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Abstract: This paper introduces several refinements of the classical Selberg inequality, which is
considered a significant result in the study of the spectral theory of symmetric spaces, a central
topic in the field of symmetry studies. By utilizing the contraction property of the Selberg operator,
we derive improved versions of the classical Selberg inequality. Additionally, we demonstrate the
interdependence among well-known inequalities such as Cauchy–Schwarz, Bessel, and the Selberg
inequality, revealing that these inequalities can be deduced from one another. This study showcases
the enhancements made to the classical Selberg inequality and establishes the interconnectedness of
various mathematical inequalities.
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1. Introduction

In mathematics, inequalities have played a prominent role across various branches for
an extensive period. A significant milestone in the study of inequalities was the publication
of “Inequalities” by G. H. Hardy, J. Littlewood, and J. Polya in 1934 [1]. This seminal work
not only shaped the field but also provided valuable insights, techniques, and applications,
establishing inequalities as a well-structured discipline. Another noteworthy contribution
came in 1961 when Edwin F. Beckenbach and R. Bellman authored a significant book on
the subject [2]. This publication further enriched the field of inequalities, reinforcing its
importance and offering additional perspectives for research exploration. These important
publications have greatly influenced the study of inequalities, laying a strong foundation
and inspiring more research in the field. For more details, readers can consult the references
mentioned. Inspired by the long history of inequalities and their practical applications,
this paper aims to enhance the classical Selberg inequality. Our objective is to deepen
our understanding of this inequality and explore its implications. Before delving into
our main focus, it is worthwhile to review well-known and widely studied inequalities
in inner product spaces, which can be either real or complex. For simplicity, we consider
our space E as a complex Hilbert space with an inner product denoted as 〈·, ·〉, and the
corresponding norm as ‖ · ‖. One of the fundamental inequalities in inner product spaces
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is the Cauchy–Schwarz inequality (CSI), which is highly important and widely applicable.
It can be expressed as follows:

|〈u, v〉| ≤ ‖u‖‖v‖, (1)

for any u, v ∈ E. Equality in (1) occurs if and only if u is a scalar multiple of v, where the
scalar is a complex number γ ∈ C; namely, u = γv.

Buzano [3] derived an extension of the Cauchy–Schwarz inequality, called the Buzano
inequality (BuI), in which:

|〈u, z〉〈z, v〉| ≤ 1
2
(
|〈u, v〉|+ ‖u‖‖v‖

)
‖z‖2,

holds for any u, z, v ∈ E. The Buzano inequality is an important extension of the Cauchy–
Schwarz inequality, and it has significant implications in various mathematical contexts.
Additionally, Fujii and Kubo [4] presented a simple proof of the Buzano inequality (BuI) by
using an orthogonal projection onto a subspace of E and the Cauchy–Schwarz inequality
(CSI). They also provided conditions that determine when equality is achieved in the inequality.

Furthermore, the significance of Bessel’s inequality (BeI) in the field of functional
analysis is well-known. This fundamental result has important applications in various areas
of mathematics and engineering. Bessel’s inequality states that for any set of orthonormal
vectors e1, e2, . . . , en in E (i.e., 〈ep, eq〉 = δpq for all p, q ∈ {1, . . . ,n}, where δpq is the
Kronecker delta symbol), the following inequality can be found in [5] and holds for any
vector u ∈ E:

n

∑
p=1
|〈u, ep〉|2 ≤ ‖u‖2. (2)

Additional results related to Bessel’s inequality can be found in references [5–7], for readers
who are interested in exploring this topic further.

A. Selberg made a noteworthy discovery in the generalization of Bessel’s inequality,
which can be found in [5]. If we consider vectors u, z1, . . . , zn in E, where zp 6= 0 for all
p ∈ 1, . . . ,n, we can invoke Selberg’s inequality (SI), which asserts that:

n

∑
p=1

|〈u, zp〉|2

∑n
q=1|〈zp, zq〉|

≤ ‖u‖2. (3)

An important observation is, if the vectors zp are orthonormal for all p ∈ {1, . . . ,n},
inequality (3) simplifies to Bessel’s inequality (2). Selberg’s inequality has many practical
applications in the fields of harmonic analysis and mathematical physics, and has been
studied extensively by researchers. For example, significant works such as [8,9] have
explored the implications and uses of Selberg’s inequality. This inequality is closely con-
nected to the concept of symmetry, particularly to the theory of automorphic forms and
the study of symmetric spaces [10,11]. Automorphic forms are functions on symmetric
spaces that remain unchanged under a group of symmetries, like the group of isometries
of a hyperbolic space or the group of unitary matrices in n dimensions [12]. The Selberg
inequality provides a way to estimate the size of certain functions on symmetric spaces,
which is closely related to the distribution of eigenvalues of the Laplacian operator on
the space [13]. As a result, the Selberg inequality is an important result in the study of
the spectral theory of symmetric spaces, which is a central topic in the field of symmetry
studies [14,15].

