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Abstract: A class of exact (non-perturbative) models of strong gravitational waves based on Shapo-
valov type III spacetimes and Einstein’s vacuum equations is obtained. Exact solutions are found for
the trajectories of particles and radiation in a gravitational wave in privileged coordinate systems.
Exact solutions are obtained for the equations of geodesic deviation and tidal acceleration of particles
in a gravitational wave in privileged coordinate systems. An explicit analytical law of transition
from a privileged coordinate system to a synchronous reference system associated with a freely
falling observer with an explicit selection of time and spatial coordinates is obtained. An explicit
form of the metric of a gravitational wave in a synchronous frame of reference is obtained. For a
synchronous frame of reference, the trajectories of particles and radiation, the deviation of geodesics,
and tidal accelerations in a gravitational wave are obtained. The presented methods and approaches
are applicable both to Einstein’s general theory of relativity and to modified theories of gravity.

Keywords: gravitational waves; Hamilton–Jacobi equation; Shapovalov spacetimes; deviation of
geodesics; tidal acceleration

MSC: 83C10; 83C35

1. Introduction

Recently, new approaches have been proposed in the theoretical study of primordial
gravitational waves in Bianchi universes [1–5]. These approaches make it possible to obtain
exact models of primordial gravitational waves, obtain exact solutions to the equations of
test particles, obtain exact solutions to geodetic deviation equations, and exactly calculate
tidal accelerations using various mathematical methods, including symmetry theory and
the Hamilton–Jacobi formalism. Note that gravitational waves in Bianchi type VII universes
were previously studied by Vladimir Lukash [6].

In this paper, we consider more general exact models of plane gravitational waves,
which include as a special case models with spatially homogeneous symmetry, which we
considered earlier [3–5]. These models are applicable to a wider class of gravitational waves
and allow exact calculation of the effects created by waves, taking into account the deviation
of geodesic and tidal accelerations both in general relativity and in modified theories of
gravity [7–10]. These possibilities allow one to carry out an analytical comparison of the
models and offer observational checks of the realism of the obtained models.

The considered exact models of strong gravitational waves make it possible to calcu-
late both the direct impact of a wave on test particles in order to detect their motion and to
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calculate the secondary physical effects, including for waves with long wavelengths, the di-
rect detection of which is difficult. These models of gravitational waves make it possible,
among other things, to estimate the plasma radiation in a gravitational wave, calculate
the effects of gravitational lensing, calculate the effect of a passing wave on the change
in the periods of pulsars, calculate the possibility of physical objects being captured by a
gravitational wave, and make it possible to estimate the effect of a wave on the observed
microwave background and the effect on the stochastic background of gravitational waves.

The data of direct detection of gravitational waves are currently analyzed using
approximate and numerical methods, followed by the formation of computer databases of
numerically obtained approximate models. The exact models of the gravitational waves
obtained can also serve, in this case, for testing and debugging approximate and numerical
methods in this area.

Shapovalov spacetimes [11] are the basis for obtaining exact models of gravitational
waves in this paper. These spaces allow the existence of “privileged” coordinate systems,
where the Hamilton–Jacobi equation of test particles allows exact integration through the
method of separation of variables, and one of the variables on which the space metric
depends in privileged coordinate systems is the wave variable, along which the spacetime
interval goes to zero. At present, from the observational data of gravitational wave detec-
tion, it has been established with high accuracy that gravitational waves propagate at the
speed of light [12].

Shapovalov spacetimes allow the construction of the complete integral of the Hamilton–
Jacobi equation of test particles as a function of the coordinates and a set of independent
constant parameters determined by the initial or boundary conditions for the motion of the
test particles. The possibility of constructing such a complete integral leads to many useful
consequences, such as obtaining the exact form of the test particle trajectories (i.e., the ability
to find the explicit form of the geodesics) and the possibility of exactly integrating the
geodesic deviation equation and calculating the tidal accelerations in a gravitational wave.
All these possibilities make it feasible to analytically calculate the secondary physical effects
of a gravitational wave when interacting with other physical objects and fields [13–19], as
well as in theories of gravity with quantum and other modifications [20–23].

In addition, we recall that an important feature of the Shapovalov wave models under
consideration is the possibility of making an explicit transition from privileged coordinate
systems with wave variables to synchronous laboratory coordinate systems, where the time
and spatial coordinates are separated, and a freely falling observer is at rest, while time
synchronization is also possible in different points of space [24].

2. Shapovalov Spacetimes and Geodesic Deviation

Let us recall the necessary information from the Hamilton–Jacobi formalism and from
the theory of Shapovalov wave spacetimes for completeness.

The Hamilton–Jacobi equation of a test particle in a gravitational field has the form
(see [24])

gαβ ∂S
∂xα

∂S
∂xβ

= m2c2, α, β, γ, δ = 0, . . . (n− 1), (1)

where m is the mass of the test particle, the capital letter S denotes the action function of
the test particle, n is the dimension of space, and c is the speed of light, which we further
set equal to unity.

The Hamilton–Jacobi formalism in mechanics is well known, and its description can
be found in standard textbooks, such as in [25]. The application of the Hamilton–Jacobi
formalism in the theory of gravity can be found in [24]. According to the Hamilton–
Jacobi formalism, the complete integral of the Hamilton–Jacobi equation for test particles
must contain n independent constants, where n is the spacetime dimension. The physical
meaning of these constants is related to the coordinate system used and the existing
symmetries in a specific problem and is determined by imposing initial or boundary
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conditions. For particles, these constants are associated with conserved physical quantities
such as energy, momentum components, and angular momentum components, as well
as with symmetries such as time translation invariance, space translation invariance, and
rotation invariance.

Definition 1 (Shapovalov spacetimes). If the space allows the existence of a privileged coordinate
system {xα} where the Hamilton–Jacobi equation (Equation (1)) can be integrated by the complete
separation of variables method, then the complete integral S for the test particle action function can
be represented in a “separated” form:

S = φ0(x0, λ0, . . . λn−1) + φ1(x1, λ0, . . . λn−1) + . . . + φn−1(xn−1, λ0, . . . λn−1), (2)

λ0, λ1, . . . , λn−1 − const, det

∣∣∣∣∣ ∂2S
∂xα∂λβ

∣∣∣∣∣ 6= 0,

Moreover, if one of the non-ignored variables (on which the metric depends) is a wave (null)
(i.e., the spacetime interval along this variable vanishes), then such a space will be called the
Shapovalov wave spacetime.

Recall also that spacetimes that allow complete separation of the variables in the
Hamilton–Jacobi equation (Equation (1)) were first considered by Paul Stäckel [26], and
the theory of these spaces acquired a complete form in the works of Vladimir Shapovalov
(see [27–29]), where a complete classification of such spaces was presented and an explicit
form of the metrics of all given spaces in privileged coordinate systems was given. Shapo-
valov’s classification also included wave spacetimes that allowed non-ignorable wave
variables, which the metric depends on in privileged coordinate systems.

The ability to construct the complete integral of the Hamilton–Jacobi equation in
these spaces, in turn, allows us to find the trajectories of the test particles by determining
the dependence of the coordinates xα at the proper time τ of the test particle on the
geodesic line of the particle. According to the standard Hamilton–Jacobi formalism (see,
for example, [24,25]), the trajectory equations can be obtained from the known test particle
action function with the following relations:

∂S(xγ, λα)

∂λβ
= σβ, τ = S(xβ, λα)

∣∣∣
m=1

, (3)

where λα and σβ are additional independent constant parameters determined by the initial
conditions of the test particle motion and τ is the proper time of the particle.

