IAAA

(
I∗ i f

1 , I∗ i f
2 , . . . , I∗ i f

z

)
(23)

The proof of Property 2 is given in Appendix C.

Property 3. When I−ϕ =

([
min

ϕ
ΓI
−

ϕ , min
ϕ

ΓI
+

ϕ

]
,
[

max
ϕ

ΛI
−

ϕ , max
ϕ

ΛI
+

ϕ

])
and I+ϕ =

([
max

ϕ
ΓI
−

ϕ , max
ϕ

ΓI
+

ϕ

]
,
[

min
ϕ

ΛI
−

ϕ , min
ϕ

ΛI
+

ϕ

])
, ϕ = 1, 2, . . . , z, thus

I−ϕ ≤ AIVIFC− IAAA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
≤ I+ϕ (24)

The proof of Property 3 is given in Appendix D.

Definition 13. An AIVIFC-IAAOA operator is demonstrated by:

IVIFC− IAAOA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
= I i f

o(1)

(
�
(

Ξρ(1)
)
−�

(
Ξρ(2)

))
⊕ I i f

o(2)

(
�
(

Ξρ(2)
)
−�

(
Ξρ(3)

))
⊕ . . .

⊕I i f
o(z)

(
�
(

Ξρ(z)
)
−�

(
Ξρ(z+1)

))
=

z
∑

ϕ=1
I i f

o(ϕ)

(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))
= ⊕z

ϕ=1I
i f
o(ϕ)

(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))
(25)

With a dominant conditiono(ϕ) ≤ o(ϕ− 1) and with the data in Equation (18), we find
their orders.

Theorem 2. For the family of AIVIFSs, the aggregated value by the AIVIFC− IAAOA operator
is also AIVIFV and given as

AIVIFC− IAAOA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
=



1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

−
o(ϕ)

))
$
)

1
$

,

1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

+

o(ϕ)
))
$
)

1
$

,

e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

−
o(ϕ)))

$
)

1
$

,

e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

+

o(ϕ)))
$
)

1
$




(26)
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Proof. Similar to the proof of Theorem 1. �

Property 4. When I i f
ϕ = I i f =

([
ΓI
−

, ΓI
+
]
,
[
ΛI

−
, ΛI

+
])

, ϕ = 1, 2, . . . , z, thus

AIVIFC− IAAOA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
= I i f (27)

Proof. Similar to the proof of Property 1.�

Property 5. When I i f
ϕ ≤ I∗

i f
ϕ , ϕ = 1, 2, . . . , z, then

AIVIFC− IAAOA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
≤ AIVIFC− IAAOA

(
I∗ i f

1 , I∗ i f
2 , . . . , I∗ i f

z

)
(28)

Proof. Similar to the proof of Property 2.�

Property 6. When I−ϕ =

([
min

ϕ
ΓI
−

ϕ , min
ϕ

ΓI
+

ϕ

]
,
[

max
ϕ

ΛI
−

ϕ , max
ϕ

ΛI
+

ϕ

])
and I+ϕ =

([
max

ϕ
ΓI
−

ϕ , max
ϕ

ΓI
+

ϕ

]
,
[

min
ϕ

ΛI
−

ϕ , min
ϕ

ΛI
+

ϕ

])
, ϕ = 1, 2, . . . , z, thus

I−ϕ ≤ AIVIFC− IAAOA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
≤ I+ϕ (29)

Proof. Similar to the proof of Property 3. �

Definition 14. An AIVIFC-IAAHA operator is demonstrated by:

AIVIFC− IAAHA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
= I∗o(1)

(
�
(

Ξρ(1)
)
−�

(
Ξρ(2)

))
⊕ I∗o(2)

(
�
(

Ξρ(2)
)
−�

(
Ξρ(3)

))
⊕ . . .

⊕I∗o(z)
(
�
(

Ξρ(z)
)
−�

(
Ξρ(z+1)

))
=

z
∑

ϕ=1
I∗o(ϕ)

(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))
= ⊕z

ϕ=1I∗o(ϕ)

(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))
(30)

With a dominant condition o(ϕ) ≤ o(ϕ− 1) and with the data in Equation (18), we find their
order with I∗o(ϕ) = zwϕI i f

(ϕ)
, ϕ = 1, 2, . . . , z, where wϕ represents the weight vector with the rule

∑z
ϕ=1 wϕ = 1.

Theorem 3. For the family of AIVIFSs, the aggregated value by theAIVIFC− IAAHAoperator
is also AIVIFV and given as

AIVIFC− IAAHA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
=



1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

−∗
o(ϕ)

))
$
)

1
$

,

1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

+∗
o(ϕ)

))
$
)

1
$

,

e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

−∗
o(ϕ) ))

$
)

1
$

,

e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

+∗
o(ϕ) ))

$
)

1
$




(31)

Property 7. When I i f
ϕ = I i f =

([
ΓI
−

, ΓI
+
]
,
[
ΛI

−
, ΛI

+
])

, ϕ = 1, 2, . . . , z, thus
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AIVIFC− IAAHA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
= I i f (32)

Property 8. When I i f
ϕ ≤ I∗

i f
ϕ , ϕ = 1, 2, . . . , z, then

AIVIFC− IAAHA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
≤ AIVIFC− IAAHA

(
I∗ i f

1 , I∗ i f
2 , . . . , I∗ i f

z

)
(33)

Property 9. When I−ϕ =

([
min

ϕ
ΓI
−

ϕ , min
ϕ

ΓI
+

ϕ

]
,
[

max
ϕ

ΛI
−

ϕ , max
ϕ

ΛI
+

ϕ

])
and I+ϕ =

([
max

ϕ
ΓI
−

ϕ , max
ϕ

ΓI
+

ϕ

]
,
[

max
ϕ

ΓI
−

ϕ , max
ϕ

ΓI
+

ϕ

])
, ϕ = 1, 2, . . . , z, thus

I−ϕ ≤ AIVIFC− IAAHA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
≤ I+ϕ (34)

Definition 15. An AIVIFC-IAAG operator is demonstrated by:

AIVIFC− IAAG
(
I i f

1 , I i f
2 , . . . , I i f

z

)
=
(
I i f

1

)(�(Ξρ(1))−�(Ξρ(2))) ⊗
(
I i f

2

)(�(Ξρ(2))−�(Ξρ(3))) ⊗ . . .⊗
(
I i f

z

)(�(Ξρ(z))−�(Ξρ(z+1)))