It should be highlighted that equality in (3) is satisfied if and only if u = ∑n
i=1 aizi for

complex scalars a1, · · · , an that meet certain conditions. Specifically, for any i 6= j, we have
〈zi, zj〉 = 0 or |ai| = |aj | with 〈aizi, ajzj〉 ≥ 0 (refer to Theorem 1 in [16]).
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Furthermore, the use of inequality (3) can lead to the derivation of the Bombieri
Inequality ([17]). Specifically, if we consider vectors u, z1, . . . , zn in E, Bombieri’s inequality
asserts that:

n

∑
p=1
|〈u, zp〉|2 ≤ ‖u‖2 max

1≤p≤n

n

∑
q=1
|〈zp, zq〉|.

In [18], a refinement of the Selberg inequality is presented. Specifically, the authors
consider vectors u, v, z1, . . . , zn in E, where zp 6= 0, and 〈v, zp〉 = 0 for all p ∈ {1, . . . ,n}.
Under these conditions, the inequality can be expressed as:

|〈u, v〉|2 +
n

∑
p=1

|〈u, zp〉|2

∑n
q=1 |〈zp, zq〉|

‖v‖2 ≤ ‖u‖2‖v‖2. (4)

The Selberg inequality is an important mathematical result that has many applications
in fields like number theory and harmonic analysis, particularly in the study of symmetric
spaces and automorphic forms. However, it has some limitations that make it less useful
in certain situations. For example, it only applies to certain types of functions that exhibit
certain symmetries, which limits its usefulness in more general settings. In our paper,
we aim to improve the Selberg inequality by using the fact that the Selberg operator is a
contraction. This allows us to create new and better versions of the Selberg inequality that
can be used in more situations and give us new insights into the Selberg operator. We also
explore the connections between well-known inequalities like the Cauchy–Schwarz, Bessel,
and Selberg inequalities, showing how they can be used to create new results. Our research
has the potential to improve our understanding of mathematics and have applications in
fields like analysis and number theory.

2. Generalized Selberg Inequality

Throughout this work, we denote by E a complex and infinite-dimensional Hilbert
space. The C∗-algebra of all bounded linear operators acting on E is represented by L(E).
The inner product on E is denoted by 〈·, ·〉, and the corresponding norm is denoted by ‖ · ‖.
The identity operator on E is represented by I . For any operator T ∈ L(E), we denote its
nullspace asN (T ), and its adjoint by T ∗. We define a positive operator as T ≥ 0, signifying
that 〈Tu,u〉 ≥ 0 for all u ∈ E. Furthermore, an order relation T ≥ S is introduced for
self-adjoint operators, which holds when T − S ≥ 0.

Assuming T is a positive operator, the operator Cauchy–Schwarz inequality can
be applied:

|〈Tu, v〉| ≤ 〈Tu,u〉
1
2 〈Tv, v〉

1
2 , (5)

where u, v ∈ E. Additionally, we can derive the following result:

‖Tu‖2 ≤ ‖T‖〈Tu,u〉, (6)

which is valid for any positive operator T and any vector u ∈ E.
In the upcoming proposition, we introduce an improved form of inequality (5).

Proposition 1. Assuming that T is a positive operator in L(E) and β ∈ [0, 1], we have:

|〈Tu, v〉|2 ≤ (1− β)〈Tu,u〉
1
2 〈Tv, v〉

1
2 |〈Tu, v〉|+ β〈Tu,u〉〈Tv, v〉

≤ 〈Tu,u〉〈Tv, v〉. (7)
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Proof. Assume that T is a positive operator in L(E), and let β ∈ [0, 1]. Utilizing the
inequality (5), we obtain the following for any u, v ∈ E:

〈Tu,u〉〈Tv, v〉 = (1− β)〈Tu,u〉〈Tv, v〉+ β〈Tu,u〉〈Tv, v〉

≥ (1− β)〈Tu,u〉
1
2 〈Tv, v〉

1
2 |〈Tu, v〉|+ β〈Tu,u〉〈Tv, v〉

≥ (1− β)|〈Tu, v〉|2 + β〈Tu,u〉〈Tv, v〉
≥

[
(1− β) + β

]
|〈Tu, v〉|2 = |〈Tu, v〉|2.

Hence, we have obtained the desired result.

The set W (S), also known as the numerical range, is obtained by applying the
quadratic form u → 〈Su,u〉 to the unit sphere of a space E, where S belongs to the
set L(E). To put it simply, W (S) is the set of all values obtained by taking the inner product
of Su with u, where u is a unit vector in E. The numerical range is a reflection of certain
geometric properties associated with the operator and is a subset of the complex plane. The
Toeplitz–Hausdorff Theorem establishes that W (S) is a convex set. The numerical radius,
also known as ω(S), is the maximum absolute value of the numbers in the numerical range
W (S), and it is defined as follows:

ω(S) = sup{|µ| : µ ∈ W (S)}.

Before delving into the upcoming discussion, it is crucial to recall that the notation
u⊗ v denotes a rank-one operator, which is defined as u⊗ v(z) = 〈z, v〉u. Here, u, v, and
z are vectors in the space E. Now, we will introduce the Selberg operator, denoted as SZ ,
which is defined as follows:

Definition 1. Given a subset Z = {zp : p = 1, · · · ,n} of nonzero vectors in the space E, the
Selberg operator SZ is defined by

SZ =
n

∑
p=1

zp ⊗ zp
∑n
q=1 |〈zp, zq〉|

∈ L(E).

