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Abstract: Graph burning was introduced to simulate the spreading of news/information/rumors in
social networks. The symmetric undirected graph is considered here. That is, vertex u can spread the
information to vertex v, and symmetrically vertex v can also spread information to vertex u. When it
is modeled as a graph burning process, a vertex can be set on fire directly or burned by its neighbor.
Thus, the task is to find the minimum sequence of vertices chosen as sources of fire to burn the entire
graph. This problem has been proved to be NP-hard. In this paper, from a new perspective, we
introduce a generalized model called the Independent Cascade Graph Burning model, where a vertex
v can be burned by one of its burning neighbors u only if the influence that u gives to v is larger
than a given threshold β ≥ 0. We determine the graph burning number with this new Independent
Cascade Graph Burning model for several graphs and operation graphs and also discuss its upper
and lower bounds.

Keywords: burning number; generalized burning number; Independent Cascade Model; generalized
Petersen graphs

1. Introduction

Bonato et al. [1–3] introduced the concept of the graph burning problem as a model
for social contagion. Given a finite connected graph G, the burning process on G is a
discrete-time process defined as follows.

Initially, all vertices are unburned. One vertex can be set on fire directly or burned by
its neighbor. At each step, only one vertex is selected to be set on fire, and simultaneously
all those vertices which have caught fire at the last step will burn all their neighbors. The
process does not stop until the entire graph is burned. Furthermore, if a vertex is burned,
the vertex remains in this state until the end of the process. The vertices selected as the
sources of fire are called the burning sequences; the shortest burning sequence is called the
optimum burning sequence. The length of the optimum burning sequence is called the
burning number b(G). Note that the smaller the burning number is, the faster a contagion
(such as news or gossip) spreads in the network. For a given network, finding the optimum
burning sequence has important applications in reality.

The graph burning problem has been proved to be NP-hard [4], and several approxi-
mation algorithms [4–6] and heuristics [7–9] were proposed. Among them, the Burning
Farthest-First (BFF) algorithm [6] has a better approximation ratio, which is 3− 2

b(G)
. For

heuristics, the Forward-Looking Search Strategy (GFSS) [8] and Component-Based Recur-
sive Heuristic (CBRH) algorithm [7] perform better. In addition to the above studies on
algorithms, researchers have paid attention to the bounds of the burning number [1,10,11]
and calculated the burning number for some special graphs, such as generalized Petersen
graphs [12], theta graphs [13], graph products [14,15], spiders and path forests [16].

The above mentioned graph burning model was used to simulate the spreading of
news/information/rumors in social networks. It is supposed that if a person obtains news
(or other social information) at time t− 1, all their neighbors will obtain the news at time t
and spread the news at time t + 1. However, in reality, we find that a person may not accept
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the news and further spread it to their neighbors if they receive this news from only one of
their neighbors. Based on this fact, Li et al. [17] proposed the generalized r-burning process
of G where a person will accept the news only if they received the news from more than
just their r neighbors, where r is a preset integer that serves as a threshold. This threshold,
‘r’, defines the minimum number of sources needed before the individual considers the
news credible enough for further propagation. They studied the generalized r-burning
number for several graphs and operation graphs.

However, in reality, the following situation may happen. For instance, as shown in
Figure 1a, if a person, namely A, has two friends, namely B and C. B is popular, while C
is not. As a result, the influence of A on these two friends is different. For B, since they
have many friends, A will have less influence on B. On the contrary, for C, since C has
fewer friends, A is very likely to be an important friend to C. So, A is likely to have more
influence on C than on B. Assume that at some step t, A is active/burned. It may happen
that at time t + 1, A can burn C but cannot burn B. However, in the above graph burning
models, vertex A’s activation ability on its neighbors is not distinguished. Thus, we should
introduce another model which can take this difference into account.

 

Friend Friend 

A B C 

Other 

 
Friends 

Other 

 
Friends 

(a) An example of friends related to A.

v

u

(b) An example of burning the vertex u.

Figure 1. Two examples of different friends of a person and a burning vertex.