=
z

∏
ϕ=1

(
I i f

ϕ

)(�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))

= ⊗z
ϕ=1

(
I i f

ϕ

)(�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))

(35)

Theorem 4. For the family of AIVIFSs, the aggregated value by the AIVIFC− IAAG operator is
also AIVIFV and given as

AIVIFC− IAAG
(
I i f

1 , I i f
2 , . . . , I i f

z

)
=



e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΓI

−
ϕ ))

$
)

1
$

,

e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΓI

+
ϕ ))

$
)

1
$

,

1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΛI

−
ϕ ))

$
)

1
$

,

1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΛI

+
ϕ ))

$
)

1
$




(36)

The proof of Theorem 4 is given in Appendix E.
To demonstrate the functioning of the proposed AIVIFC-IAAG operator, we consider four AIVIFNs:

I i f
1 = ([0.40, 0.41], [0.30, 0.31]) ; I i f

2 = ([0.50, 0.51], [0.10, 0.11])

I i f
3 = ([0.59, 0.60], [0.39, 0.40]) ; I i f

4 = ([0.70, 0.71], [0.20, 0.21])

To aggregate these numbers, we utilize Equation (36) and obtain the aggregated number

AIVIFC− IAAG
(
I i f

1 , I i f
2 , I i f

3 , I i f
4

)
= ([0.7763, 0.7823], [0.1326, 0.1326]).

Further, the proposed operator AIVIFC − IAAG satisfies certain properties, which are
listed below.

Property 10. When I i f
ϕ = I i f =

([
ΓI
−

, ΓI
+
]
,
[
ΛI

−
, ΛI

+
])

, ϕ = 1, 2, . . . , z, thus
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AIVIFC− IAAG
(
I i f

1 , I i f
2 , . . . , I i f

z

)
= I i f (37)

Property 11. When I i f
ϕ ≤ I∗

i f
ϕ , ϕ = 1, 2, . . . , z, then

AIVIFC− IAAG
(
I i f

1 , I i f
2 , . . . , I i f

z

)
≤ AIVIFC− IAAG

(
I∗ i f

1 , I∗ i f
2 , . . . , I∗ i f

z

)
(38)

Property 12. When I−ϕ =

([
min

ϕ
ΓI
−

ϕ , min
ϕ

ΓI
+

ϕ

]
,
[

max
ϕ

ΛI
−

ϕ , max
ϕ

ΛI
+

ϕ

])
and I+ϕ =

([
max

ϕ
ΓI
−

ϕ , max
ϕ

ΓI
+

ϕ

]
,
[

min
ϕ

ΛI
−

ϕ , min
ϕ

ΛI
+

ϕ

])
, ϕ = 1, 2, . . . , z, thus

I−ϕ ≤ AIVIFC− IAAG
(
I i f

1 , I i f
2 , . . . , I i f

z

)
≤ I+ϕ (39)

Definition 16. An AIVIFC-IAAOA operator is demonstrated by:

AIVIFC− IAAOG
(
I i f

1 , I i f
2 , . . . , I i f

z

)
=
(
I i f

o(1)

)(�(Ξρ(1))−�(Ξρ(2))) ⊗
(
I i f

o(2)

)(�(Ξρ(2))−�(Ξρ(3))) ⊗ . . .⊗
(
I i f

o(z)

)(�(Ξρ(z))−�(Ξρ(z+1)))

=
z

∏
ϕ=1

(
I i f

o(ϕ)

)(�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))
= ⊗z

ϕ=1

(
I i f

o(ϕ)

)(�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))
(40)

With a dominant condition o(ϕ) ≤ o(ϕ− 1) and with the data in Equation (18), we find
their orders.

Theorem 5. For the family of AIVIFSs, the aggregated value by the AIVIFC− IAAOG operator
is also AIVIFV and given as

AIVIFC− IAAOG
(
I i f

1 , I i f
2 , . . . , I i f

z

)
=



e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΓI

−
o(ϕ)

))
$
)

1
$

,

e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΓI

+

o(ϕ)
))
$
)

1
$

,

1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΛI

−
o(ϕ)))

$
)

1
$

,

1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΛI

+

o(ϕ)))
$
)

1
$




(41)

Property 13. When I i f
ϕ = I i f =

([
ΓI
−

, ΓI
+
]
,
[
ΛI

−
, ΛI

+
])

, ϕ = 1, 2, . . . , z, thus

AIVIFC− IAAOG
(
I i f

1 , I i f
2 , . . . , I i f

z

)
= I i f (42)

Property 14. When I i f
ϕ ≤ I∗

i f
ϕ , ϕ = 1, 2, . . . , z, then

AIVIFC− IAAOG
(
I i f

1 , I i f
2 , . . . , I i f

z

)
≤ AIVIFC− IAAOG

(
I∗ i f

1 , I∗ i f
2 , . . . , I∗ i f

z

)
(43)
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Property 15. When I−ϕ =

([
min

ϕ
ΓI
−

ϕ , min
ϕ

ΓI
+

ϕ

]
,
[

max
ϕ

ΛI
−

ϕ , max
ϕ

ΛI
+

ϕ

])
and I+ϕ =

([
max

ϕ
ΓI
−

ϕ , max
ϕ

ΓI
+

ϕ

]
,
[

min
ϕ

ΛI
−

ϕ , min
ϕ

ΛI
+

ϕ

])
, ϕ = 1, 2, . . . , z, thus

I−ϕ ≤ AIVIFC− IAAOG
(
I i f

1 , I i f
2 , . . . , I i f

z

)
≤ I+ϕ (44)

Definition 17. An AIVIFC-IAAHG operator is demonstrated by:

AIVIFC− IAAHG
(
I i f

1 , I i f
2 , . . . , I i f

z

)
=
(
I∗o(1)

)(�(Ξρ(1))−�(Ξρ(2))) ⊗
(
I∗o(2)

)(�(Ξρ(2))−�(Ξρ(3))) ⊗ . . .⊗
(
I∗o(z)

)(�(Ξρ(z))−�(Ξρ(z+1)))

=
z

∏
ϕ=1

(
I∗o(ϕ)

)(�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))
= ⊗z

ϕ=1

(
I∗o(ϕ)

)(�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))
(45)

With a dominant condition o(ϕ) ≤ o(ϕ− 1) and with the data in Equation (18), we find their
order with I∗o(ϕ) = zwϕI i f

(ϕ)
, ϕ = 1, 2, . . . , z, where wϕ represents the weight vector with the rule

z
∑

ϕ=1
wϕ = 1.