Let us draw attention to the significance of the following remark.

Remark 1. (1) Utilizing the Selberg operator, we can rephrase the statement (SI) as follows:

0 ≤ 〈SZu,u〉 =
n

∑
p=1

|〈u, zp〉|2

∑n
q=1 |〈zp, zq〉|

≤ 〈u,u〉,

for any u ∈ E. As a consequence, we can conclude that all Selberg operators are positive
contractions, denoting that 0 ≤ SZ ≤ I . Moreover, this operator inequality allows us to infer
the following:

0 ≤ I − SZ ≤ I . (8)

(2) It follows from (8) that
ω(I − SZ ) = ‖I − SZ‖ ≤ 1.

In this article, we assume that the set Z = {zp : p = 1, · · · ,n} consists of non-zero
vectors in the space E.

The norm inequality presented in the following statement improves upon the previous
one by incorporating a simultaneous extension of the Selberg and Buzano inequalities,
which was derived by Fujii et al. This enhancement leads to a more accurate and useful
norm inequality that can be applied to a broader range of problems.
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Theorem 1. Let Z = {zp : p = 1, · · · ,n} be a subset containing vectors that are not equal to the
zero vector in E. Then

‖I − SZ‖ = 1.

Proof. Suppose we have three vectors u, v1, and v2 in E, where ‖u‖ = 1, v1 and v2 are
nonzero vectors, and 〈vp, zq〉 = 0 for p = 1, 2 and q = 1, · · · ,n. Using Theorem 2.3 from
reference [19], we obtain the following inequality:

|〈Tu,u〉|+ ϕ(v1, v2)〈SZu,u〉 ≤ ϕ(v1, v2), (9)

where T = v1 ⊗ v2 and

ϕ(v1, v2) =
1
2

(
|〈v1, v2〉|+ ‖v1‖‖v2‖

)
.

We can infer the following from Inequality (9):

|〈Tu,u〉| ≤ ϕ(v1, v2)〈(I − SZ )u,u〉 ≤ ϕ(v1, v2).

One can derive the following result by taking the supremum over u ∈ E such that
‖u‖ = 1:

ω(T ) ≤ ϕ(v1, v2)ω(I − SZ ) ≤ ϕ(v1, v2).

By utilizing Lemma 2.1 from reference [20] and the identity

tr(v1 ⊗ v2) = 〈v1, v2〉,

we can arrive at

ω(T ) =
1
2
(|tr(v1 ⊗ v2)|+ ‖v1 ⊗ v2‖) =

1
2
(|〈v1, v2〉|+ ‖v1‖‖v2‖) = ϕ(v1, v2).

Using this equation, we can see that

ϕ(v1, v2) = ϕ(v1, v2)ω(I − SZ ).

Since ϕ(v1, v2) is nonzero, we can conclude that the desired result holds.

We can obtain a first refinement of (SI) by considering the positivity of I − SZ .

Proposition 2. Let Z = {zp : p = 1, · · · ,n} be a subset containing vectors that are not equal to
the zero vector in E. Then, for any u ∈ E, we have

〈SZu,u〉+ ‖(I − SZ )u‖2 ≤ ‖u‖2. (10)

Proof. By taking T = I − SZ in (6), we obtain from Theorem 1 the following:

‖(I − SZ )u‖2 ≤ 〈(I − SZ )u,u〉 = ‖u‖2 − 〈SZu,u〉, (11)

for any u ∈ E. Therefore, we have established the inequality that we were aiming to prove.

Let Z denote a set of nonzero vectors in E that are orthonormal. Then SZ and I − SZ
are orthogonal projections on Z and Z⊥, respectively. Then, by the Pythagorean formula,
we have that

‖(I − SZ )u‖2 + ‖SZu‖2 = ‖u‖2,

for any u ∈ E. By the refinement obtained in Proposition 2, we attain the next generalization.
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Corollary 1. Let Z = {zp : p = 1, · · · ,n} be a subset of nonzero vectors in E, then

‖(I − SZ )u‖2 + ‖SZu‖2 ≤ ‖u‖2,

for any u ∈ E.

Proof. The proof is a direct consequence of (6) and (10).

As a consequence of (11), we have the following refinement of the Selberg inequality.

Corollary 2. Let Z = {zp : p = 1, · · · ,n} be a subset of nonzero vectors in E. Then

〈SZu,u〉‖v‖2 ≤ |〈(I − SZ )u, v〉|2 + 〈SZu,u〉‖v‖2

≤ ‖(I − SZ )u‖2‖v‖2 + 〈SZu,u〉‖v‖2 ≤ ‖u‖2‖v‖2,

for any u, v ∈ E.

Proof. Using Inequality (11) we have

‖(I − SZ )u‖2 ≤ 〈(I − SZ )u,u〉 = ‖u‖2 − 〈SZu,u〉.

By multiplying both sides of the equation by ‖v‖2, we can apply the (CSI) to obtain:

‖u‖2‖v‖2 ≥ ‖(I − SZ )u‖2‖v‖2 + 〈SZu,u〉‖v‖2

≥ |〈(I − SZ )u, v〉|2 + 〈SZu,u〉‖v‖2

≥ 〈SZu,u〉‖v‖2,

for all elements u and v in the set E, we can deduce the intended inequality.