The resulting complete integral of the Hamilton–Jacobi equation of the test particles
also allows finding solutions for the geodesic deviation equations in the considered models
of gravitational waves. Recall that the deviation of geodesics is the basic manifestation of
the gravitational field and the detection of gravitational waves.

The geodesic deviation equation has the following form (see, for example, [24]):

D2ηα

dτ2 = Rα
βγδuβuγηδ, (4)

where Rα
βγδ is the Riemann curvature tensor of the spacetime, uα is the four-velocity of

the test particle on the base geodesic line, ηα is the geodesic deviation vector, and D is the
covariant derivative. The coordinate xα is parametrized by the proper time τ along the
base geodesic line.

The four-velocity of a particle is known to satisfy the condition [24]

gαβuαuβ = 1. (5)
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The four-velocity of a particle is related to its action function S by the relation

uα =
∂S
∂xα

∣∣∣∣
m=1

. (6)

Thus, for Shapovalov wave spacetimes, the four-velocity of a test particle uα depends on
(n− 1) parameters λ1, . . . , λ(n−1):

uα = uα(xβ, λ1, . . . , λ(n−1)). (7)

The proper time of a test particle can be represented in the following form:

τ = S(xα, λ1, . . . , λ(n−1))
∣∣∣
m=1

. (8)

In [30], an action was obtained whose variation gave both the Hamilton–Jacobi equa-
tion for a test particle and the geodesic variation equation as a result. The paper shows that
in this case, knowing the complete integral for the Hamilton–Jacobi equation of the test
particle allows us to reduce the geodesic deviation equation to an equation containing the
test particle action function of the following form:

ηα ∂uα(xβ, λi)

∂λk
+ ρi

∂2S(xα, λj)

∂λi∂λk
= ϑk, (9)

uβ(xα, λk) ηβ = 0, α, β, γ = 0 . . . 3; i, j, k = 1 . . . 3, (10)

where λk, ρk, and ϑk are independent constant parameters.
The constant λk is given by the initial data for the test particle velocity on the base

geodesic, and the constants ρk and ϑk are given by the initial data on the adjacent geodesic.
The equations of motion (Equation (3)) define the dependence of the coordinates on the
proper time τ.

3. Type-III Shapovalov Wave Spacetimes

Shapovalov’s wave models of spacetime in a privileged coordinate system, where the
Hamilton–Jacobi equation admits separation of variables, have a metric that necessarily
depends on the wave (null) variable along which the interval vanishes. In addition,
the metric may additionally depend on other variables (up to three). Therefore, the metric
of the type I Shapovalov spacetime depends on three variables, type II spaces depend on
two variables, and type III spaces depend on only one wave variable. In this paper, we will
consider Shapovalov spaces of the third type.

Type-III Shapovalov wave spaces allow the existence of three commuting Killing
vectors, and thus the metric of these spaces in the privileged coordinate system can generally
be written in the following form [31,32]:

gαβ(x0) =


0 1 g02(x0) g03(x0)
1 0 0 0

g02(x0) 0 g22(x0) g23(x0)
g03(x0) 0 g23(x0) g33(x0)

, (11)

where the indices α and β run through the values zero, one, two, and three. The variable x0

is a wave (null) variable along which the spacetime interval vanishes. Thus, the metric is
defined in the general case by five functions of the wave variable x0.

The spacetime for a gravitational wave (Equation (11)) is type N, according to Petrov’s
classification.
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Einstein’s equations with a cosmological constant Λ in a vacuum

Rαβ = Λgαβ (12)

for the metric in Equation (11) leads to the following necessary condition:

Λ = g02 = g03 = 0. (13)

Thus, the metric of Shapovalov spacetimes of type III, taking into account the restrictions
of Einstein’s vacuum equations, will take the following form in the privileged coordinate
system:

gαβ(x0) =


0 1 0 0
1 0 0 0
0 0 A(x0) B(x0)
0 0 B(x0) C(x0)

, AC − B2 > 0. (14)

The space under consideration is a plane wave spacetime and admits a covariantly
constant vector that specifies the direction of propagation of a gravitational wave:

∇αKβ = 0 → Kα =
(
0, 1, 0, 0

)
. (15)

In addition to the relations in Equation (13), the vacuum in Einstein’s equations
contains the equation R00 = 0, which allows one to express the second derivative of one of
the functions in the metric. By expressing C ′′(x0) from the remaining equation, we obtain a
relation of the following form:

C ′′ =
6B2(A′C ′ + (B′)2)− 12ABB′C ′ + 3A2(C ′)2

2A(AC − B2)

+ C A
′′B2 + 3A(B′)2 + B(2B′′A− 6A′B′)

A(AC − B2)

+
C2(3(A′)2 − 2A′′A

)
− 4B′′B3

2A(AC − B2)
, (16)

where the top prime denotes the derivative of the function with respect to the variable x0.
Thus, the metric has three functions—A(x0), B(x0), and C(x0)—connected by one ordinary
differential equation (Equation (16)), which arises from the system of Einstein’s field
equations in a vacuum (where the cosmological constant Λ vanishes).

The Einstein equations for the considered wave metric are reduced to one differential
relation for three initially arbitrary functions in the metric. The relations for the trajecto-
ries of the test particles include integrals of these functions. Therefore, the relationship
following from Einstein’s equations is not “rigid” enough to strongly influence the form
of the expressions obtained for the particle trajectories, the deviation vector, and the tidal
acceleration in the wave. Nevertheless, the use of this equation leads to some reduction in
the “volume” of the resulting expressions.

The test particle action function in the privileged coordinate system takes the “sepa-
rated” form:

S = φ0(x0) +
3

∑
k=1

λkxk, (17)

where λk is the constant patameter determined by the initial or boundary values of the
velocities (momentum values) of the test particle.
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The equations of motion of the test particles in the Hamilton–Jacobi formalism can be
integrated into the privileged coordinate system using the following notation for integrals
of metric functions (Equation (14)):

Θab(x0) =
∫

gab(x0) dx0, a, b, c = 2, 3. (18)

Θ22(x0) =
∫
A(x0) dx0, Θ23(x0) =

∫
B(x0) dx0, Θ33(x0) =

∫
C(x0) dx0. (19)

The Hamilton–Jacobi equation (Equation (1)) can be integrated, and we find the
following form of the function φ0(x0) (where the test particle mass m is set equal to unity):

φ0(x0) = −λ2
2Θ22 + 2λ2λ3Θ23 + λ3

2Θ33 − x0

2λ1
. (20)

Thus, we have obtained the explicit form of the complete integral S(xα, λk) for the Hamilton–
Jacobi equation for a test particle.

Then, in the Hamilton–Jacobi formalism, the trajectories of the test particles (Equation (3))
in the privileged coordinate system is found in the following form:

x0(τ) = λ1τ, (21)

x1(τ) =
τ

2λ1
− λ2

2Θ22 + 2λ2λ3Θ23 + λ3
2Θ33

2λ1
2

∣∣∣∣
x0=λ1τ

, (22)

x2(τ) =
λ2Θ22 + λ3Θ23

λ1

∣∣∣∣
x0=λ1τ

, (23)

x3(τ) =
λ2Θ23 + λ3Θ33

λ1

∣∣∣∣
x0=λ1τ

, (24)

where τ is the proper time of the test particle and the parameters λk are determined
by the initial (boundary) values of the velocities (momentum values) of the test particle.
The constant σk is set equal to zero by choosing the origin of the coordinates.