In the information diffusion research field, there is another information diffusion
model called the Independent Cascade Model (abbreviated as the IC Model) [18] where
whether a vertex can activate its neighbors successfully or not depends on a threshold.
Inspired by the IC model, in this paper we propose a new generalized Independent Cascade
graph burning model for G, where a burned vertex v can successfully burn its unburned
neighbor w only if the influence that v exerts on w is larger than a given threshold β. Note
that when β = 0, it turns to be the traditional graph burning problem. Our task is still to
find the minimum sequence of vertices that can be chosen as sources of fire to burn the
entire graph. The minimum number of vertices or steps is called the IC burning number
bβ(G) of a graph G with a given threshold β.

In the following, after presenting some terminology in Section 2, we will discuss the
general bounds for bβ(G) in Section 3 and discuss the exact values of bβ(G) for several
special graphs in Section 4.

2. Terminology

All graphs considered in this paper are finite and simple. For notation and terminology
not defined here, refer to Bondy and Murty [19].

During the burn process in the IC model, we call a vertex xi burned outsideif xi is
selected to be set on fire and burned inside if xi is burned by its neighbor. For a given
threshold β, if all vertices of the graph are burned after k time steps, we call the fire source
sequence (x1, x2, . . . , xk) a β-burning sequence of graph G. Clearly, the generalized burning
number bβ(G) is the length of a minimum burning sequence among all β-burning sequences
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for graph G. If bβ(G) = k, we call sequence (x1, x2, . . . , xk) an optimum β-burning sequence
of G.

In reality, the influence a vertex u receives from its neighbor w can be an arbitrary
value in [0, 1], only with the restriction that the sum of influences that it receives should not
be larger than 1. For simplicity, in this paper, we assume a vertex u receives equal influence
from each of its neighbors, which is 1

d(u) . Note that u’s neighbors have equal chance to
activate u, but u has a different chance to activate its neighbors. For example, as shown in
Figure 1b, the influence from v1 to u is 1

3 because u has three friends, while the influence
from u to v1 is 1 because v1 has only one friend u. Then, whether a vertex can be burned
by its neighbor depends heavily on its degree. The more friends a vertex has, the more
difficult it is for one of its friends to activate it. For a vertex u, if the number of its neighbors
is less than 1

β (i.e., the influence from each of its neighbors is greater than β), vertex u can be
burned by any one of its burned neighbors. See Figure 1b; assume v1 or v2 is burned at time
t− 1, then u will be burned by v1 or v2 at time t if β = 1

4 < 1
3 and will not if β = 1

2 > 1
3 . On

the contrary, if u is burned at time t− 1, then v1 will be burned by u at time t for any β but
v2 will be burned by u at time t only if β ≤ 1

3 .
For convenience, we assign a parameter f (u) = 1

d(u) to each vertex u, representing the
influence that it receives from each of its neighbors. For a directed graph,
f (u) = 1

d−(u) , where d−(u) is the in-degree of vertex u. Clearly, bβ(G) = b(G) while

β ≤ 1
∆(G)

, where ∆(G) is the maximum degree of the graph G.

3. The Bounds for the IC Burning Number of Graphs

If G is a graph and u, v are two vertices of G, and the distance between them is denoted
by d(u, v). A shortest path between u and v is denoted by puv, and the fmin(puv) is defined
as min{ f (w) : w ∈ puv} where f (w) = 1

d(w)
as described above. The open neighborhood

N(v) is the set of vertices at distance one from a vertex v. Notice that v /∈ N(v). Meanwhile,
the closed neighborhood N[v] is the set of vertices at most one from a vertex v. In other
words, N[v] = N(v) ∪ {v}. Given a positive integer k, the k-th closed neighborhood of u
is defined to be the set {v ∈ V(G) : d(u, v) ≤ k}, which is denoted by Nk(v). Similarly,
given a positive integer k and fraction β, the k-th closed β-neighborhood of u is defined to
be the set {v ∈ V(G) : d(u, v) ≤ k, fmin(puv) ≥ β} and is denoted by Nk

β[v]. Suppose that
(x1, x2, . . . , xk) ( k ≥ 3) is a burning sequence for a given graph G.

The following set equation holds:

Nk−1
β [x1] ∪ Nk−2

β [x2] ∪ . . . ∪ N0
β[xk] = V(G) (1)

We denote N1
β[v] simply by Nβ[v].

Observation 1. Suppose G is a connected graph with n vertices and β1, β2 are two fractions with
β1 < β2. Then, bβ1(G) ≤ bβ2(G).