In the subsequent statement, we observe that the preceding inequality leads to an
enhancement of the expression mentioned as (4).

Proposition 3. Let Z = {zp : p = 1, · · · ,n} be a subset of nonzero vectors in E and z ∈ E such
that 〈z, zp〉 = 0 for all p = 1, · · · ,n, then

|〈u, z〉|2 + 〈SZu,u〉‖z‖2 ≤ ‖(I − SZ )u‖2‖z‖2 + 〈SZu,u〉‖z‖2

≤ ‖u‖2‖z‖2.

for any u, v ∈ E.

Proof. Let z ∈ E such that 〈z, zp〉 = 0 for all p = 1, · · · ,n, then SZz = 0, 〈SZu, z〉 =
〈u,SZz〉 = 0, and

|〈u, z〉|2 = |〈u, z〉 − 〈u,SZz〉|2 = |〈u, (I − SZ )z〉|2.

Now by the (CSI) we have that

|〈u, z〉|2 ≤ ‖u‖2‖(I − SZ )z‖2.

Thus from Corollary 2, we obtain

|〈u, z〉|2 + 〈SZu,u〉‖z‖2 ≤ ‖u‖2‖(I − SZ )z‖2 + 〈SZu,u〉‖z‖2

≤ ‖u‖2‖z‖2.
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The forthcoming lemmas present a compilation of certain properties that will be
employed subsequently.

Lemma 1. Let Z be a subset containing vectors that are not equal to the zero vector in E and u ∈ E.
The subsequent conditions are equivalent:

(1) ‖SZu‖ = ‖u‖.
(2) 〈SZu,u〉 = ‖u‖2.
(3) u ∈ N (I − SZ ).

Proof. By using (6), (SI) and the fact that ‖SZ‖ ≤ 1, we can conclude that

‖SZu‖2 ≤ ‖SZ‖〈SZu,u〉 ≤ 〈SZu,u〉 ≤ ‖u‖2,

for any u ∈ E. If ‖SZu‖ = ‖u‖, then 〈SZu,u〉 = ‖u‖2. Now, if 〈SZu,u〉 = ‖u‖2 thus
〈SZu,u〉 = 〈u,u〉 or equivalently

〈(I − SZ )u,u〉 = 0.

As I − SZ ≥ 0, we conclude by (6) that ‖(I − SZ )u‖ = 0. On the other hand,
if u ∈ N (I − SZ ) then u = SZu.

Lemma 2. Let Z be a subset containing vectors that are not equal to the zero vector in E and u ∈ E.
The following conditions are equivalent.

(1) ‖(I − SZ )u‖ = ‖u‖.
(2) u ∈ N (SZ ).
(3) 〈u, zp〉 = 0 for all p = 1, · · · ,n.

Proof. If ‖(I − SZ )u‖ = ‖u‖, then by (SI) and (10), we have that ‖SZu‖ = 0. Now, if
u ∈ N (SZ ) thus 〈SZu,u〉 = 0. Consequently, this leads to the conclusion that |〈u, zp〉| = 0
for all p = 1, · · · ,n. On the other hand, if 〈u, zp〉 = 0 for all p = 1, · · · ,n, then SZu = 0 and
‖(I − SZ )u‖ = ‖u‖.

By applying the earlier enhancement of (SI), derived in Corollary 2, and utilizing the
characterization of the instances where equality holds in the Selberg inequality, we can
attain a comprehensive depiction of the nullspace of I − SZ . Precisely, the ensuing theorem
provides the following complete description:

Theorem 2. Let Z = {zp : p = 1, · · · ,n} be a subset containing vectors that are not equal to
the zero vector in E. Thus, the nullspace N (I − SZ ) can be characterized as the collection of all
vectors u that can be represented as u = ∑n

i=1 aizi with ai ∈ C for i ∈ {1, . . . ,n}, subject to the
subsequent conditions for any arbitrary i 6= j:

〈zi, zj〉 = 0 or |ai| = |aj | with 〈aizi, ajzj〉 ≥ 0.

Moreover,N (I − SZ ) is also equal to FP(SZ ), which represents the set of fixed points of SZ .

Proof. This result follows directly from Lemma 1.

Because SZ ∈ L(E), the zero vector 0 belongs to the fixed-point setFP(SZ ). Moreover,
if there exists a nonzero vector u∗ ∈ FP(SZ ), then for any θ ∈ (0, 2π), the vector u∗θ = eiθu∗

also belongs toFP(SZ ), and u∗θ is distinct from u∗ (i.e., u∗θ 6= u∗). This implies thatFP(SZ )
contains infinitely many elements. In the next statement, we establish a characterization of
this condition in terms of the Selberg operator norm.
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Theorem 3. The fixed-point set FP(SZ ) contains an infinite number of elements if and only if
there exists a vector u1 ∈ E such that

‖u1‖ = ‖SZu1‖ = ‖SZ‖ = 1.

Proof. First, we suppose that there exists u1 ∈ E such that ‖u1‖ = ‖SZu1‖ = ‖SZ‖ = 1.
Using the Inequality (6) and (SI) we have

1 = ‖SZu1‖2 ≤ 〈SZu1,u1〉 ≤ ‖u1‖2 = 1.