Theorem 6. For the family of AIVIFSs, the aggregated value by the AIVIFC− IAAHG operator
is also AIVIFV and given as

AIVIFC− IAAHG
(
I i f

1 , I i f
2 , . . . , I i f

z

)
=



e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΓI

−∗
o(ϕ)

))
$
)

1
$

,

e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΓI

+∗
o(ϕ)

))
$
)

1
$

,

1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΛI

−∗
o(ϕ) ))

$
)

1
$

,

1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΛI

+∗
o(ϕ) ))

$
)

1
$




(46)

Property 16. When I i f
ϕ = I i f =

([
ΓI
−

, ΓI
+
]
,
[
ΛI

−
, ΛI

+
])

, ϕ = 1, 2, . . . , z, thus

AIVIFC− IAAHG
(
I i f

1 , I i f
2 , . . . , I i f

z

)
= I i f (47)

Property 17. When I i f
ϕ ≤ I∗

i f
ϕ , ϕ = 1, 2, . . . , z, then

AIVIFC− IAAHG
(
I i f

1 , I i f
2 , . . . , I i f

z

)
≤ AIVIFC− IAAHG

(
I∗ i f

1 , I∗ i f
2 , . . . , I∗ i f

z

)
(48)

Property 18. When I−ϕ =

([
min

ϕ
ΓI
−

ϕ , min
ϕ

ΓI
+

ϕ

]
,
[

max
ϕ

ΛI
−

ϕ , max
ϕ

ΛI
+

ϕ

])
and I+ϕ =

([
max

ϕ
ΓI
−

ϕ , max
ϕ

ΓI
+

ϕ

]
,
[

min
ϕ

ΛI
−

ϕ , min
ϕ

ΛI
+

ϕ

])
, ϕ = 1, 2, . . . , z, thus

I−ϕ ≤ AIVIFC− IAAHG
(
I i f

1 , I i f
2 , . . . , I i f

z

)
≤ I+ϕ (49)
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4. Proposed MADM Technique

The multi-attribute decision-making (MADM) technique is a procedure or technique,
which is especially used, for evaluating the optimal decision in the presence of multiple
criteria or attributes. It is used in situations when an expert or decision-maker needs to
find the best one among a finite number of alternatives or possibilities.

In MADM, each alternative contains many criteria or attributes, and these attributes
can be qualitative or quantitative, which are very important for the procedure of the
decision-making technique. Every example of attributes or criteria could contain cost,
quality, time, environmental impact, and many others, whereas every MADM procedure
contains the following major themes, such as the identification of criteria, the weighting of
criteria, the evaluation of alternatives, the aggregation of sources, and finally, the selection
of the best decision. Therefore, to evaluate some real-life problems, first, we need to develop
the procedure of the MADM technique. For this, we have a collection of alternatives, such
as I i f

1 , I i f
2 , . . . , I i f

z , where each alternative covers the finite family of attributes or crite-
ria, such as I cr

1 , I cr
2 , . . . , I cr

y with wϕ, where wϕ represents the weight vector with the rule
∑z

ϕ=1 wϕ = 1. Further, we aim to assign AIVIFN to each attribute in every alternative, where

the information in the pair
([

ΓI
−
(ν), ΓI

+
(ν)
]
,
[
ΛI

−
(ν), ΛI

+
(ν)
])

represents the member-

ship and non-membership degrees with a suitable condition: 0 ≤ ΓI
+
(ν) + ΛI

+
(ν) ≤ 1.

Moreover, we constructed the neutral/refusal information, such as
ηI (ν) =

[
ηI
−
(ν), ηI

+
(ν)
]
=
[
1−

(
ΓI
−
(ν) + ΛI

−
(ν)
)

, 1−
(

ΓI
+
(ν) + ΛI

+
(ν)
)]

. Finally,

the AIVIFV was constructed in the shape I i f
ϕ =

([
ΓI
−

ϕ , ΓI
+

ϕ

]
,
[
ΛI

−
ϕ , ΛI

+

ϕ

])
, ϕ = 1, 2, . . . , z.

All the information was arranged in the shape of a matrix, and then for evaluating the data
in the matrix, we aimed to construct the procedure of the MADM technique; therefore, we
have the following procedure:

Step 1: First, we arrange the AIVIFSs in the form of the matrix, but during the
collection of information, we will face two types of data, such as benefit and cost types of
information. These attributes show the positive and negative features of each alternative.
For both kinds of data, we have the following rules, for instance:

Rule 1: (Benefit type of data.) We are not required to normalize the arranged data in
the matrix;

Rule 2: (Cost type of data.) We are required to normalize the arranged data in a matrix;
for instance,

N =


([

ΓI
−

ϕ , ΓI
+

ϕ

]
,
[
ΛI

−
ϕ , ΛI

+

ϕ

])
f or B([

ΛI
−

ϕ , ΛI
+

ϕ

]
,
[
ΓI
−

ϕ , ΓI
+

ϕ

])
f or C

where B and C represent the benefit and cost types of data.
Step 2: After normalization (if necessary), we aggregate the arranged information

based on the proposed AIVIFC-IAAA operator and AIVIFC-IAAG operator, such as

AIVIFC− IAAA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
=



1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

−
ϕ ))

$
)

1
$

,

1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

+
ϕ ))

$
)

1
$

,

e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

−
ϕ ))

$
)

1
$

,

e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

+
ϕ ))

$
)

1
$
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AIVIFC− IAAG
(
I i f

1 , I i f
2 , . . . , I i f

z

)
=



e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΓI

−
ϕ ))

$
)

1
$

,

e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΓI

+
ϕ ))

$
)

1
$

,

1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΛI

−
ϕ ))

$
)

1
$

,

1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΛI

+
ϕ ))

$
)

1
$




Step 3: After aggregating the normalized data, we evaluate their score values (if

the score function has failed, then we will use the accuracy function), which are given in
Equations (18) and (19);

Step 4: Finally, we derive the ranking results of each alternative based on their score
or accuracy values and try to examine the optimal or best decision.