For the components of the four-velocity of the test particle uα in the privileged coor-
dinate system, from the equations of the trajectory, we obtain the following expressions:

u0 = λ1, (25)

u1(τ) = −λ2
2A+ 2λ2λ3B + λ3

2C − 1
2λ1

∣∣∣∣
x0=λ1τ

, (26)

u2(τ) = (λ2A+ λ3B)
∣∣∣
x0=λ1τ

, (27)

u3(τ) = (λ2B + λ3C)
∣∣∣
x0=λ1τ

. (28)

Now, we have all the necessary relations in order to write down and solve equations
for the geodesic deviation vector (Equations (9) and (10)) for the metric in Equation (14).
While omitting obvious calculations, we present the solution of the system of equations for
the geodesic deviation vector ηα(τ) in the privileged coordinate system:

η0(τ) = ρ1τ − λ1Ω, x0 = λ1τ, (29)
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η1(τ) = −
(ρ1τ − λ1Ω)

(
λ2

2A+ 2λ2λ3B + λ3
2C + 1

)
2λ1

2

− Θ23(λ2ξ3 + λ3ξ2) + λ2ξ2Θ22 + λ3ξ3Θ33

λ1
3 − Ω

λ1
+ ϑ1, (30)

η2(τ) =
λ1(ρ1τ − λ1Ω)(λ2A+ λ3B) + ξ2Θ22 + ξ3Θ23

λ1
2 + ϑ2, (31)

η3(τ) =
λ1(ρ1τ − λ1Ω)(λ2B + λ3C) + ξ2Θ23 + ξ3Θ33

λ1
2 + ϑ3, (32)

where τ is the proper time of the test particle on the base geodesic line. Here, the functions
gab and Θab in Equation (18) are functions of one variable x0, which on a geodesic with the
proper time τ has the form x0 = λ1τ.

Equations (29)–(32) include both independent parameters (λk, ρk, and ϑk) as well as
dependent auxiliary constants (ξ2, ξ3, and Ω), which are introduced to shorten the notation:

ξ2 = λ1ρ2 − λ2ρ1, ξ3 = λ1ρ3 − λ3ρ1, (33)

Ω = λ1ϑ1 + λ2ϑ2 + λ3ϑ3. (34)

The constant parameters λk are determined by the initial or boundary values for the
momentum values of a test particle on the base geodesic, and the parameters ρk and ϑk are
determined by the initial or boundary values of the momentum values and the relative
positions of particles on neighboring geodesics.

The resulting deviation vector now allows us to calculate the deviation velocity
Dηα/dτ and the tidal acceleration D2ηα/dτ2.

Let us find the deviation rate Vα(τ) = Dηα/dτ for the resulting general solution of the
deviation equations (Equations (29)–(32)) in the metric in Equation (14) in the privileged
coordinate system:

V0 = ρ1 = const, (35)

V1(τ) =
1

2λ1
2(B2 −AC)

[
−C(ξ2Θ22 + ξ3Θ23)

(
λ2A′ + λ3B′

)
λ1

2ϑ2
(
B
(
λ2B′ + λ3C ′

)
− C

(
λ2A′ + λ3B′

))
+λ1

2ϑ3
(
B
(
λ2A′ + λ3B′

)
−A

(
λ2B′ + λ3C ′

))
+ρ1

(
AC − B2

)(
λ2

2A+ 2λ2λ3B + λ3
2C + 1

)
+B
(

Θ23
(
B′(λ2ξ3 + λ3ξ2) + λ2ξ2A′ + λ3ξ3C ′

)
+ξ3Θ33

(
λ2A′ + λ3B′

)
+ ξ2Θ22

(
λ2B′ + λ3C ′

))
−A

(
(ξ2Θ23 + ξ3Θ33)

(
λ2B′ + λ3C ′

)
−2BC(λ2ξ3 + λ3ξ2) + 2λ2ξ2B2 − 2λ3ξ3C2

)
−2B3(λ2ξ3 + λ3ξ2) + 2λ2ξ2A2C − 2λ3ξ3B2C

]
, (36)
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V2(τ) =
1

2λ1(B2 −AC)

[
λ1

2ϑ2
(
A′C − BB′

)
+λ1

2ϑ3
(
AB′ −A′B

)
− 2ρ1

(
AC − B2

)
(λ2A+ λ3B)

−B
(
A′(ξ2Θ23 + ξ3Θ33) + B′(ξ2Θ22 + ξ3Θ23)

)
+A

(
B′(ξ2Θ23 + ξ3Θ33)− 2ξ3BC + 2ξ2B2

)
+A′C(ξ2Θ22 + ξ3Θ23)− 2ξ2A2C + 2ξ3B3

]
, (37)

V3(τ) =
1

2λ1(B2 −AC)

[
λ1

2ϑ3
(
AC ′ −BB′

)
+λ1

2ϑ2
(
B′C − BC ′

)
+ 2ρ1

(
B2 −AC

)
(λ2B + λ3C)

−B
(
2ξ2AC + ξ2Θ22C ′ + ξ3Θ33B′ + ξ2Θ23B′ + ξ3Θ23C ′

)
+A

(
C ′(ξ2Θ23 + ξ3Θ33)− 2ξ3C2

)
+B′C(ξ2Θ22 + ξ3Θ23) + 2ξ3B2C + 2ξ2B3

]
. (38)

Recall that the functions gab and Θab (Equation (18)) depend on one variable x0, which is
equal to x0 = λ1τ on the base geodesic, where τ is the proper time on the base geodesic.
The constants λk are determined by the initial or boundary conditions for the velocity on
the base geodesic, and the constants ρk and ϑk are determined by the initial or boundary
conditions for the velocity and relative position on the adjacent geodesic. The constants ξ2,
ξ3, and Ω are defined by the relations in Equations (33) and (34).

The expressions for the tidal acceleration Aα = D2ηα/dτ2 have a cumbersome form,
and we have moved them to Appendix A.

The trajectories of test particles xα(τ) (Equations (21)–(24)), geodesic deviation vector
ηα(τ) (Equations (29)–(32)), and geodesic deviation rate Vα(τ) (Equations (35)–(38)) were
found above for Shapovalov type-III gravitational waves in general form (i.e., obtained
without taking into account the Einstein equation, shown in Equation (16)). Therefore, they
can be applied to the metric in Equation (14) in any field equations based on it, including
application in modified gravity theories (see [20–23]).

The obtained characteristics of a gravitational wave make it possible to evaluate the
influence of a gravitational wave on physical objects, fields, and the physical media through
which the wave passes. For example, we can now calculate the radiation of charges moving
with tidal acceleration in a gravitational wave.

4. Synchronous Reference System

The use of a privileged coordinate system allowed us to integrate the equations of
motion of the test particles, obtain an exact solution for the geodesic deviation vector, and
obtain an exact form of the deviation velocity and tidal accelerations in a gravitational wave.

The form of the trajectories of the test particles in the field of a gravitational wave
(Equations (21)–(24)) obtained using the complete integral of the Hamilton–Jacobi equation
makes it possible to additionally implement a transition from the privileged coordinate
system used to the laboratory synchronous reference frame x̃k associated with an observer
freely falling along the base geodesic. The advantages of a synchronous reference system are
related to the fact that time and the spatial variables in this reference system are separated,
and time at different points in space can be synchronized.