Then, we obtain the equality 〈SZu1,u1〉 = ‖u1‖2 and by Lemma 1 we deduce that
u1 ∈ N (I − SZ ) with u1 6= 0. Hence we conclude that FP(SZ ) has infinite elements.

On the other hand, if FP(SZ ) has infinite elements. Let u1 ∈ FP(SZ ) such that
‖u1‖ = 1. Then, u1 ∈ N (I − SZ ) or equivalently 〈SZu1,u1〉 = ‖u1‖2 = 1. By the positivity
of SZ , we have that

1 = 〈SZu1,u1〉 ≤ sup{〈SZu,u〉 : ‖u‖ = 1} = ‖SZ‖ ≤ 1.

Finally, employing the fact that SZu1 = u1, we can deduce that ‖SZu1‖ = 1 = ‖SZ‖,
leading us to the intended result.

Proposition 4. FP(SZ ) = {0} if and only if ‖SZ‖ < 1.

Proof. Let us assume that ‖SZ‖ < 1. Based on this hypothesis, we can establish the
following inequality for any u ∈ E:

‖SZu‖ ≤ ‖SZ‖‖u‖ < ‖u‖.

Therefore, the Selberg operator is a strict contraction and, by the Banach Fixed Point
Theorem ([21]), SZ admits a unique fixed point in E. Then FP(SZ ) = {0}.

On the other hand, if FP(SZ ) = 0, it means that for any non-zero vector u ∈ E,
the operator SZ does not keep u unchanged, i.e., SZu 6= u, which is the same as saying
(I − SZ )u 6= 0. According to Lemma 1, this leads to the conclusion that

‖SZu‖ 6= ‖u‖,

for any non-zero u ∈ E. Specifically, for any u ∈ E with ‖u‖ = 1, we can deduce that
‖SZu‖ 6= 1. Since SZ is a finite rank operator, it is categorized as a compact operator.
Consequently, the set of points on the unit sphere in E where SZ achieves its norm is not
empty. Thus, it follows that ‖SZ‖ < 1.

By employing the (CSI) for positive operators (as indicated in (5)) and using the (SI),
we obtain the following expression:

|〈SZu, v〉| ≤ ‖u‖‖v‖. (12)

In the next proposition, we refine the aforementioned Inequality (12).

Proposition 5. Let Z = {zp : p = 1, · · · ,n} be a subset containing vectors that are not equal to
the zero vector in E. For any u, v ∈ E, the following inequality holds:

|〈SZu, v〉| ≤ 1
2

(
|〈u, v〉|+ ‖u‖‖v‖

)
. (13)

Proof. Consider u and v from the set E. By utilizing the properties (BuI) and (SI), we can
observe that:
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〈SZu,u〉|〈v,SZu〉| =
∣∣〈u,SZu〉〈SZu, v〉

∣∣
≤ ‖SZu‖2

2
(|〈u, v〉|+ ‖u‖‖v‖).

In particular, when 〈SZu,u〉 6= 0, we can use the Inequality (6) and property (SI) to de-
duce that

‖SZu‖2

〈SZu,u〉 ≤ 1.

As a result, this implies that:

|〈v,SZu〉| ≤
1
2
(|〈u, v〉|+ ‖u‖‖v‖).

Hence, (13) is proved as desired.

Remark 2. The Inequality (13) serves to demonstrate the validity of the Buzano inequality for
any Selberg operator. It is noteworthy to mention that one of the authors established in [22] that
Buzano’s inequality also holds for any orthogonal projection P .

Now, we proceed to generalize the Selberg inequality and, in particular, refine the
Inequalities (12) and (13) respectively.

Theorem 4. For any u, v ∈ E,

|〈SZu, v〉| ≤
∣∣∣∣〈SZu, v〉 − 1

2
〈u, v〉

∣∣∣∣+ 1
2
|〈u, v〉| ≤ 1

2
(|〈u, v〉|+ ‖u‖‖v‖). (14)

Proof. As 2SZ − I is a selfadjoint operator, then

ω(2SZ − I) = ‖2SZ − I‖.

On the other hand, we have

W (2SZ − I) = {2〈SZu,u〉 − 1 : u ∈ E, ‖u‖ = 1} ⊆ [−1, 1].

Then, ‖2SZ − I‖ ≤ 1. Now, for any u, v ∈ E, as consequece of the Cauchy–Schwarz
inequality we obtain the following:∣∣∣∣〈SZu, v〉 − 1

2
〈u, v〉

∣∣∣∣ = ∣∣∣∣〈(SZ − 1
2
I

)
u, v
〉∣∣∣∣

≤ 1
2
‖2SZ − I‖‖u‖‖v‖ ≤

1
2
‖u‖‖v‖.

Thus, as a consequence, we acquire:

|〈SZu, v〉| ≤
∣∣∣∣〈SZu, v〉 − 1

2
〈u, v〉

∣∣∣∣+ 1
2
|〈u, v〉| ≤ 1

2
(|〈u, v〉|+ ‖u‖‖v‖).