After the successful implementation of the MADM technique for evaluating the prob-
lems, we aimed to choose some real-life applications and tried to resolve them with the
help of the proposed four techniques.

5. Numerical Example (Human Activity Recognition)

The HAR technique is used for the identification or classification of human activities
based on the analysis of sensor information. There are many kinds of HAR techniques,
which are used in the field, varying on the concern, problems, and their requirements. The
major theme of this application is to point out the best HAR technique among the five best
HAR techniques, which are represented by a family of five alternatives, whose major and
brief analyses are stated below:

Rule-based Systems “I i f
1 ”: To identify certain actions, rule-based systems employ

predetermined rules or heuristics. These regulations are frequently founded on professional
expertise or industry-specific standards. A rule-based system, for instance, may employ
thresholds on accelerometer measurements to identify movements like walking or running.

Machine Learning-based Approaches “I i f
2 ”: The identification of human behavior

makes extensive use of machine learning techniques. These methods use labeled datasets
for model training to discover patterns and connections between sensor data and actions.
Typical machine learning algorithms include the following:

(1) Supervised learning;
(2) Unsupervised learning;
(3) Deep learning.

Sensor Fusions“I i f
3 ”: To increase the precision of activity detection, sensor fusion

combines data from various sensors. The system may record a more complete descrip-
tion of human actions by combining data from many sensors, including accelerometers,
gyroscopes, and magnetometers.

Hidden Markov Models (HMMs) “I i f
4 ”: HMMs are popular probabilistic models for

recognizing activities. To estimate the most likely sequence of activities given the observed
sensor data, they model the temporal relationships of the activities and employ the Viterbi
algorithm or forward–backward algorithm.

Dynamic Time Warping (DTW) “I i f
5 ”: DTW is a method for aligning two-time series

in a nonlinear warping manner and measuring how similar they are. It is ideal for activity
detection tasks, as it is frequently utilized for contrasting and identifying temporal patterns
in sensor data.

Under the presence of the above five alternatives, we aimed to find the best one based
on their features, which were used as attributes or criteria, such as I cr

1 : data collection,
I cr

2 : preprocessing and data extraction, I cr
3 : classification and evaluations, and I cr

4 : moni-
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toring and facilitating. Then, the steps of the proposed approach, as shown below, were
implemented, to find the best alternative(s).

Step 1: First, we arrange the AIVIFSs in the form of the matrix (see Table 2), but during
the collection of information, we will face two types of data, such as benefit and cost types
information. These attributes show the positive and negative features of each alternative.
For both kinds of data, we have the following rules, for instance:

Rule 1: (Benefit type of data.) We are not required to normalize the arranged data in
the matrix;

Rule 2: (Cost type of data.) We are required to normalize the arranged data in a matrix;
for instance,

N =


([

ΓI
−

ϕ , ΓI
+

ϕ

]
,
[
ΛI

−
ϕ , ΛI

+

ϕ

])
f or B([

ΛI
−

ϕ , ΛI
+

ϕ

]
,
[
ΓI
−

ϕ , ΓI
+

ϕ

])
f or C

where B and C represent the benefit and cost types of data. But we used Rule 1 because we
had positive types of criteria.

Table 2. AIVIF decision matrix.

Icr
1 Icr

2 Icr
3 Icr

4

I i f
1

(
[0.4, 0.41],
[0.3, 0.31]

) (
[0.5, 0.51],
[0.1, 0.11]

) (
[0.59, 0.6],
[0.39, 0.4]

) (
[0.7, 0.71],
[0.2, 0.21]

)
I i f

2

(
[0.4, 0.41],
[0.2, 0.21]

) (
[0.3, 0.31],
[0.1, 0.11]

) (
[0.5, 0.51],
[0.3, 0.31]

) (
[0.1, 0.11],
[0.2, 0.21]

)
I i f

3

(
[0.5, 0.51],
[0.3, 0.31]

) (
[0.4, 0.41],
[0.3, 0.31]

) (
[0.3, 0.31],
[0.2, 0.21]

) (
[0.2, 0.21],
[0.1, 0.11]

)
I i f

4

(
[0.4, 0.41],
[0.2, 0.21]

) (
[0.6, 0.61],
[0.3, 0.31]

) (
[0.5, 0.51],
[0.4, 0.41]

) (
[0.5, 0.51],
[0.2, 0.21]

)
I i f

5

(
[0.1, 0.11],
[0.2, 0.21]

) (
[0.2, 0.21],
[0.2, 0.21]

) (
[0.3, 0.31],
[0.2, 0.21]

) (
[0.6, 0.61],
[0.1, 0.11]

)

Step 2: After normalization (if necessary), we aggregate the arranged information
based on the proposed AIVIFC-IAAA operator and AIVIFC-IAAG operator (see Table 3);

Table 3. AIVIF aggregated decision matrix.

AIVIFC-IAAA AIVIFC-IAAG

I i f
1

(
[0.3386, 0.3463],
[0.5035, 0.5156]

) (
[0.7763, 0.7823],
[0.1326, 0.1326]

)
I i f

2

(
[0.1768, 0.1821],
[0.4827, 0.4948]

) (
[0.4994, 0.5129],
[0.1038, 0.1038]

)
I i f

3

(
[0.1657, 0.1711],
[0.5249, 0.4713]

) (
[0.5748, 0.5842],
[0.1129, 0.1129]

)
I i f

4

(
[0.2692, 0.2758],
[0.552, 0.5617]

) (
[0.7386, 0.745],
[0.142, 0.142]

)
I i f

5

(
[0.2311, 0.2371],
[0.4376, 0.451]

) (
[0.5616, 0.5728],
[0.0781, 0.0781]

)

Step 3: After aggregating the normalized data, we evaluate their score values (if
the score function has failed, then we will use the accuracy function), which are given in
Equations (18) and (19) (see Table 4);
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Table 4. AIVIF score matrix.

AIVIFC-IAAA AIVIFC-IAAG

I i f
1

−0.1671 0.6467

I i f
2

−0.3093 0.4023

I i f
3

−0.3298 0.4666

I i f
4

−0.2844 0.5998

I i f
5

−0.2102 0.4891

Step 4: Finally, we derive the ranking results of each alternative based on their score
or accuracy values and try to examine the optimal or best decision (see Table 5).