The transition to the synchronous coordinate system x̃k can be explicitly implemented
using the relations in Equations (21)–(24) according to the rules (see [24]):

xα → x̃α = (τ, λ1, λ2, λ3). (39)
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Thus, transformations from the privileged coordinate system {xα} to the synchronous
reference system {x̃α} take the following form:

x0 = x̃1τ, (40)

x1 = − (x̃2)
2Θ22 + 2x̃2 x̃3Θ23 + (x̃3)

2Θ33 − x̃1τ

2(x̃1)
2

∣∣∣∣
x0=x̃1τ

, (41)

x2 =
x̃2Θ22 + x̃3Θ23

x̃1

∣∣∣∣
x0=x̃1τ

, (42)

x3 =
x̃2Θ23 + x̃3Θ33

x̃1

∣∣∣∣
x0=x̃1τ

. (43)

In the resulting synchronous frame of reference, the four-velocity of the test particle will
take the form ũk = {1, 0, 0, 0}. Thus, the observer rests on the base geodesic in the obtained
synchronous frame of reference, and the observer’s proper time τ becomes the time of the
frame of reference. The metric in Equation (14) in the synchronous reference system will
take the following form:

ds2 = dτ2 − dl2 = dτ2 + g̃ij
(
τ, x̃k)dx̃idx̃j, (44)

where dl is the spatial distance element and τ is the time in the synchronous frame of
reference. (The speed of light c is set equal to unity.)

When switching to a synchronous frame of reference, it is required in the functions
gab(x0) and Θab(x0) to change x0 → τx̃1. In this case, the components of the gravitational
wave metric in Equation (14) will take the following form in the synchronous reference
frame {x̃α}:

g̃00 = 1, g̃0k = 0, (45)

g̃11
(
τ, x̃k) = − τ2

(x̃1)
2 −

Θ23
2
(
(x̃2)

2A+ x̃3(x̃3C − 2x̃2B
))

(x̃1)
4
(B2 −AC)

+
2Θ23

(
x̃3Θ33

(
x̃3B − x̃2A

)
+ x̃2Θ22

(
x̃2B − x̃3C

))
(x̃1)

4
(B2 −AC)

− (x̃2)
2Θ22

2C − 2x̃2 x̃3Θ22Θ33B + (x̃3)
2Θ33

2A
(x̃1)

4
(B2 −AC)

, (46)

g̃12
(
τ, x̃k) =

x̃2
(

Θ23
2A− 2Θ22Θ23B + Θ22

2C
)

(x̃1)
3
(B2 −AC)

+
x̃3
(

Θ23Θ33A−Θ22Θ33B + Θ22Θ23C −Θ23
2B
)

(x̃1)
3
(B2 −AC)

, (47)

g̃13
(
τ, x̃k) =

x̃2
(

Θ23Θ33A−Θ22Θ33B + Θ22Θ23C −Θ23
2B
)

(x̃1)
3
(B2 −AC)

+
x̃3
(

Θ33
2A− 2Θ23Θ33B + Θ23

2C
)

(x̃1)
3
(B2 −AC)

, (48)
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g̃22
(
τ, x̃k) = −Θ23

2A− 2Θ22Θ23B + Θ22
2C

(x̃1)
2
(B2 −AC)

, (49)

g̃23
(
τ, x̃k) =

Θ22Θ33B + Θ23
2B −Θ23(Θ33A+ Θ22C)

(x̃1)
2
(B2 −AC)

, (50)

g̃33
(
τ, x̃k) = −Θ33

2A− 2Θ23Θ33B + Θ23
2C

(x̃1)
2
(B2 −AC)

, (51)

where the one-variable functions A(x0), B(x0), C(x0), and Θab(x0) (Equation (18)) now
depend on the product τx̃1 and the observer’s proper time on the base geodesic τ is the
universal time in the synchronous frame of reference.

A metric with superscripts g̃αβ
(
τ, x̃k) has a more compact and clearer form in a

synchronous frame of reference:

g̃00 = 1, g̃0k = 0, g̃1k(τ, x̃i) = − x̃1 x̃k

τ2 , (52)

g̃ab(τ, x̃i) = − x̃a x̃b

τ2 + (x̃1)
2
Fab(x)

∣∣∣∣
x=x̃1τ

, (53)

where three independent functions of one variable Fab(x) are related to the metric functions
in the privileged coordinate system by the following relations:

Fab(x̃1τ) =

(
3

∑
c,d=2

[Θ−1]acgcd[Θ−1]db

)∣∣∣∣∣
x0→x̃1τ

= − d
dx0 [Θ−1]ab

∣∣∣∣∣
x0→x̃1τ

, (54)

where
[
Θ−1]ab is the inverse of the matrix Θab(τx̃1) from Equation (18):

F22(x̃1τ) =
Θ33

2A− 2Θ23Θ33B + Θ23
2C(

Θ23
2 −Θ22Θ33

)2

∣∣∣∣∣
x0→x̃1τ

, (55)

F23 = F32 =
Θ22Θ33B −Θ23(Θ33A+ Θ22C −Θ23B)(

Θ23
2 −Θ22Θ33

)2

∣∣∣∣∣
x0→x̃1τ

, (56)

F33(x̃1τ) =
Θ23

2A− 2Θ22Θ23B + Θ22
2C(

Θ23
2 −Θ22Θ33

)2

∣∣∣∣∣
x0→x̃1τ

. (57)

Thus, for calculations with a gravitational wave (Equation (14)) in a synchronous (labora-
tory) frame of reference associated with a freely falling observer, we can initially proceed
from the general form of the metric in Equations (52) and (53) without using the relations
in Equations (55)–(57), defining three independent functions of one variable Fab(x̃1τ) in
the synchronous system reference directly from the field equations of the corresponding
theory of gravity.

The geodesic deviation vector η̃α(τ) in a gravitational wave with the metrics in
Equations (52) and (53) after transformation of the coordinates (Equations (40) and (41)) in
the synchronous reference system will take the following form:

η̃0 = 0, (58)

η̃1(τ) = ρ1 −
λ1Ω

τ
, (59)
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η̃2(τ) = ρ2 −
λ2Ω

τ
+

λ1ϑ2Θ33

Θ22Θ33 −Θ23
2 +

λ1ϑ3Θ23

Θ23
2 −Θ22Θ33

, (60)

η̃3(τ) = ρ3 −
λ3Ω

τ
+

λ1ϑ2Θ23

Θ23
2 −Θ22Θ33

+
λ1ϑ3Θ22

Θ22Θ33 −Θ23
2 , (61)

where the constant parameters λk and ϑk are determined by the initial (boundary) values of
the velocities on neighboring geodesics and the constants ρk are determined by the initial
(boundary) values of the relative deviation of the geodesics. The auxiliary constant Ω is
defined by the relation in Equation (34). The functions Θab(x0) (Equation (18)) depend on
one variable equal to the product of λ1τ, where the variable τ is the time in the synchronous
frame of reference.