From the definition of the IC burning number, the following result can be directly obtained.

Theorem 1. Suppose G is a connected graph with n vertices and f (vi) < β for 1 ≤ i ≤ k, where
0 < β ≤ 1. Then, k ≤ bβ(G) ≤ n.

Next, we discuss the extremal cases of the IC burning number.

Theorem 2. Suppose G is a connected graph with n vertices and δ(G) is the minimum degree of
G. Then, bβ(G) = n if and only if β > 1

δ(G)
.

Proof. Let {x1, x2, . . . , xb} be a β-burning sequence of graph G and v0 be a vertex with
d(v0) = δ(G).
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First, if bβ(G) = n, then β > 1
δ(G)

. Otherwise, assume β ≤ f (v0) =
1

δ(G)
. Let the first fire

source x1 ∈ N(v0), then v0 will be burned in the second step. Meanwhile, we can choose
another vertex other than v0 as x2. Then, we find that there are at least three vertices that
will be burned in two steps. Furthermore, thus, there exist at most n− 3 vertices unburned
in the first two steps. So, we obtain bβ(G) ≤ 2 + (n− 3) = n− 1, which contradicts to
bβ(G) = n. Therefore, β > f (v0) =

1
δ(G)

.

On the other hand, if β > f (v0) =
1

δ(G)
, according to Theorem 1, we can easily obtain

bβ(G) = n.

Theorem 3. Suppose G is a graph with n vertices and ∆(G) is the maximum degree. Then, (x1, x2)
is an optimum β-burning sequence for G if and only if one of the following conditions is met:

(1) ∆(G) = d(x1) = n− 1, and f (w) ≥ β for all ∀w ∈ N(x1) \ {x2}.
(2) ∆(G) ≥ d(x1) = n− 2, and f (w) ≥ β for all ∀w ∈ N(x1).

Proof. Assume that (x1, x2) is an optimum β-burning sequence for G. According to
Equation (1), V(G) = Nβ[x1] ∪ x2, which shows that every vertex in set V(G) \ {x1, x2} is
adjacent to x1, and the influence of its neighbors on it is more than β. Since these vertices can
only be burned by x1 in the second step, there are two possible cases for x2: (1) If x2 ∈ N(x1),
then it implies that ∆(G) = d(x1) = n− 1 and for any w ∈ N(x1) \ x2, f (w) ≥ β. (2) If
x2 /∈ N(x1), then we must have ∆(G) ≥ d(x1) = n− 2 and for any w ∈ N(x1), f (w) ≥ β.

Conversely, since G has at least two vertices, then bβ(G) ≥ 2.
If ∆(G) = d(x1) = n− 1, and there is a vertex u ∈ N(x1) such that f (u) < β while

f (w) ≥ β for any w ∈ N(x1) \ {u}, then let x2 = u. If d(x1) = n− 1 and f (w) ≥ β for any
w ∈ N(x1), then let x2 be any vertices in N[x1]. If ∆(G) ≥ d(x1) = n− 2 and f (w) ≥ β
for any w ∈ N(x1), then let {x2} = V(G) \ N(x1). In each case, (x1, x2) can burn graph G;
thus, it is an optimum β-burning sequence for G.

Given a graph G, suppose ϕ = (x1, x2, · · · , xk) is a β-burning sequence. Obviously,
if vertex xi ∈ V(G) and f (xi) < β, then xi ∈ ϕ, i.e., xi is a fire source. From the above
observation, a bound on the IC burning number of G can be easily concluded.

Theorem 4. Suppose G is a connected graph with n vertices, and π = (d1, d2, . . . , dn) is a
degree sequence such that d1 ≤ d2 ≤ . . . ≤ dn with d(vi) = di. If 1

d(vi+1)
< β ≤ 1

d(vi)
, then

bβ(G) ≤ (n− i) + bβ(G
′
), and G

′
= G− {vi+1, vi+2, . . . , vn}.

Proof. Clearly, we have f (vi+1) < β ≤ f (vi), so the influence that each vertex
vi+1, vi+2, . . . , vn receives from its neighbors is less than β in graph G. As a result, these
n− i vertices are firstly chosen as source fires in the β-burning process of graph G and let
G
′
= G− {vi+1, vi+2, . . . , vn}. Then, we directly obtain bβ(G) ≤ (n− i) + bβ(G

′
).