Table 5. Ranking matrix.

Methods Ranking Values Best One

AIVIFC-IAAA I i f
1 > I i f

5 > I i f
4 > I i f

2 > I i f
4 I i f

1 (Rule-Based Systems)

AIVIFC-IAAG I i f
1 > I i f

4 > I i f
5 > I i f

3 > I i f
2 I i f

1 (Rule-Based Systems)

According to the analysis in Table 5, we noticed that all the proposed techniques
obtained the same ranking results, where the best decision is I i f

1 (a rule-based system). After
the successful evaluation of the problem of HAR with the help of the MADM technique,
we further aimed to compare the proposed operators with some existing operators to show
the supremacy and validity of the proposed approaches.

6. Comparative Analysis

This section shows the supremacy and validity of the proposed techniques by com-
paring them with some prevailing methods or techniques. Comparative analysis is the
best way to prove the advantages and disadvantages between the proposed and prevailing
methods. Therefore, in this section, we aim to compare the proposed techniques with some
prevailing methods. For this, we have the following ideas: Wang et al. [43] presented the
aggregation operators for AIVIFSs, Wang and Liu [44] exposed the geometric operators for
AIVIFSs, Garg et al. [45] derived the CI operators for AIVIFSs, Meng et al. [46] proposed
the geometric CI operators for AIVIFSs, Senapati et al. [47] evaluated the Aczel–Alsina op-
erators for AIVIFSs, and Senapati et al. [48] exposed the Aczel–Alsina geometric operators
for AIVIFSs. Therefore, to consider the data in Table 2, the comparison is listed in Table 6.

Table 6. Comparative analysis of the derived and existing techniques.

Approaches
Score Values

Ranking
I if

1 I if
2 I if

3 I if
4 I if

5

Wang et al. [43] 0.3452 0.1713 0.145 0.2499 0.0981
I i f

1 > I i f
4 >

I i f
3 > I i f

2 > I i f
5

Wang and Liu [44] 0.2804 0.0936 0.1002 0.2005 0.0239
I i f

1 > I i f
4 >

I i f
3 > I i f

5 > I i f
2

Garg et al. [45] 0.3794 0.119 0.1424 0.1919 0.1646
I i f

1 > I i f
4 >

I i f
5 > I i f

3 > I i f
2
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Table 6. Cont.

Approaches
Score Values

Ranking
I if

1 I if
2 I if

3 I if
4 I if

5

Meng et al. [46] 0.3212 0.0264 0.0921 0.1466 0.0691
I i f

1 > I i f
4 >

I i f
3 > I i f

5 > I i f
2

Senapati et al. [47] −0.1817 −0.2772 −0.3138 −0.2818 −0.3275
I i f

1 > I i f
2 >

I i f
4 > I i f

3 > I i f
5

Senapati et al. [48] 0.6177 0.4557 0.4933 0.5798 0.4107
I i f

1 > I i f
4 >

I i f
3 > I i f

2 > I i f
5

Proposed
AIFC-IAAA −0.164 −0.3059 −0.2923 −0.3256 −0.2973

I i f
1 > I i f

3 >

I i f
5 > I i f

2 > I i f
4

Proposed
AIFC-IAAG 0.6424 0.3955 0.4728 0.5523 0.4465

I i f
1 > I i f

4 >

I i f
3 > I i f

5 > I i f
2

According to the analysis in Table 6, we noticed that all the proposed techniques and
some existing techniques obtained the same ranking results, where the best decision is
I i f

1 (a rule-based system). From this table, we observe that Wang et al. [43] presented
the aggregation operators for AIVIFSs, which can easily evaluate the data in Table 2; the
ranking result is stated in the shape I i f

1 > I i f
4 > I i f

3 > I i f
2 > I i f

5 , hence the best decision is

I i f
1 . On the other hand, Wang and Liu [44] exposed the geometric operators for AIVIFSs,

which can easily evaluate the data in Table 2; the ranking result is stated in the shape:
I i f

1 > I i f
4 > I i f

3 > I i f
2 > I i f

5 , hence the best decision is I i f
1 . Garg et al. [45] derived

the CI operators for AIVIFSs, which can easily evaluate the data in Table 2; the ranking
result is stated in the shape I i f

1 > I i f
4 > I i f

3 > I i f
2 > I i f

5 , hence the best decision is I i f
1 .

Meng et al. [46] proposed the geometric CI operators for AIVIFSs, which can easily evaluate
the data in Table 2; the ranking result is stated in the shape I i f

1 > I i f
4 > I i f

3 > I i f
2 > I i f

5 ,

hence the best decision is I i f
1 . Senapati et al. [47] evaluated the Aczel–Alsina operators

for AIVIFSs, which can easily evaluate the data in Table 2; the ranking result is stated in
the shape I i f

1 > I i f
4 > I i f

3 > I i f
2 > I i f

5 , hence the best decision is I i f
1 . Senapati et al. [48]

exposed the Aczel–Alsina geometric operators for AIVIFSs, which can easily evaluate the
data in Table 2; the ranking result is stated in the shape I i f

1 > I i f
4 > I i f

3 > I i f
2 > I i f

5 ,

hence the best decision is I i f
1 . All these existing approaches are based on algebraic norm

operations; however, the proposed operators are based on the Choquet integral-based
Aczel–Alsina (AA) norms. The Aczel–Alsina explored the theory of triangular norms in the
form of Aczel–Alsina triangular norms. Aczel–Alsina triangular norms are robust tools
utilized to overcome the loss of information during the aggregation of information. The
major advantage of defining these operational laws is that it generalizes the algebraic and
Einstein t-norm operations. Another advantage of the proposed method is the utilization of
the Choquet integral (CI) to consider an inter-relationship between the attribute information.
This CI considers the fuzzy measures during the measurement using ordered position.
Therefore, the proposed techniques are more reliable and more general than existing
techniques, such as the theory of Wang et al. [43], Wang and Liu [44], Garg et al. [45],
Meng et al. [46], Senapati et al. [47], and Senapati et al. [48]. Hence, the proposed technique
is superior to existing methodologies.