Let us find the deviation rate Ṽα(τ) = Dη̃α/dτ in the synchronous frame of reference
using the coordinate transformations in Equations (40) and (41):

Ṽ0 = 0, (62)

Ṽ1 = ρ1/τ, (63)

Ṽ2 =
1

2λ1τ
(

Θ23
2 −Θ22Θ33

)
(B2 −AC)

[
λ1

3τϑ2

(
Θ33

(
BB′ −A′C

)
+Θ23

(
B′C − BC ′

))
+λ1

3τϑ3
(
Θ23

(
AC ′ −BB′

)
+ Θ33

(
A′B −AB′

))
+Θ23

2
(
A
(
λ1τξ2C ′ − 2λ2ρ1C

)
− λ1τB

(
ξ2B′ + ξ3C ′

)
+2λ2ρ1B2 + λ1τξ3B′C

)
+Θ33

(
Θ22

(
C
(
2λ2ρ1A− λ1τξ2A′

)
− 2λ2ρ1B2 + λ1τξ2BB′

)
+λ1τ

(
ξ3Θ33A′B −A

(
ξ3Θ33B′ − 2ξ3BC + 2ξ2B2

)
+2ξ2A2C − 2ξ3B3

))
+λ1τΘ23

(
C
(
ξ2Θ22B′ − ξ3Θ33A′

)
+A

(
Θ33

(
ξ3C ′ − ξ2B′

)
− 2ξ3C2

)
+ξ2B

(
Θ33A′ − 2AC −Θ22C ′

)
+ 2ξ3B2C + 2ξ2B3

)]
, (64)
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Ṽ3 =
1

2λ1τ
(

Θ23
2 −Θ22Θ33

)
(B2 −AC)

[
λ1

3τϑ2

(
Θ23

(
A′C − BB′

)
+Θ22

(
BC ′ −B′C

))
+λ1

3τϑ3
(
Θ22

(
BB′ −AC ′

)
+ Θ23

(
AB′ −A′B

))
+Θ22

(
Θ33

(
A
(
2λ3ρ1C − λ1τξ3C ′

)
− 2λ3ρ1B2 + λ1τξ3BB′

)
+λ1τ

(
C
(
2ξ3AC − ξ2Θ22B′

)
+ ξ2B

(
2AC + Θ22C ′

)
−2ξ3B2C − 2ξ2B3

))
+Θ23

2
(
A
(
λ1τξ2B′ − 2λ3ρ1C

)
− λ1τB

(
ξ2A′ + ξ3B′

)
+2λ3ρ1B2 + λ1τξ3A′C

)
+λ1τΘ23

(
Θ22C

(
ξ2A′ − ξ3B′

)
+ B

(
ξ3Θ22C ′ − ξ3Θ33A′

)
+A

(
−ξ2Θ22C ′ + ξ3Θ33B′ − 2ξ3BC + 2ξ2B2

)
−2ξ2A2C + 2ξ3B3

)]
, (65)

where the functions gab and Θab (Equation (18)) depend on one variable equal to the product
of λ1τ, the variable τ is the time in the synchronous frame of reference, and the auxiliary
constants ξ2 and ξ3 are defined by the relations in Equation (33).

Due to the cumbersome nature of the expressions, the form of the tidal acceleration
Ãα(τ) = D2η̃α/dτ2 in the synchronous reference system is given in Appendix B.

Note here that the tidal acceleration components Ã0 and Ã1 vanish in the used syn-
chronous frame of reference:

Ã0 = 0, Ã1 = 0, (66)

We see that the tidal acceleration acts on particles only in the plane of the space variables
x2 and x3, while the gravitational wave propagates along the space variable x1.

Thus, for the considered models of gravitational waves, we obtained the trajectories of
the test particles, the geodesic deviation vector and the deviation velocity vector and the
form of the tidal accelerations both in privileged and in synchronous coordinate systems.
We also found the structure of the gravitational wave metric in a synchronous frame
of reference.

The characteristics of a gravitational wave obtained here completely determine its
effect on the particles, fields, and the physical medium through which the wave passes.
An example of application of the obtained results to the calculation of secondary physical
effects for a gravitational wave in the type-7 Bianchi universe [4] is given to obtain the
retarded electromagnetic potentials of the Lienard–Wiechert type when charges move due
to the tidal acceleration in a gravitational wave.

5. Propagation of Radiation in a Gravitational Wave

The models of gravitational waves under consideration make it possible to analytically
determine the light cone formulas for an observer on the basic geodesic.

To construct the light cone, we will use the eikonal equation, which determines the
propagation of light rays in a gravitational wave:

gαβ ∂Ψ
∂xα

∂Ψ
∂xβ

= 0, (67)
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where Ψ is the eikonal function.
For the gravitational wave models we are considering, the eikonal function in the

privileged coordinate system can be represented by

Ψ = ψ0(x0) +
3

∑
k=1

pkxk + ψc, ψc = const, (68)

where pk are independent constant parameters of the propagation of a light beam, which is
determined by the initial or boundary conditions.

Moreover, from the eikonal equation, we have the relation

ψ0(x0) = − 1
2p1

3

∑
a,b=2

pa pbΘab(x0), (69)

where the functions in the matrix Θab(x0) are given by the relations in Equation (18).
The trajectories of the light rays according to the Hamilton–Jacobi formalism are found

from the equations
∂Ψ
∂pk

= qk, i, j, k = 1, 2, 3, (70)

where qk and pk are independent constant parameters of the light beam trajectory deter-
mined by the initial or boundary conditions.

The trajectory of a light beam in a gravitational wave in the privileged coordinate
system takes the form

x1 = q1 −
1

2p1
2

3

∑
a,b=2

pa pbΘab(x0), (71)

xa = qa +
1
p1

3

∑
b=2

pbΘab(x0) a, b, c = 2, 3. (72)

From the relations for light ray paths in Equations (71) and (72), in the privileged coordinate
system, we obtain a linear relation for the coordinates, which is valid on the trajectories of
the light beam in the considered gravitational wave:

2p1x1 +
3

∑
a=2

paxa = 2p1q1 +
3

∑
a=2

paqa = const. (73)

Note also that in the considered gravitational wave along the trajectories of the light
beam, the eikonal function is constant:

Ψ =
3

∑
k=1

pkqk + ψc. (74)

Let us consider the transition to a synchronous reference system. The equations for the
trajectory of a light beam in a gravitational wave (Equations (71) and (72)) in a synchronous
frame of reference

{
x̃k
}

(Equations (40)–(43)) take the following form:

τ

x̃1 −
3

∑
a,b=2

qaqb

[
Θ−1

]ab
(τx̃1) =

2
p1

3

∑
k=1

pkqk, (75)

x̃a = x̃1

(
3

∑
b=2

qb

[
Θ−1

]ab
(τx̃1) +

pa

p1

)
, (76)
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where
[
Θ−1]ab is the inverse of the matrix Θab(τx̃1) from Equation (18) and Equation (75)

implicitly specifies the dependence of the coordinate x̃1 at time τ on the ray trajectory. In
Equation (75), the variable x̃1 is the spatial coordinate of the light beam along the direction
of propagation of the gravitational wave.

Then, the equation of the light cone of the observer on the basic geodesic in a grav-
itational wave will include all possible trajectories of light rays (Equations (75) and (76))
passing through the world point of the observer whose coordinates in the synchronous
reference system have the form x̃α = {τ, λ1, λ2, λ3}, which gives three additional equations
for determining the admissible parameters qk or pk.

If the charge emitted radiation at the point x̃α =
{

τ′, x1′, xa ′
}

, then for the constant
parameters qk of the propagating radiation, we obtain

q1 = σ1 +
m2x1′τ′

2λ1
2 +

1
2

Θab(x1′τ′)

(
pa

p1
+

λa

λ1

)(
pb
p1
− λb

λ1

)
, (77)

qa = σa + Θab(x1′τ′)

(
λb
λ1
− pb

p1

)
, (78)

where m is the mass of the charge, λk and σk are the constant parameters of the charge
motion in the gravitational wave, and pk are constant parameters of propagation of the
radiation emitted by the charge.