At the end of this section, we discuss a bound of IC burning number with certain
domination numbers. If D is a subset of V(G), D’s k-th closed neighborhood is denoted
by Nk(D) as defined above. If D satisfies the condition that for every vertex u ∈ V(G) \ D,
there exists a vertex v ∈ D and d(u, v) ≤ k, then D is called a k-step dominating set. Mean-
while, we can define β-way k-step dominating set of G. A k-step dominating set D is called
a β-way k-step dominating set of G if for any u ∈ V either u ∈ D or there exists v ∈ D
such that u ∈ Nk

β[v]. The β-way k-step domination number of G denoted by γ
β
k (G) is the

number of the vertices in a minimum β-way k-step dominating set of G.
From the above definition of β-way k-step dominating set of G, we obtain

Theorem 5. Suppose G is a connected graph with n vertices. Then, bβ(G) ≤ γ
β
k (G) + k.
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4. The IC Burning Number of Some Special Graphs

Given a graph G and a vertex v, the eccentricity of v is defined as max{d(v, u) : u ∈ G}.
The radius is the minimum eccentricity over the vertex set G, which is denoted by rad(G),
and the diameter is the maximum eccentricity over the vertex set G, which is denoted by
diam(G).

Given two graphs G and H, their Cartesian product is denoted by G�H. In G�H,
two vertices (u1, v1) and (u2, v2) are adjacent if and only if either u1 = u2 and v1v2 ∈ E(H),
or u1u2 ∈ E(G) and v1 = v2.

We first list several known results for the traditional graph burning number b(G) that
will be used later.

Proposition 1 ([1]). Suppose G is a path with n vertices, then b(G) = d√ne.

Proposition 2 ([17]). Suppose G is a complete bipartite graph with 3 ≤ m ≤ n, then b(G) = 3.

Proposition 3 ([17]). Suppose G is a Helm graph (See Figure 2 for Helm graph.) with n ≥ 3, then
b(G) = 3.

v

u1 u2

u3

u4

u5

u6

un

un−1

un−2

w1

w2

w3

w4

w5

w6

wn−2

wn−1

wn

Figure 2. An example of a Helm (n ≥ 6) graph.

Proposition 4 ([2]). Suppose G is a graph with radius rad(G) and diameter diam(G). Then

d
√

diam(G) + 1e ≤ b(G) ≤ rad(G) + 1

Proposition 5 ([14]). Suppose two graphs G and H are connected graphs, then

max{b(G), b(H)} ≤ b(G�H) ≤ min{b(G) + rad(H), b(H) + rad(G)}

For the new generalized graph burning IC model, we present the following results
for bβ(G).

Theorem 6. Suppose Pn is a path with n vertices and 0 < β ≤ 1 . Then

bβ(Pn) =


d√ne If 0 < β ≤ 1

2
2 If n = 2, 3
3 If n = 4
n− 2 If n > 4

If 1
2 < β ≤ 1

Proof. Suppose Pn = v1v2 . . . vn with d(v1) = d(vn) = 1 and d(vk) = 2 for 1 < k < n.
Case 1. 0 < β ≤ 1

2 .
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Note that f (vj) =
1

d(vj)
≥ 1

2 for 1 ≤ j ≤ n. From Proposition 1, we obtain

bβ(Pn) = b(Pn) = d
√

ne.
Case 2. 1

2 < β ≤ 1.
It is easy to obtain bβ(P2) = bβ(P3) = 2 and bβ(P4) = 3. Here, we consider cases for

n > 4. We let x1 = v2, x2 = vn−1, and xi+2 = vi+2 for 1 ≤ i ≤ n− 4. Clearly, (x1, x2, . . . ,
xn−2) is a β-burning sequence of Pn and thus bβ(Pn) ≤ n− 2. On the other hand, consider
f (vk) =

1
d(vk)

= 1
2 < β for 1 < k < n, so we obtain bβ(Pn) ≥ n− 2. Thus, bβ(Pn) = n− 2

while β > 1
2 .