7. Conclusions

In this paper, we addressed the algorithm related to the decision-making problem
using the concept of the aggregation operators under an AIVIFS environment. In this work,
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the uncertainties present in the information were handled with the help of AIVIFNs, and
the Choquet integral-based operators were defined by incorporating the Aczel–Alsina norm
operations. The defined operational laws based on Aczel–Alsina norms are considered
as the generalization of several existing laws. The key merit of such operational laws
is that they generalize the algebraic and Einstein t-norm operations. Also, the Choquet
integral was utilized in the study to consider an inter-relationship between the attribute
information. This CI considers the fuzzy measures during the measurement using ordered
position. Based on these CI and operational laws, we stated some weighted averaging
and geometric operators, namely, AIVIFC-IAAA, AIVIFC-IAAG, AIVIFC-IAAOA, AIVIFC-
IAAOG, AIVIF AIFC-IAAHA, and AIVIFC-IAAHG operators to aggregate the information
of the AIVIFNs. Finally, we addressed the MADM algorithm, and the applicability of
the proposed algorithm was demonstrated through a numerical example. A comparative
analysis with some of the existing studies shows the feasibility of the proposed algorithm.

In the future, on the one hand, the proposed method has the potential to be extended
to several areas, such as classification-based strategy [49], heterogeneous preference infor-
mation [50], consensus [51], and addressing multicriteria problems in large-scale group
decision making [52]. Further, the presented idea has been extended to different extensions
of the fuzzy sets, such as the T-spherical fuzzy set, the multiplicative set, the neutrosophic
set, etc. On the other hand, we shall extend our approach to analyze different applications
related to evidence theory [53,54], support vector machines [55], supply chains [56], and
different tools of artificial intelligence, such as optimization or neural networks, etc. [57].
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Appendix A

Proof. Considering the procedure of mathematical induction, we proved that the data in
Equation (21) also hold for all positive integers. For this, we have the following procedure:
Step 1: Let z = 2, and we have

I i f
1

(
�
(

Ξρ(1)
)
−�

(
Ξρ(1+1)

))
= I i f

1

(
�
(

Ξρ(1)
)
−�

(
Ξρ(2)

))

=



1− e−((�(Ξρ(1))−�(Ξρ(2)))(−log (1−ΓI
−

1 ))
$
)

1
$

,

1− e−((�(Ξρ(1))−�(Ξρ(2)))(−log (1−ΓI
+

1 ))
$
)

1
$

,

e−((�(Ξρ(1))−�(Ξρ(2)))(−logΛI
−

1 )
$
)

1
$

,

e−((�(Ξρ(1))−�(Ξρ(2)))(−logΛI
+

1 )
$
)

1
$
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I i f
2

(
�
(

Ξρ(2)
)
−�

(
Ξρ(2+1)

))
= I i f

2

(
�
(

Ξρ(2)
)
−�

(
Ξρ(3)

))

=



1− e−((�(Ξρ(2))−�(Ξρ(3)))(−log (1−ΓI
−

2 ))
$
)

1
$

,

1− e−((�(Ξρ(2))−�(Ξρ(3)))(−log (1−ΓI
+

2 ))
$
)

1
$

,

e−((�(Ξρ(2))−�(Ξρ(3)))(−logΛI
−

2 )
$
)

1
$

,

e−((�(Ξρ(2))−�(Ξρ(3)))(−logΛI
+

2 )
$
)

1
$




Then, we have

AIVIFC− IAAA
(
I i f

1 , I i f
2

)
= I i f

1

(
�
(

Ξρ(1)
)
−�

(
Ξρ(2)

))
⊕ I i f

2

(
�
(

Ξρ(2)
)
−�

(
Ξρ(3)

))

=



1− e−((�(Ξρ(1))−�(Ξρ(2)))(−log (1−ΓI
−

1 ))
$
)

1
$

,

1− e−((�(Ξρ(1))−�(Ξρ(2)))(−log (1−ΓI
+

1 ))
$
)

1
$

,

e−((�(Ξρ(1))−�(Ξρ(2)))(−logΛI
−

1 )
$
)

1
$

,

e−((�(Ξρ(1))−�(Ξρ(2)))(−logΛI
+

1 )
$
)

1
$





⊕



1− e−((�(Ξρ(2))−�(Ξρ(3)))(−log (1−ΓI
−

2 ))
$
)

1
$

,

1− e−((�(Ξρ(2))−�(Ξρ(3)))(−log (1−ΓI
+

2 ))
$
)

1
$

,

e−((�(Ξρ(2))−�(Ξρ(3)))(−logΛI
−

2 )
$
)

1
$

,

e−((�(Ξρ(2))−�(Ξρ(3)))(−logΛI
+

2 )
$
)

1
$





=



1− e−(∑
2
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

−
ϕ ))

$
)

1
$

,

1− e−(∑
2
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

+
ϕ ))

$
)

1
$

,

e−(∑
2
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

−
ϕ ))

$
)

1
$

,

e−(∑
2
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

−
ϕ ))

$
)

1
$




Information in Equation (21) is fully suitable for z = 2. Additionally, we are letting the

data in Equation (21) also be suitable for z = q, and then we have

AIVIFC− IAAA
(
I i f

1 , I i f
2 , . . . , I i f

q

)
= ⊕q

ϕ=1I
i f
ϕ

(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))

=



1− e−(∑
q
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

−
ϕ ))

$
)

1
$

,

1− e−(∑
q
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

+
ϕ ))

$
)

1
$

,

e−(∑
q
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

−
ϕ ))

$
)

1
$

,

e−(∑
q
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

+
ϕ ))

$
)

1
$
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Thus, we prove that the data in Equation (21) are also suitable for z = q + 1, and
we have

IVIFC− IAAA
(
I i f

1 , I i f
2 , . . . , I i f

q , I i f
q+1

)
= ⊕q

ϕ=1I
i f
ϕ

(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))
⊕ I i f

q+1

(
�
(

Ξρ(q+1)

)
−�

(
Ξρ(q+2)

))

=



1− e−(∑
q
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

−
ϕ ))

$
)

1
$

,

1− e−(∑
q
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

+
ϕ ))

$
)

1
$

,

e−(∑
q
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

−
ϕ ))

$
)

1
$

,

e−(∑
q
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

+
ϕ ))

$
)

1
$





⊕



1− e−((�(Ξρ(q+1))−�(Ξρ(q+2)))(−log (1−ΓI
−

q+1))
$
)