The spatial distance l traveled by a light beam in a gravitational wave can be found
from the integral along the beam path (Equations (75) and (76)):

l =
∫ √

−g̃ij(τ, x̃k) dx̃idx̃j =
∫ τ2

τ1

dτ

√
−g̃ij

(
τ, x̃k(τ)

) dx̃i(τ)

dτ

dx̃j(τ)

dτ
, (79)

where the metric functions g̃ik in the synchronous reference system are defined by the
relations in Equations (52) and (53). The expressions for the derivatives of the coordinates
on the trajectory of the light beam can be found from the relations for the trajectory using
the following relation:

[
Θ−1

]ab ′
= −∑

c,d

[
Θ−1

]ac
gcd
[
Θ−1

]db
= −Fab, (80)

Then, from Equations (75) and (76), we find the following form of the velocity compo-
nents along the path of the light beam:

dx̃1(τ)

dτ
=

x̃1

τ

(
1− 2

1 +
(
x̃1
)2qaqbFab(τx̃1)

)
, (81)

dx̃a(τ)

dτ
=

dx̃1

dτ

(
pa

p1
+
[
Θ−1

]ab
pb − τx̃1Fab(τx̃1) qb

)
−
(
x̃1)2Fab(τx̃1) qb, (82)

Due to the invariance of the speed of light c, the following condition must be satis-
fied (c = 1):

l = τ2 − τ1. (83)

The relations obtained are sufficient for calculating any secondary physical effects in a
gravitational wave. In particular, the relations in Equations (79) and (83), together with the
relations in Equations (81) and (82), allow us to set the retarded potentials of an electric
charge moving under the influence of the tidal accelerations of a gravitational wave.
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6. Discussion

The general results obtained in this paper for the deviation of geodesics in a gravita-
tional wave can be used to calculate the physical effects of the influence of a gravitational
wave on particles and fields. In particular, on the basis of the results obtained, one can
calculate the radiation of charges moving with tidal acceleration in a gravitational wave
and other secondary effects: the generation of density waves in a medium, the formation of
local dense accumulations of matter, the birth of black holes in a gravitational wave [33,34],
the influence of the primary gravitational waves on the microwave background of the
universe and on the stochastic gravitational background, etc.

The characteristics of the secondary effects make it possible to estimate the parameters
of the gravitational wave itself when direct detection of the wave is impossible. The dimen-
sions of the “shoulders” of the satellite gravitational wave detectors planned in the future
are limited by the distances between the Lagrange points in the solar system. Therefore,
the lengths of gravitational waves, which are larger than these sizes, can conditionally be
called large wavelengths, since their detection with the standard method is difficult.

The considered gravitational waves contain special cases of Bianchi universes of types
4, 5, and 7, on the basis of which, using the described approaches, exact models of primary
gravitational waves have already been created [3–5]. For these models, it is possible to
estimate the effect of radiation generated by a wave in the primordial plasma on the
parameters of the cosmic microwave background [35], including the anisotropy observed
by satellite telescopes.

The exact solutions for gravitational waves obtained on the basis of the approaches
proposed in this work can also be used to debug more complex computer models and
train artificial intelligence systems to analyze gravitational wave signals. The results
obtained in this work can be used for LIGO, LISA, and the next generation of gravitational
wave detectors.

7. Conclusions

For models of plane gravitational waves in Shapovalov spaces of type III, on the basis
of the Hamilton–Jacobi formalism, exact solutions for the trajectories of test particles and
the exact solution of geodesic deviation equations were obtained. The geodesic devia-
tion velocities and tidal accelerations of a gravitational wave were found in a privileged
coordinate system, where the spacetime metric depended on the wave variable.

Using the obtained results, an explicit analytical transformation into a synchronous
(laboratory) frame of reference associated with a freely falling observer on the base geodesic
was found. The synchronous reference system allows one to synchronize time at different
points in space and separate time and spatial variables, which is important for the observer
and makes the resulting models physically illustrative.

In the synchronous reference system, the form of the metric, the geodesic deviation
vector, the deviation velocity, and the tidal accelerations in a gravitational wave are found.

The obtained exact solutions make it possible to calculate the secondary physical
effects through the action of gravitational waves.
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Appendix A. Tidal Accelerations of a Gravitational Wave in a Privileged
Coordinate System

We will use the prime at the top to denote the derivative of functions of one variable:(
gab
)′

=
d

dx0 gab(x0). (A1)

Let us recall that on the base geodesic, the variable x0 is equal to λ1τ, where τ is
the proper time of the particle and λk represents the constants determined by the initial
values of the particle velocity components on the base geodesic. The constants ϑk and ρk
are determined by the initial values of the velocity and relative position of the particle on
the adjacent geodesic. The constants ξ2 and ξ3 are auxiliary notations given by the relations
in Equation (33).

Below is a general form of the tidal accelerations Aα(τ) = D2ηα/dτ2 acting on test
particles in a gravitational wave with the metric gαβ(x0) (Equation (14)) and the deviation
vector ηα(τ) (Equations (29)–(32)) in the privileged coordinate system in a general case
without taking into account the field equations:

A0 = 0, (A2)

A1(τ) =
λ1ϑ3

4(B2 −AC)2

[
2
(
λ2A′′ + λ3B′′

)
B3

−
(

3λ3B′
2
+ 3A′

(
2λ2B′ + λ3C ′

)
+ 2A

(
λ2B′′ + λ3C ′′

))
B2

+B
(

3A
(

2λ2B′
2
+ 3λ3C ′B′ + λ2A′C ′

)
+C
(

3λ2B′
2
+ 3λ3B′A′ − 2A

(
λ2A′′ + λ3B′′

)))
+A

(
C
(
−3λ3B′

2 − 3λ2A′B′ + 2A
(
λ2B′′ + λ3C ′′

))
−3AC ′

(
λ2B′ + λ3C ′

))]

− λ1ϑ2

4(B2 −AC)2

[(
3λ2B′

2
+ 3λ3B′A′ − 2A

(
λ2A′′ + λ3B′′

))
C2

+C
(

2
(
λ2A′′ + λ3B′′

)
B2 + 2A

(
λ2B′′ + λ3C ′′

)
−
(

6λ3B′
2
+ 3A′

(
3λ2B′ + λ3C ′

))
B + 3AB′

(
λ2B′ + λ3C ′

))
+ B

(
−2
(
λ2B′′ + λ3C ′′

)
B2 − 3AC ′

(
λ2B′ + λ3C ′

)
+ 3
(

λ2B′
2
+ 2λ3C ′B′ + λ2A′C ′

)
B
)]
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+
1

4λ1(B2 −AC)2

[
ξ3Θ33

(
2
(
λ2A′′ + λ3B′′

)
B3

−
(

3λ3B′
2
+ 3A′

(
2λ2B′ + λ3C ′

)
+ 2A

(
λ2B′′ + λ3C ′′

))
B2

+B
(

3A
(

2λ2B′
2
+ 3λ3C ′B′ + λ2A′C ′

)
+C
(

3λ2B′
2
+ 3λ3B′A′ − 2A

(
λ2A′′ + λ3B′′

)))
+A

(
C
(
−3λ3B′

2 − 3λ2A′B′ + 2A
(
λ2B′′ + λ3C ′′

))
−3AC ′

(
λ2B′ + λ3C ′

)))
−ξ2Θ22

((
3λ2B′

2
+ 3λ3B′A′ − 2A

(
λ2A′′ + λ3B′′

))
C2

+C
(

2
(
λ2A′′ + λ3B′′

)
B2

−
(

6λ3B′
2
+ 3A′

(
3λ2B′ + λ3C ′

)
− 2A

(
λ2B′′ + λ3C ′′

))
B

+ 3AB′
(
λ2B′ + λ3C ′

))
+B
(
−2
(
λ2B′′ + λ3C ′′

)
B2 − 3AC ′

(
λ2B′ + λ3C ′

)
+3
(

λ2B′
2
+ 2λ3C ′B′ + λ2A′C ′

)
B
))