Theorem 7. Suppose Km,n is a complete bipartite graph with 3 ≤ m ≤ n and 0 < β ≤ 1 (See
Figure 3). Then

bβ(Km,n) =


3 If 0 < β ≤ 1

n
m If 1

n < β ≤ 1
m

m + n If 1
m < β ≤ 1

1v 2v 3v 2−mv 1−mv mv

1u 2u 3u 2−nu 1−nu nu

Figure 3. An example of Km,n (3 ≤ m ≤ n).

Proof. Suppose the vertices of Km,n are divided into two parts, A = {v1,v2, . . . , vm} and
B = {u1,u2, . . . , un}. Then, f (vi) =

1
n for i = 1, 2, . . . , m and f (uj) =

1
m for j = 1, 2, . . . , n. We

complete the proof by analyzing the following three cases.
Case 1. 0 < β ≤ 1

n .
In this case, bβ(Km,n) = b(Km,n). From Proposition 2, we directly obtain bβ(Km,n) = 3

while β ≤ 1
n .

Case 2. 1
n < β ≤ 1

m .
First, let xi = vi for 1 ≤ i ≤ m. Obviously, (x1, x2, . . . , xm) is a β-burning sequence

of Km,n, which implies bβ(Km,n) ≤ m. On the other hand, because f (vi) =
1
n < β for all

v1, v2, . . . , vm, according to Theorem 1, we obtain bβ(Km,n) ≥ m. Thus, bβ(Km,n) = m while
1
n < β ≤ 1

m .
Case 3. 1

m < β ≤ 1.
According to Theorem 1, it is easy to obtain n + m ≤ bβ(Km,n) ≤ n + m. Then, we

directly obtain bβ(Km,n) = n + m while β > 1
m .

The Helm graph, which has 2n + 1 vertices, is obtained by adding a pendant edge at
each vertex to the cycle of the n-wheel graph; see Figure 2.

Theorem 8. Suppose G is a Helm graph with n ≥ 3 and 0 < β ≤ 1. Then

bβ(G) =

{
3 If 0 < β ≤ 1

4

n + 1 If 1
4 < β ≤ 1
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Proof. Let v be the center vertex in the Helm graph and uivi be pendant edges. Meanwhile,
d(wi) = 1 for 1 ≤ i ≤ n.

Case 1. 0 < β ≤ 1
4 .

Case 1.1. n = 3.
For a Helm graph G with n = 3, it should be noted that the diameter and radius of G

are 3 and 2, respectively. From Proposition 4, we obtain 2 ≤ bβ(G) ≤ 3. However, note that
∆(G) = 4 < 7− 2, and according to Theorem 3, it follows that bβ(G) = 3.

Case 1.2. n > 3.
In these cases, the diameter and radius of the Helm graph G are 4 and 2, respectively.

If β ≤ 1
n , from Proposition 4, we directly obtain bβ(G) = b(G) = 3. If 1

n < β ≤ 1
4 , we

choose x1 = v, x2 = w1, and x3 = w2. Obviously, (x1, x2, x3) is a β-burning sequence; thus,
bβ(G) ≤ 3. On the other hand, it is clear that bβ(G) ≥ b(G) = 3 from Proposition 3. Thus,
we obtain bβ(G) = 3 when 1

n < β ≤ 1
4 .

In summary, we have bβ(G) = 3 for β ≤ 1
4 .

Case 2. 1
4 < β ≤ 1.

Case 2.1. n = 3.
For the case 1

4 < β ≤ 1
3 and n = 3, we let x1 = u1, x2 = u2, x3 = u3, and x4 = w3.

Obviously, (x1, x2, x3, x4) is a β-burning sequence of G, which means bβ(G) ≤ 4. On the
other hand, f (ui) < β for 1 ≤ i ≤ 3, so we have bβ(G) ≥ 3. Note that in any optimum
β-burning sequences, wi must be burned later than ui, which means bβ(G) ≥ 4. So, we
obtain bβ(G) = 4 while 1

4 < β ≤ 1
3 .

Similarly, for β > 1
3 , we let x1 = u1, x2 = u2, x3 = u3, and x4 = v. Clearly, (x1, x2, x3, x4)

is a β-burning sequence of G, which means bβ(G) ≤ 4. On the other hand, f (ui) < f (v) < β

for 1 ≤ i ≤ 3, which means bβ(G) ≥ 4. We obtain bβ(G) = 4 while β > 1
3 .