Remark 3. (1) From the the previous statement, we have∣∣∣∣〈SZu, v〉 − 1
2
〈u, v〉

∣∣∣∣ ≤ 1
2
‖u‖‖v‖. (15)
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If we consider Z = {z} with z 6= 0, then SZ = z⊗z
‖z‖2 is an orthogonal projection onto the

subspace spanned by {z}. Consequently, we obtain the well-known Richard’s inequality (see [23]):∣∣∣∣〈u, z〉〈z, v〉 − 1
2
〈u, v〉‖z‖2

∣∣∣∣ ≤ 1
2
‖u‖‖v‖‖z‖2, (16)

for all u, v, z ∈ E. As a result, we consider the Inequality (15) as an extension of (16).
(2) Using the fact that ‖2(I − SZ )− I‖ = ‖I − 2SZ‖ ≤ 1, and applying similar ideas used in

the proof of Theorem 4, we can establish that for any u, v ∈ E,

|〈(I − SZ )u, v〉| ≤
∣∣∣∣〈(I − SZ )u, v〉 − 1

2
〈u, v〉

∣∣∣∣+ 1
2
|〈u, v〉|

≤ 1
2
(|〈u, v〉|+ ‖u‖‖v‖).

Indeed, if we consider u = v in (14), we obtain a refinement of both (SI) and (BuI).
Specifically, the refined expressions are derived as follows:

Corollary 3. Let Z = {zp : p = 1, · · · ,n} be a subset of nonzero vectors in E, then for any u ∈ E,
we have

〈SZu,u〉 =
n

∑
p=1

|〈u, zp〉|2

∑n
q=1 |〈zp, zq〉|

≤
∣∣∣∣∣ n∑
p=1

|〈u, zp〉|2

∑n
q=1 |〈zp, zq〉|

− 1
2
‖u‖2

∣∣∣∣∣+ 1
2
‖u‖2 ≤ ‖u‖2.

In particular, if Z is an orthonormal set within E, then the refined Inequality (14) takes the
following form:

n

∑
p=1
|〈u, zp〉|2 ≤

∣∣∣∣∣ n∑
p=1
|〈u, zp〉|2 −

1
2
‖u‖2

∣∣∣∣∣+ 1
2
‖u‖2 ≤ ‖u‖2.

In [24], Dragomir obtained the following refinement of (CSI),

|〈u, v〉| ≤ |〈u, v〉 − 〈u, e〉〈e, v〉|+ |〈u, e〉〈e, v〉| ≤ ‖u‖‖v‖, (17)

for any u, v, e ∈ E, with ‖e‖ = 1. We note that if Z = {e}, then (17) can be express as follows:

|〈u, v〉| ≤ |〈u, v〉 − 〈SZu, v〉|+ 〈SZu,u〉
1
2 〈SZv, v〉

1
2 ≤ ‖u‖‖v‖. (18)

We can use a result from a previous study by Bottazzi et al. (see Theorem 4.2 in [25])
and the fact that SZ is always a positive contraction for any subset Z , to obtain a new and
improved version of the Cauchy–Schwarz Inequality (18). To make this article complete,
we have included the proof below.

Theorem 5. Consider Z a finite subset of nonzero vectors in E. For any u, v ∈ E, we have:

‖u‖‖v‖ ≥ |〈u, v〉 − 〈SZu, v〉|+ 〈SZu,u〉
1
2 〈SZv, v〉

1
2

≥ |〈u, v〉| − |〈SZu, v〉|+ 〈SZu,u〉
1
2 〈SZv, v〉

1
2

≥ |〈u, v〉|.

Proof. Keep in mind that for any real numbers xp with p = 1, · · · , 4, the following
inequality holds:

(x1x3 − x2x4)
2 ≥ (x2

1 − x2
2)(x

2
3 − x2

4). (19)
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In light of this, if we consider u and v from the set E, we can draw the following conclusion:(
‖u‖‖v‖ − 〈SZu,u〉

1
2 〈SZv, v〉

1
2

)2
≥ (‖u‖2 − 〈SZu,u〉)(‖v‖2 − 〈SZv, v〉)

= 〈(I − SZ )u,u〉〈(I − SZ )v, v〉. (20)

By (5) and the fact that I − SZ ≥ 0, we have

〈(I − SZ )u,u〉〈(I − SZ )v, v〉 ≥ |〈(I − SZ )u, v〉|2 = |〈u, v〉 − 〈SZu, v〉|2. (21)

Now, by (20) and (21),(
‖u‖‖v‖ − 〈SZu,u〉

1
2 〈SZv, v〉

1
2

)2
≥ |〈u, v〉 − 〈SZu, v〉|2, (22)

for any u, v ∈ E.
By calculating the square root of (22) and employing the fact that

‖u‖ ≥ 〈SZu,u〉
1
2 and ‖v‖ ≥ 〈SZv, v〉

1
2 ,

we obtain
‖u‖‖v‖ − 〈SZu,u〉

1
2 〈SZv, v〉

1
2 ≥ |〈u, v〉 − 〈SZu, v〉|.