+Θ23

(
2
(
λ2ξ2A′′ + (λ3ξ2 + λ2ξ3)B′′ + λ3ξ3C ′′

)
B3

−B2
[
3(λ3ξ2 + λ2ξ3)B′

2
+ 6λ3ξ3C ′B′ + 2ξ2A

(
λ2B′′ + λ3C ′′

)
+3A′

(
2λ2ξ2B′ + (λ3ξ2 + λ2ξ3)C ′

)
+ 2ξ3C

(
λ2A′′ + λ3B′′

)]
+ B

(
3A
(

2λ2ξ2B′
2
+ (3λ3ξ2 + λ2ξ3)C ′B′ + C ′

(
λ2ξ2A′ + λ3ξ3C ′

))
+C
(

3λ2ξ2B′
2
+ 3
(
(λ3ξ2 + 3λ2ξ3)B′ + λ3ξ3C ′

)
A′ + 6λ3ξ3B′

2

−2A
(
λ2ξ2A′′ + (λ3ξ2 + λ2ξ3)B′′ + λ3ξ3C ′′

)))
−3ξ2A2C ′

(
λ2B′ + λ3C ′

)
+ξ3C2

(
−3λ2B′

2 − 3λ3B′A′ + 2A
(
λ2A′′ + λ3B′′

))
+AC

(
−3(λ3ξ2 + λ2ξ3)B′

2 − 3λ2ξ2A′B′

−3λ3ξ3C ′B′ + 2ξ2A
(
λ2B′′ + λ3C ′′

)))]
, (A3)
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A2(τ) =
λ1

2ϑ3

4(B2 −AC)2

[
−2A′′B3 + 2

(
3A′B′ +AB′′

)
B2

−
(

3A
(

2B′ 2
+A′C ′

)
+ C

(
3B′ 2 − 2AA′′

))
B

+A
(
3AB′C ′ + C

(
3A′B′ − 2AB′′

))]

+
λ1

2ϑ2

4(B2 −AC)2

[(
3B′ 2 − 2AA′′

)
C2

+
(

2A′′B2 +
(
2AB′′ − 9A′B′

)
B + 3AB′ 2

)
C

+B
(
−2B′′B2 + 3

(
B′ 2

+A′C ′
)
B − 3AB′C ′

)]

+
1

4(B2 −AC)2

[
ξ3Θ33

(
−2A′′B3 + 2

(
3A′B′ +AB′′

)
B2

−
(

3A
(

2B′ 2
+A′C ′

)
+ C

(
3B′ 2 − 2AA′′

))
B

+A
(
3AB′C ′ + C

(
3A′B′ − 2AB′′

)))
+ξ2Θ22

((
3B′ 2 − 2AA′′

)
C2

+
(

2A′′B2 +
(
2AB′′ − 9A′B′

)
B + 3AB′ 2

)
C

+B
(
−2B′′B2 + 3

(
B′ 2

+A′C ′
)
B − 3AB′C ′

))
+Θ23

(
−2
(
ξ2A′′ + ξ3B′′

)
B3

+
(

3ξ3B′
2
+ 3A′

(
2ξ2B′ + ξ3C ′

)
+ 2ξ3CA′′ + 2ξ2AB′′

)
B2

−B
[
3A
(

2ξ2B′
2
+ ξ3C ′B′ + ξ2A′C ′

)
+C
(

3ξ2B′
2
+ 9ξ3B′A′ − 2A

(
ξ2A′′ + ξ3B′′

))]
+3ξ2A2B′C ′ + ξ3C2

(
3B′ 2 − 2AA′′

)
+AC

(
3ξ3B′

2
+ 3ξ2A′B′ − 2ξ2AB′′

))]
, (A4)
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A3(τ) =
λ1

2ϑ3

4(B2 −AC)2

[
−2B′′B3 +

(
3B′ 2

+ 3A′C ′ + 2AC ′′
)
B2

+
(
C
(
2AB′′ − 3A′B′

)
− 9AB′C ′

)
B

+A
(

3AC ′ 2
+ C

(
3B′ 2 − 2AC ′′

))]

+
λ1

2ϑ2

4(B2 −AC)2

[(
3A′B′ − 2AB′′

)
C2

+
(

2B′′B2 +
(
−6B′ 2 − 3A′C ′ + 2AC ′′

)
B + 3AB′C ′

)
C

+B
(
−2C ′′B2 + 6B′C ′B − 3AC ′ 2

)]

+
1

4(B2 −AC)2

[
ξ3Θ33

(
−2B′′B3 +

(
3B′ 2

+ 3A′C ′ + 2AC ′′
)
B2

+
(
C
(
2AB′′ − 3A′B′

)
− 9AB′C ′

)
B

+A
(

3AC ′ 2
+ C

(
3B′ 2 − 2AC ′′

)))
+ ξ2Θ22

((
3A′B′ − 2AB′′

)
C2

+
(

2B′′B2 +
(
−6B′ 2 − 3A′C ′ + 2AC ′′

)
B + 3AB′C ′

)
C

+B
(
−2C ′′B2 + 6B′C ′B − 3AC ′ 2

))
+Θ23

(
−2B3(ξ2B′′ + ξ3C ′′

)
+
(

3ξ2B′
2
+ 6ξ3C ′B′ + 3ξ2A′C ′ + 2ξ3CB′′ + 2ξ2AC ′′

)
B2

−
(

3AC ′
(
3ξ2B′ + ξ3C ′

)
+C
(

6ξ3B′
2
+ 3A′

(
ξ2B′ + ξ3C ′

)
− 2A

(
ξ2B′′ + ξ3C ′′

)))
B

+3ξ2A2C ′ 2
+ ξ3C2(3A′B′ − 2AB′′

)
+AC

(
3ξ2B′

2
+ 3ξ3C ′B′ − 2ξ2AC ′′

))]
. (A5)

Here, we use the notation for the metric components gαβ and their integrals introduced
earlier:

A = g22(x0), B = g23(x0), C = g33(x0), Θab(x0) =
∫

gab(x0) dx0.