So, when n = 3, bβ(G) = n + 1 = 4 for all 1
4 < β < 1.

Case 2.2. n > 3.
Let x1 = ui for 1 ≤ i ≤ n and xn+1 = v. Obviously, (x1, x2, · · · , xn+1) is a β-

burning sequence of G, which means bβ(G) ≤ n + 1. Now, we prove bβ(G) ≥ n + 1. In
fact, f (v) ≤ f (ui) < β for 1 ≤ i ≤ n, which implies that there are n + 1 vertices that cannot
be burned by any of their neighbors. These n + 1 vertices must be chosen as the sources
fires in any optimum β-burning sequences. So, clearly bβ(G) ≥ n + 1. We directly obtain
bβ(G) = n + 1 for β > 1

4 .

The fan graph is obtained by connecting K1 to every vertex in the path Pn, where
n ≥ 3, which is denoted by K1 + Pn. The vertex of K1 is called the center of the fan graph.
See Figure 4.

v

u1 u2 u3 u4 un−1 un

Figure 4. An example of a fan (n ≥ 4) graph.

Theorem 9. Suppose G is a fan graph K1 + Pn with n ≥ 3 and 0 < β ≤ 1. Then

bβ(G) =


2 If 0 < β ≤ 1

3

n− 1 If 1
3 < β ≤ 1

2

n + 1 If 1
2 < β ≤ 1

Proof. Let v be the center vertex in the fan graph G and V(Pn) = {ui | 1 ≤ i ≤ n}.
Case 1. 0 < β ≤ 1

3 .
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Whether f (v) is less than β or not, we choose x1 = v first and x2 = u1. Obviously,
(x1, x2) is the β-burning sequence of G when 0 < β ≤ 1

3 . From the definition, we obtain
bβ(G) ≤ 2. On the other hand, for any graph G with more than two vertices, we have
bβ(G) ≥ 2. Thus, we have bβ(G) = 2.

Case 2. 1
3 < β ≤ 1

2 .
Let x1 = v, x2 = un−1 and xi+2 = ui+1 for 1 ≤ i ≤ n− 3. Obviously, (x1, x2, . . . , xn−1)

is a β-burning sequence of G and thus bβ(G) ≤ n− 1. On the other hand, considering
f (v) ≤ f (ui) < β for 2 ≤ i ≤ n− 1, all vertices ui (2 ≤ i ≤ n− 1) and v must be chosen
as source fires in any optimum β-burning sequences of G. At least n− 1 steps are thus
required to burn all the vertices in G. So, we obtain bβ(G) = n− 1.

Case 3. 1
2 < β ≤ 1.

It is easy to see that all these n + 1 vertices should be set on fire directly, so we obtain
bβ(G) = n + 1 while 1

2 < β ≤ 1.

Given n ≥ 3 and an integer k such that 1 ≤ k ≤ n− 1, we define the generalized Petersen
graph P(n, k) as a graph on 2n vertices with vertex set

V(P(n, k)) = {ui, vi : i = 1, 2, . . . , n}

and edge set

E(P(n, k)) = {uiui+1, uivi, vivi+k : i = 1, 2, . . . , n}.

Theorem 10. Suppose G is a generalized Petersen graph (See Figure 5) with n ≥ 3, k is an integer
with 1 ≤ k ≤ n− 1, and 0 < β ≤ 1. The values of bβ(G) for generalized Petersen graphs are listed
in the following Table 1.

u1 u2 uk+1 uk+2 un

v1 v2 vk+1 vk+2 vn

Figure 5. An example of a generalized Petersen (n ≥ 3) graph.

Proof. Suppose D1 = {u1, u2, . . . , un} and D2 = {v1, v2, . . . , vn} are two partite sets of G.
Now, we divide the following four cases to complete the proof.

Case 1. 0 < β ≤ 1
3 .

If β ≤ 1
3 , bβ(G) = b(G), we borrow the results directly from [12]; see Table 1.

Case 2. 1
3 < β ≤ 1

2 .
Case 2.1. n < 2k.
There exists at least one vertex in D2 whose degree is 1; see Figure 6, where the solid

dots represent that they can be burned by their neighbors, and the hollow dots indicate
that they can only be source of fires. For clarity, we converted the graph to another form as
shown in Figure 7.
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Table 1. bβ(G) of generalized Petersen graphs.