As a consequence of the triangle inequality for the absolute value of real numbers, we
can deduce that

‖u‖‖v‖ − 〈SZu,u〉
1
2 〈SZv, v〉

1
2 ≥ |〈u, v〉 − 〈SZu, v〉|
≥ |〈u, v〉| − |〈SZu, v〉|. (23)

Now, we use Theorem 5 to obtain a lower and upper bound for

〈SZu,u〉
1
2 〈SZv, v〉

1
2 − |〈SZu, v〉|.

The bounds are related to the operator Cauchy–Schwarz inequality and (CSI), respectively.

Corollary 4. Let Z be a finite subset of nonzero vectors in E, then for any u, v ∈ E and
α ∈ [0, 1] hold

‖u‖‖v‖ − |〈u, v〉| ≥ 〈SZu,u〉
1
2 〈SZv, v〉

1
2 − |〈SZu, v〉|

≥ Iu,v,α − |〈SZu, v〉| ≥ 0,

where Iu,v,α =

√
(1− α)〈SZu,u〉 1

2 〈SZv, v〉 1
2 |〈SZu, v〉|+ α〈SZu,u〉〈SZv, v〉.

Proof. The second inequality is a direct consequence of the refinement of the operator
Cauchy–Schwarz inequality previously obtained in (7). Additionally, the first inequality is
derived from (23).

When considering Z as a finite, orthonormal subset of nonzero vectors in E in the
preceding statement, we arrive at the inequality previously derived by Dragomir and
Sándor in [6]. Specifically, we have:

|〈u, v〉| ≤ ‖u‖‖v‖+
∣∣∣∣∣ n∑
i=1
〈u, zi〉〈zi, v〉

∣∣∣∣∣−
(

n

∑
i=1
|〈u, zi〉|2

) 1
2
(

n

∑
i=1
|〈v, zi〉|2

) 1
2

(≤ ‖u‖‖v‖).

We present our next result, which is stated as follows.
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Theorem 6. Consider a finite subset Z of nonzero vectors in E. Then, for any u and v in the set E,
we have the following inequality:

|〈SZu, v〉 − 〈u, v〉|2 ≤ (‖u‖2 − 〈SZu,u〉)(‖v‖2 − 〈SZv, v〉)

≤
(
‖u‖‖v‖ − 〈SZu,u〉

1
2 〈SZv, v〉

1
2

)2
. (24)

Proof. In Equation (5), select the positive operator T = I − SZ . Then, for any u and v in
the set E, we obtain:

|〈SZu, v〉 − 〈u, v〉|2 = |〈(I − SZ )u, v〉|2

≤ 〈(I − SZ )u,u〉〈(I − SZ )v, v〉
= (‖u‖2 − 〈SZu,u〉)(‖v‖2 − 〈SZv, v〉).

With the help of (19), we can now conclude that:

|〈SZu, v〉 − 〈u, v〉|2 ≤ (‖u‖2 − 〈SZu,u〉)(‖v‖2 − 〈SZv, v〉)

≤
(
‖u‖‖v‖ − 〈SZu,u〉

1
2 〈SZv, v〉

1
2

)2
,

for any u, v ∈ E.

Remark 4. (1) In the work of Lin [26], the investigation of covariance-variance for bounded
linear operators defined on a Hilbert space E was initiated. Let us recall some definitions
introduced in that article. Let R,T ∈ L(E) and z 6= 0. The covariance of R and T is a
mapping Covz(R,T ) : E→ C defined by

Covz(R,T )u = ‖z‖2〈Ru,Tu〉 − 〈Ru, z〉〈z,Tu〉.

If R = T we obtain the variance of S

V arz(R)u = Covz(R,R)u = ‖z‖2‖Ru‖2 − |〈Ru, z〉|2.

In particular, if in the first inequality of (24) we consider Z =
{

z
‖z‖

}
and we replace u and v

by Ru and Tu, respectively, then

|Covz(R,T )u|2 = ‖z‖2|〈SZ (Ru),Tu〉 − 〈Ru,Tu〉|2

≤ ‖z‖2(‖Ru‖2 − 〈SZ (Ru),Ru〉)(‖Tu‖2 − 〈SZ (Tu),Tu〉)
= (V arz(R)u)(V arz(T )u).

The inequality mentioned earlier was previously derived by Lin and is commonly known as the
covariance-variance inequality (refer to Theorem 1 in [26]). In conclusion, the Inequality (24) is a
generalization of the covariance-variance inequality.

(2) By utilizing the second inequality of (24) and (SI), we can provide an alternative proof that the
Selberg operator SZ satisfies Buzano’s inequality (refer to Theorem 4). Specifically, we have:

|〈SZu, v〉 − 〈u, v〉| ≤ ‖u‖‖v‖ − 〈SZu,u〉
1
2 〈SZv, v〉

1
2 ,

for any u, v ∈ E. As a consequence of (5), we have

|〈SZu, v〉 − 〈u, v〉| ≤ ‖u‖‖v‖ − |〈SZu, v〉|.

Then,

|〈SZu, v〉| − |〈u, v〉| ≤ |〈SZu, v〉 − 〈u, v〉| ≤ ‖u‖‖v‖ − |〈SZu, v〉|,
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or equivalently

|〈SZu, v〉| ≤ 1
2
(|〈u, v〉|+ ‖u‖‖v‖).