1
$

,

1− e−((�(Ξρ(q+1))−�(Ξρ(q+2)))(−log (1−ΓI
+

q+1))
$
)

1
$

,

e−((�(Ξρ(q+1))−�(Ξρ(q+2)))(−logΛI
−

q+1)
$
)

1
$

,

e−((�(Ξρ(q+1))−�(Ξρ(q+2)))(−logΛI
+

q+1)
$
)

1
$





=



1− e−(∑
q+1
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

−
ϕ ))

$
)

1
$

,

1− e−(∑
q+1
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

+
ϕ ))

$
)

1
$

,

e−(∑
q+1
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

−
ϕ ))

$
)

1
$

,

e−(∑
q+1
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

+
ϕ ))

$
)

1
$





Hence, we evaluated that the data in Equation (21) are suitable for all positive values
of z. �

Appendix B

Proof. Consider I i f
ϕ = I i f =

([
ΓI
−

, ΓI
+
]
,
[
ΛI

−
, ΛI

+
])

, ϕ = 1, 2, . . . , z, and then using
the data in Equation (21), we have
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AIVIFC− IAAA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
=



1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

−
ϕ ))

$
)

1
$

,

1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

+
ϕ ))

$
)

1
$

,

e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

−
ϕ ))

$
)

1
$

,

e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

+
ϕ ))

$
)

1
$





=



1− e−(∑
z
ϕ=1 (�(Ξρ)−�(Ξρ(1)))(−log (1−ΓI

−
))
$
)

1
$

,

1− e−(∑
z
ϕ=1 (�(Ξρ)−�(Ξρ(1)))(−log (1−ΓI

+
))
$
)

1
$

,

e−(∑
z
ϕ=1 (�(Ξρ)−�(Ξρ(1)))(−log (ΛI

−
))
$
)

1
$

,

e−(∑
z
ϕ=1 (�(Ξρ)−�(Ξρ(1)))(−log (ΛI

+
))
$
)

1
$





=


[

1− e−((−log (1−ΓI
−
))
$
)

1
$

, 1− e−((−log (1−ΓI
+
))
$
)

1
$

]
,[

e−((−log (ΛI
−
))
$
)

1
$

, e−((−log (ΛI
+
))
$
)

1
$

]


=

([
1− e−(−log (1−ΓI

−
)), 1− e−(−log (1−ΓI

+
))
]
,
[

e−(−log (ΛI
−
)), e−(−log (ΛI

+
))

])

=

([
1− elog (1−ΓI

−
), 1− elog (1−ΓI

+
)
]
,
[

elog (ΛI
−
), elog (ΛI

+
)

])

=
([

1−
(

1− ΓI
−
)

, 1−
(

1− ΓI
+
)]

,
[
ΛI

−
, ΛI

+
])

=
([

ΓI
−

, ΓI
+
]
,
[
ΛI

−
, ΛI

+
])

= I i f .

Hence, we successfully proved our required results

AIVIFC− IAAA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
= I i f .

�

Appendix C

Proof. Suppose I i f
ϕ ≤ I∗

i f
ϕ , then we have ΓI

−
ϕ ≤ ΓI

−∗
ϕ , ΓI

+

ϕ ≤ ΓI
+∗

ϕ and ΛI
−

ϕ ≥ ΛI
−∗

ϕ ,

ΛI
+

ϕ ≥ ΛI
+∗

ϕ ; thus,
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ΓI
−

ϕ ≤ ΓI
−∗

ϕ ⇒ 1− ΓI
−

ϕ ≥ 1− ΓI
−∗

ϕ ⇒ log
(

1− ΓI
−

ϕ

)
≥ log

(
1− ΓI

−∗
ϕ

)
⇒
(
−log

(
1− ΓI

−
ϕ

))$
≤
(
−log

(
1− ΓI

−∗
ϕ

))$
⇒

z
∑

ϕ=1

(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))(
−log

(
1− ΓI

−
ϕ

))$
≤

z
∑

ϕ=1

(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))(
−log

(
1− ΓI

−∗
ϕ

))$
⇒ −

(
z
∑

ϕ=1

(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))(
−log

(
1− ΓI

−
ϕ

))$) 1
$

≥ −
(

z
∑

ϕ=1

(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))(
−log

(
1− ΓI

−∗
ϕ

))$) 1
$

⇒ e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

−
ϕ ))

$
)

1
$

≥ e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

−∗
ϕ ))

$
)

1
$

⇒ −e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

−
ϕ ))

$
)

1
$

≥ −e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

−∗
ϕ ))

$
)

1
$

⇒ 1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

−
ϕ ))

$
)

1
$

≤ 1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

−∗
ϕ ))

$
)

1
$

⇒ 1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

+
ϕ ))

$
)

1
$

≤ 1− e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΓI

+∗
ϕ ))

$
)

1
$

Furthermore, we evaluated the nonmembership grade, such as

ΛI
−

ϕ ≥ ΛI
−∗

ϕ ⇒ −log
(

ΛI
−

ϕ

)
≤ −log

(
ΛI

−∗
ϕ

)
⇒
(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))(
−log

(
ΛI

−
ϕ

))$
≤
(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))(
−log

(
ΛI

−∗
ϕ

))$
⇒
(

z
∑

ϕ=1

(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))(
−log

(
ΛI

−
ϕ

))$) 1
$

≤
(

z
∑

ϕ=1

(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))(
−log

(
ΛI

−∗
ϕ

))$) 1
$

⇒ −
(

z
∑

ϕ=1

(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))(
−log

(
ΛI

−
ϕ

))$) 1
$

≥ −
(

z
∑

ϕ=1

(
�
(

Ξρ(ϕ)

)
−�

(
Ξρ(ϕ+1)

))(
−log

(
ΛI

−∗
ϕ

))$) 1
$

⇒ e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

−
ϕ ))

$
)

1
$

≥ e−(∑
z
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΛI

−∗
ϕ ))

$
)

1
$

Finally, we used the theory in Equations (18) and (19), and we have

AIVIFC− IAAA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
≤ AIVIFC− IAAA

(
I∗ i f

1 , I∗ i f
2 , . . . , I∗ i f

z

)
.