β k, n bβ(G)

0 < β ≤ 1
3

k = 1 d√ne ≤ bβ(G) ≤ d√ne+ 1 [12]

k = 2 d
√

n
2 e+ 1 ≤ bβ(G) ≤ d

√
n
2 e+ 2 [12]

otherwise d
√
b n

k ce ≤ bβ(G) ≤ d
√
b n

k ce+ b k
2c+ 2 [12]

1
3 < β ≤ 1

2

n < 2k

k = n− 1
n = 3, k = 2 3

otherwise n− 1

k ≤ n− 2
n = 5, k = 3 4

otherwise n− 2

n = 2k
n = 4, k = 2 3

otherwise n− 2

n > 2k
n = 3, k = 1 3

otherwise 2n− 2k− 2

1
2 < β ≤ 1

n < 2k 3n− 2k

n ≥ 2k 2n

1u 2u 3u 4u +1k−nu ku nu1−nu2−nu3−nu

1v 2v 3v 4v +1k−nv kv 3−nv 2−nv 1−nv nv

Figure 6. The state of vertices of G in Case 2.1.

u1 u2 un−k−1 un−k un−k+1 un−k+2 uk−1 uk

v1 v2 vn−k−1 vn−k

vn−k+1 vn−k+2 vk−1 vk

v1+k v2+k vn−1 vn

u1+k u2+k un−1 un

Figure 7. The state of vertices of G in Case 2.1 with another form.
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First, we consider the case for k = n− 1. As for the case n = 3 and n = 4, from
simple verification, we obtain bβ(G) = 3 for both n = 3 and n = 4. Then, we consider the
cases for n ≥ 5. We let x1 = u2, x2 = un−1, xi+2 = ui+2 for 1 ≤ i ≤ n− 4 and xn−1 = vn−1.
Obviously, (x1, x2, . . . , xn−1) is a β-burning sequence of G. From the definition, we obtain
bβ(G) ≤ n− 1. On the other hand, the vertices ui for 2 ≤ i ≤ n− 1 must be chosen as the
source fires in any optimum β-burning sequences of G. Suppose that ui is burned in step t,
then vi will be burned in step t + 1. Therefore, no matter how the source fires are chosen,
all vertices of G cannot be burned in n− 2 steps, which implies that bβ(G) ≥ n− 1. Thus,
bβ(G) = n− 1 while n ≥ 5.

Next, we consider the case for k ≤ (n− 2). In this case, n < 2k and k ≤ n− 2 implies
n > 4. See Figure 7.

From simple verification, we obtain bβ(G) = 4 for n = 5. Here, we consider the cases
for n ≥ 5. Let xi = ui+1 for 1 ≤ i ≤ n− 2. Obviously, (x1, x2, . . . , xn−2) is the β-burning
sequence of G. From the definition, we obtain bβ(G) ≤ n− 2. On the other hand, the
vertices ui for 2 ≤ i ≤ n− 1 must be chosen as the source fires in any optimum β-burning
sequences of G, and we have bβ(G) ≥ n− 2. Thus, we obtain bβ(G) = n− 2.

Case 2.2. n = 2k.
The degree of all the vertices in set D2 is 2 in this case. We can also convert the graph

to another form as shown in Figure 8.

u1 u2 uk−1 uk

uk+1

uk+2 un−1 un

v1 v2 vk−1 vk

vk+1 vk+2 vn−1 vn

Figure 8. The state of vertices of G in Case 2.2.

First, we consider the case for k = 2, which means n = 4, and it is not hard to see
bβ(G) = 3. As for the cases when k ≥ 3, we let x1 = u2, x2 = un−1, and xi+2 = ui+2 for
1 ≤ i ≤ n− 4. Clearly, (x1, x2, . . . , xn−2) is a β-burning sequence of G. Hence, we obtain
bβ(G) ≤ n− 2. On the other hand, all vertices in set D1 except u1 and un must be chosen
as source fires in any optimum β-burning sequences of G. Thus, at least n− 2 steps are
required to burn all the vertices of G. So, we obtain bβ(G) = n− 2.