The logical and historical significance of equivalent inequalities is widely recognized,
and a considerable body of literature has been devoted to investigating these connections.
To conclude, we demonstrate that the majority of the inequalities presented in this article,
namely (CSI), (SI), and (BeI), can be derived from one another. Indeed, our findings hold
true when (E, 〈·, ·〉) is a real or complex inner product space. The derived inequalities
maintain their validity in both real and complex settings.

Theorem 7. The subsequent inequalities are equivalent:

(1) Bessel inequality—If E = {ei : i = 1, · · · ,n} is an orthonormal set in E, then

n

∑
i=1
|〈u, ei〉|2 ≤ ‖u‖2,

for any u ∈ E.
(2) Cauchy–Schwarz inequality—For any u, v ∈ E, we have

|〈u, v〉| ≤ ‖u‖‖v‖.

(3) Selberg inequality—For given nonzero vectors Z = {zp : p = 1, · · · ,n} ⊆ E, the inequality

n

∑
p=1

|〈u, zp〉|2

∑n
q=1 |〈zp, zq〉|

≤ ‖u‖2,

holds for all u ∈ E.

Proof. (BeI)⇒ (CSI). Let u, v ∈ E with v 6= 0 (otherwise the CSI holds trivially). If (BeI)
holds, and we consider E =

{
v
‖v‖

}
, then∣∣∣∣〈u,

v

‖v‖
〉∣∣∣∣2 ≤ ‖u‖2.

(CSI)⇒ (SI). Assuming that (CSI) holds, we require the existence of a nonzero vector u0
satisfying the property 〈SZu0,u0〉 > 1, where ‖u0‖ = 1. Then, using the (CSI), we have

‖SZu0‖2 ≥ 〈SZu0,u0〉2 > 1. (25)

Therefore,

‖SZu0‖2 =

∥∥∥∥∥ n

∑
p=1

〈u0, zp〉zp
∑n
q=1 |〈zp, zq〉|

∥∥∥∥∥
2

=
n

∑
p,r=1

|〈u0, zp〉|
∑n
q=1 |〈zp, zq〉|

|〈u0, zr〉|
∑n
q=1 |〈zr, zq〉|

|〈zp, zr〉|

≤
n

∑
p=1

(
|〈u0, zp〉|

∑n
q=1 |〈zp, zq〉|

)2 n

∑
r=1
|〈zp, zr〉| =

n

∑
p=1

|〈u0, zp〉|2

∑n
q=1 |〈zp, zq〉|

.

From this, we can conclude that,

‖SZu0‖2 ≤ 〈SZu0,u0〉. (26)

Combining the Inequalities (25) and (26), we have

〈SZu0,u0〉 ≥ ‖SZu0‖2 ≥ 〈SZu0,u0〉2.
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This leads to a contradiction since 〈SZu0,u0〉2 > 1. Thus, we must conclude that the
initial assumption is incorrect, which implies that for all u ∈ E, we have:

〈SZu,u〉 =
n

∑
p=1

|〈u, zp〉|2

∑n
q=1 |〈zp, zq〉|

≤ ‖u‖2.

(SI)⇒ (BeI). For each u ∈ E and any E = {ei ∈ E : i = 1, · · · ,n} orthonormal set, we get

n

∑
j=1
|〈ei, ej〉| =

n

∑
j=1
|δij | = 1,

for any i ∈ {1, · · · ,n}. Then, by (SI) we conclude

n

∑
i=1
|〈u, ei〉|2 =

n

∑
i=1

|〈u, ei〉|2

∑n
j=1 |〈ei, ej〉|

= 〈SEu,u〉 ≤ ‖u‖2.

This demonstrates that the Selberg inequality implies the Bessel inequality.

Remark 5. It is worth noting that the Selberg inequality is more powerful than the Buzano
inequality. Specifically, if we choose Z = {z} in Theorem 4, where z is a nonzero vector, we derive
the following bound:

|〈u, z〉||〈z, v〉| ≤ 1
2
(|〈u, v〉|+ ‖u‖‖v‖)‖z‖2,

for all u, v ∈ E.

3. Conclusions

In conclusion, this paper has introduced several refinements of the classical Selberg
inequality using the contraction property of the Selberg operator. These refinements
have improved upon the classical Selberg inequality and have provided new insights
into the properties of the Selberg operator. Additionally, this paper has highlighted the
interconnections among well-known inequalities such as the Cauchy–Schwarz, Bessel, and
Selberg inequalities, demonstrating the significance of these inequalities and suggesting
potential avenues for further research in this field.

Moving forward, there are several interesting research questions related to the concept
of symmetry that could be explored. For instance, how can the Selberg inequality be
extended to other types of symmetric spaces or automorphic forms? Can the contraction
property of the Selberg operator be used to derive new inequalities in the context of
symmetry studies? Are there other inequalities that exhibit similar interconnections with the
Selberg inequality and can lead to further insights into the properties of symmetric spaces?
These questions and others could provide fruitful directions for future investigations into
the Selberg inequality and its associated inequalities.

Overall, this paper lays the groundwork for future research into the Selberg inequality
and its applications in various mathematical fields. We hope that these findings will inspire
other researchers to continue exploring the properties of the Selberg inequality and its
connections to other essential mathematical inequalities.
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