The quantities λ1, λ2, λ3, ϑ1, ϑ2, ϑ3, ξ2, and ξ3 are constant parameters determined by
the initial conditions.
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Appendix B. Tidal Accelerations of a Gravitational Wave in a Synchronous Frame
of Reference

Below is the form of the tidal accelerations Ãα(τ) = D2η̃α/dτ2 acting on test particles
in a gravitational wave with the metric g̃αβ(τ, x̃k) (Equations (52) and (53)) and deviation
vector η̃α(τ), taking into account the Einstein vacuum in Equation (16) in the synchronous
reference system:

Ã0 = 0, (A6)

Ã1 = 0, (A7)

Ã2(τ) =
λ1

3ϑ3

4(Θ232 −Θ22Θ33)(B2 −AC)2

[
Θ33

(
2A′′B3

+
(

3A
(

2B′ 2
+A′C ′

)
+ C

(
3B′ 2 − 2AA′′

))
B

+A
(
C
(
2AB′′ − 3A′B′

)
− 3AB′C ′

)
−2
(
3A′B′ +AB′′

)
B2
)

+Θ23

(
−2B′′B3 +

(
3B′ 2

+ 3A′C ′ + 2AC ′′
)
B2

+
(
C
(
2AB′′ − 3A′B′

)
− 9AB′C ′

)
B

+A
(

3AC ′ 2
+ C

(
3B′ 2 − 2AC ′′

)))]
− λ1

3ϑ2

4(Θ232 −Θ22Θ33)(B2 −AC)2

[
Θ33

((
3B′ 2 − 2AA′′

)
C2

+
(

2A′′B2 +
(
2AB′′ − 9A′B′

)
B + 3AB′ 2

)
C

+B
(
−2B′′B2 + 3

(
B′ 2

+A′C ′
)
B − 3AB′C ′

))
+Θ23

((
2AB′′ − 3A′B′

)
C2

+C
(
B
(

6B′ 2
+ 3A′C ′ − 2AC ′′

)
−2B′′B2 − 3AB′C ′

)
+B
(

2C ′′B2 − 6B′C ′B + 3AC ′ 2
))]

+
λ1ξ3

4(Θ232 −Θ22Θ33)(B2 −AC)2

[
Θ23

2

((
3A′B′ − 2AB′′

)
C2

+
(

2B′′B2 +
(
−6B′ 2 − 3A′C ′ + 2AC ′′

)
B + 3AB′C ′

)
C

+B
(
−2C ′′B2 + 6B′C ′B − 3AC ′ 2

))
+Θ23Θ33

(
2AA′′ − 3A′B + 3AC ′ 2

)
+Θ33

2
(

2A′′B3 − 2
(
3A′B′ +AB′′

)
B2

+
(

3A
(

2B′ 2
+A′C ′

)
+ C

(
3B′ 2 − 2AA′′

))
B

+A
(
C
(
2AB′′ − 3A′B′

)
− 3AB′C ′

))]
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+
λ1ξ2

4(Θ232 −Θ22Θ33)(B2 −AC)2

[
Θ23

2
(
−2B′′B3

+
(

3B′ 2
+ 3A′C ′ + 2AC ′′

)
B2

+
(
C
(
2AB′′ − 3A′B′

)
− 9AB′C ′

)
B

+A
(

3AC ′ 2
+ C

(
3B′ 2 − 2AC ′′

)))
+Θ23

(
Θ33

(
2A′′B3 − 2

(
3A′B′ +AB′′

)
B2

+
(

3A
(

2B′ 2
+A′C ′

)
+ C

(
3B′ 2 − 2AA′′

))
B

+A
(
C
(
2AB′′ − 3A′B′

)
− 3AB′C ′

))
+Θ22

((
3A′B′ − 2AB′′

)
C2

+C
(

2B′′B2 +
(

3AB′C ′ − 6B′ 2 − 3A′C ′ + 2AC ′′
)
B
)

+B
(
−2C ′′B2 + 6B′C ′B − 3AC ′2

)))
−Θ22Θ33

((
3B′ 2 − 2AA′′

)
C2

+
(

2A′′B2 +
(
2AB′′ − 9A′B′

)
B + 3AB′ 2

)
C

+B
(
−2B′′B2 + 3

(
B′ 2

+A′C ′
)
B − 3AB′C ′

))]
, (A8)

Ã3(τ) = − λ1
3ϑ3

4(Θ232 −Θ22Θ33)(B2 −AC)2

[
Θ23

(
2A′′B3

− 2
(
3A′B′ +AB′′

)
B2

+
(

3A
(

2B′ 2
+A′C ′

)
+ C

(
3B′ 2 − 2AA′′

))
B

+A
(
C
(
2AB′′ − 3A′B′

)
− 3AB′C ′

))
+Θ22

(
−2B′′B3 +

(
3B′ 2

+ 3A′C ′ + 2AC ′′
)
B2

+
(
C
(
2AB′′ − 3A′B′

)
− 9AB′C ′

)
B

+A
(

3AC ′ 2
+ C

(
3B′ 2 − 2AC ′′

)))]
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+
λ1

3ϑ2

4(Θ232 −Θ22Θ33)(B2 −AC)2

[
Θ23

((
3B′ 2 − 2AA′′

)
C2

+
(

2A′′B2 +
(
2AB′′ − 9A′B′

)
B + 3AB′ 2

)
C

+B
(
−2B′′B2 + 3

(
B′ 2

+A′C ′
)
B − 3AB′C ′

))
+Θ22

((
2AB′′ − 3A′B′

)
C2

+
(
−2B′′B2 +

(
6B′ 2

+ 3A′C ′ − 2AC ′′
)
B − 3AB′C ′

)
C

+B
(

2C ′′B2 − 6B′C ′B + 3AC ′ 2
))]

+
λ1ξ2

4(Θ232 −Θ22Θ33)(B2 −AC)2

[
Θ22

2
((

2AB′′ − 3A′B′
)
C2

+
(
−2B′′B2 +

(
6B′ 2

+ 3A′C ′ − 2AC ′′
)
B − 3AB′C ′

)
C

+B
(

2C ′′B2 − 6B′C ′B + 3AC ′ 2
))

+Θ22Θ23

((
3B′ 2 − 2AA′′

)
C2

+2
(
C ′′A2 − 3BA′B′ + B2A′′

)
C

+A
(
−2C ′′B2 + 6B′C ′B − 3AC ′ 2

))
+Θ23

2
(
−2A′′B3 + 2

(
3A′B′ +AB′′

)
B2

−B
(

3A
(

2B′ 2
+A′C ′

)
+ C

(
3B′ 2 − 2AA′′

))
+A

(
3AB′C ′ + C

(
3A′B′ − 2AB′′

)))]
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+
λ1ξ3

4(Θ232 −Θ22Θ33)(B2 −AC)2

[
Θ23

2
((

3B′ 2 − 2AA′′
)
C2

+
(

2A′′B2 +
(
2AB′′ − 9A′B′

)
B + 3AB′ 2

)
C

+B
(
−2B′′B2 + 3

(
B′ 2

+A′C ′
)
B − 3AB′C ′

))
+Θ23Θ33

(
−2A′′B3 + 2

(
3A′B′ +AB′′

)
B2

−
(

3A
(

2B′ 2
+A′C ′

)
+ C

(
3B′ 2 − 2AA′′

))
B

+A
(
3AB′C ′ + C

(
3A′B′ − 2AB′′

)) )
+Θ22Θ23

((
2AB′′ − 3A′B′

)
C2

−
(

2B′′B2 −
(

6B′ 2
+ 3A′C ′ − 2AC ′′

)
B + 3AB′C ′

)
C

+B
(

2C ′′B2 − 6B′C ′B + 3AC ′ 2
))

+Θ22Θ33

(
2B′′B3 −

(
3B′ 2

+ 3A′C ′ + 2AC ′′
)
B2

+
(
9AB′C ′ + C

(
3A′B′ − 2AB′′

))
B

+A
(
C
(

2AC ′′ − 3B′ 2
)
− 3AC ′ 2

))]
. (A9)

Here the one-variable functions A, B, C, and Θab depend on the base geodetic line on the
product λ1τ, where τ is the time in the synchronous reference frame. The quantities λ1, λ2,
λ3, ϑ1, ϑ2, ϑ3, ξ2, and ξ3 are constant parameters determined by the initial conditions.
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