�



Symmetry 2023, 15, 1438 23 of 27

Appendix D

Proof. We combined the statement of Property 1 and Property 2, such as

AIVIFC− IAAA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
≤ AIVIFC− IAAA

(
I+1 , I+2 , . . . , I+z

)
= I+ϕ

AIVIFC− IAAA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
≥ AIVIFC− IAAA

(
I−1 , I−2 , . . . , I−z

)
= I−ϕ

Thus,

I−ϕ ≤ AIVIFC− IAAA
(
I i f

1 , I i f
2 , . . . , I i f

z

)
≤ I+ϕ .

�

Appendix E

Proof. Considering the procedure of mathematical induction, we proved that the data in
Equation (36) also hold for all positive integers. For this, we have the following procedure:
Step 1: Let z = 2, and we have(

I i f
1

)(�(Ξρ(1))−�(Ξρ(1+1)))
=
(
I i f

1

)(�(Ξρ(1))−�(Ξρ(2)))

=



e−((�(Ξρ(1))−�(Ξρ(2)))(−log (ΓI
−

1 ))
$
)

1
$

,

e−((�(Ξρ(1))−�(Ξρ(2)))(−log (ΓI
+

1 ))
$
)

1
$

,

1− e−((�(Ξρ(1))−�(Ξρ(2)))(−log (1−ΛI
−

1 ))
$
)

1
$

,

1− e−((�(Ξρ(1))−�(Ξρ(2)))(−log (1−ΛI
+

1 ))
$
)

1
$




(
I i f

2

)(�(Ξρ(2))−�(Ξρ(2+1)))
=
(
I i f

2

)(�(Ξρ(2))−�(Ξρ(3)))

=



e−((�(Ξρ(2))−�(Ξρ(3)))(−log (ΓI
−

2 ))
$
)

1
$

,

e−((�(Ξρ(2))−�(Ξρ(3)))(−log (ΓI
+

2 ))
$
)

1
$

,

1− e−((�(Ξρ(2))−�(Ξρ(3)))(−log (1−ΛI
−

2 ))
$
)

1
$

,

1− e−((�(Ξρ(2))−�(Ξρ(3)))(−log (1−ΛI
+

2 ))
$
)

1
$




Then, we have
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AIVIFC− IAAG
(
I i f

1 , I i f
2

)
=
(
I i f

1

)(�(Ξρ(1))−�(Ξρ(2))) ⊗
(
I i f

2

)(�(Ξρ(2))−�(Ξρ(3)))

=



e−((�(Ξρ(1))−�(Ξρ(2)))(−log (ΓI
−

1 ))
$
)

1
$

,

e−((�(Ξρ(1))−�(Ξρ(2)))(−log (ΓI
+

1 ))
$
)

1
$

,

1− e−((�(Ξρ(1))−�(Ξρ(2)))(−log (1−ΛI
−

1 ))
$
)

1
$

,

1− e−((�(Ξρ(1))−�(Ξρ(2)))(−log (1−ΛI
+

1 ))
$
)

1
$





⊕



e−((�(Ξρ(2))−�(Ξρ(3)))(−log (ΓI
−

2 ))
$
)

1
$

,

e−((�(Ξρ(2))−�(Ξρ(3)))(−log (ΓI
+

2 ))
$
)

1
$

,

1− e−((�(Ξρ(2))−�(Ξρ(3)))(−log (1−ΛI
−

2 ))
$
)

1
$

,

1− e−((�(Ξρ(2))−�(Ξρ(3)))(−log (1−ΛI
+

2 ))
$
)

1
$





=



e−(∑
2
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΓI

−
ϕ ))

$
)

1
$

,

e−(∑
2
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΓI

+
ϕ ))

$
)

1
$

,

1− e−(∑
2
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΛI

−
ϕ ))

$
)

1
$

,

1− e−(∑
2
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΛI

+
ϕ ))

$
)

1
$




Information in Equation (36) is fully suitable for z = 2. Additionally, we are letting the

data in Equation (36) also be suitable for z = q, and then we have

AIVIFC− IAAG
(
I i f

1 , I i f
2 , . . . , I i f

q

)
= ⊗q

ϕ=1

(
I i f

ϕ

)(�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))

=



e−(∑
q
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΓI

−
ϕ ))

$
)

1
$

,

e−(∑
q
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΓI

+
ϕ ))

$
)

1
$

,

1− e−(∑
q
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΛI

−
ϕ ))

$
)

1
$

,

1− e−(∑
a
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΛI

+
ϕ ))

$
)

1
$
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Thus, we prove that the data in Equation (36) are also suitable for z = q + 1, and
we have

AIVIFC− IAAG
(
I i f

1 , I i f
2 , . . . , I i f

q , I i f
q+1

)
= ⊗q

ϕ=1

(
I i f

ϕ

)(�(Ξρ(ϕ))−�(Ξρ(ϕ+1))) ⊗
(
I i f

q+1

)(�(Ξρ(q+1))−�(Ξρ(q+2)))

=



e−(∑
q
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΓI

−
ϕ ))

$
)

1
$

,

e−(∑
q
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΓI

+
ϕ ))

$
)

1
$

,

1− e−(∑
q
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΛI

−
ϕ ))

$
)

1
$

,

1− e−(∑
q
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΛI

+
ϕ ))

$
)

1
$





⊕



e−((�(Ξρ(q+1))−�(Ξρ(q+2)))(−log (ΓI
−

q+1))
$
)

1
$

,

e−((�(Ξρ(q+1))−�(Ξρ(q+2)))(−log (ΓI
+

q+1))
$
)

1
$

,

1− e−((�(Ξρ(q+1))−�(Ξρ(q+2)))(−log (1−ΛI
−

q+1))
$
)

1
$

,

1− e−((�(Ξρ(q+1))−�(Ξρ(q+2)))(−log (1−ΛI
+

q+1))
$
)

1
$





=



e−(∑
q+1
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΓI

−
ϕ ))

$
)

1
$

,

e−(∑
q+1
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (ΓI

+
ϕ ))

$
)

1
$

,

1− e−(∑
q+1
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΛI

−
ϕ ))

$
)

1
$

,

1− e−(∑
q+1
ϕ=1 (�(Ξρ(ϕ))−�(Ξρ(ϕ+1)))(−log (1−ΛI

+
ϕ ))

$
)

1
$




Hence, we evaluated that the data in Equation (36) are suitable for all positive values

of z.�
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