Case 2.3. n > 2k.
From simple checking, we obtain bβ(G) = 3 for n = 3 and k = 1. As for other cases, see

Figure 9. Let A = {vk+1, vk+2, . . . , vn−k}, B1 = {v1, v2, . . . , vk} and B2 = {vn−k+1, . . . , vn}.
Obviously, the degree of each vertex in A is 3, and the degree of each vertex in both
B1 and B2 is 2. All vertices with degree 3 in this graph must be sources of fires, which
means bβ(G) ≥ n− 2k + n− 2 = 2n− 2k− 2. On the other hand, let x1 = vk+1, x2 = vn−k,
xi+2 = v(k+1)+i for 1 ≤ i ≤ n− 2k− 2 and x(n−2k)+j = uj+1 for 1 ≤ j ≤ n− 2 as source
fires. It is easy to check that (x1, x2, . . . , x2n−2k−2) is a β-burning sequence of G. Thus,
bβ(G) = 2n− 2k− 2.
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u1 u2 uk uk+1 un−k un−k+1 un−1 un

v1 v2 vk vk+1 vn−k vn−k+1 vn−1 vn

k n− 2k k

Figure 9. The state of vertices of G in Case 2.3.

Case 3. 1
2 < β ≤ 1.

Case 3.1. n < 2k.
As shown in Figure 6, all vertices except {vn−k+1, vn−k+2, . . . , vk} with degree 1 can-

not be burned by their neighbors; thus, bβ(G) ≥ 2n− (2k− n) = 3n− 2k. Furthermore,
also notice that (un−k+1, . . . , uk, u1, . . . , un−k, uk+1, . . . , un, v1, . . . , vn−k, vk+1, . . . , vn) is a β-
burning sequence of G. Thus, bβ(G) = 3n− 2k while n < 2k.

Case 3.2. n ≥ 2k.
In this case, all vertices should be the sources of fire, so bβ(G) = 2n while n ≥ 2k.

Theorem 11. Suppose Pn and Pm are two paths with 3 ≤ m ≤ n and 0 < β ≤ 1. Then

bβ(Pn�Pm)



∈ [max{d√ne, d√me}, min{d√ne+ dm
2 e, d
√

me+ d n
2 e}] If 0 < β ≤ 1

4

=


3 If n = m = 3
4 If n = 4, m = 3 or n = 5, m = 3
(n− 2) · (m− 2) otherwise

If 1
4 < β ≤ 1

3

= mn− 4 If 1
3 < β ≤ 1

2

= mn If 1
2 < β ≤ 1

Proof. Suppose Pn = v1, v2, . . . , vn and Pm = u1, u2, . . . , um. There are four cases related to
the degree of vertices in graph Pn�Pm, when 3 ≤ m ≤ n. Note that d[(u1, v1)] = d[(u1, vn)]
= d[(um, v1)] = d[(um, vn)] = 2, d[(u1, vj)] = d[(ui, v1)] = d[(um, vj)] = d[(ui, vn)] = 3 for
2 ≤ i ≤ m− 1 and 2 ≤ j ≤ n− 1, and the degree of the vertex is equal to 4 otherwise.

Case 1. 0 < β ≤ 1
4 .

When β ≤ 1
4 , bβ(G) = b(G). Because Pn and Pm are both paths, from Proposition

1, their burning numbers are d√ne and d√me, respectively. Furthermore, it is easy to
calculate their radii, d n

2 e and dm
2 e, respectively. Then, we borrow the results in Proposition

5 directly here, which are max{d√ne, d√me} ≤ bβ(Pn�Pm) ≤ min{d√ne+ dm
2 e, d
√

me+
d n

2 e} while 0 < β ≤ 1
4 .

Case 2. 1
4 < β ≤ 1

3 .
From simple verification, we obtain bβ(Pn�Pm) = 3 for n = m = 3 and bβ(Pn�Pm) = 4

for both n = 4, m = 3 and n = 5, m = 3. Then, we consider other cases.
We claim that ((u2, v2), (um−1, vn−1), (u2, vn−1), (um−1, v2), (u2, v3), . . . , (u2, vm−2),

(u3, v2), . . . , (um−2, vn−1), (um−1, v2), . . . , (um−1, vn−2)) is an optimum β-burning sequence
in Pn�Pm. Clearly, the above sequence is a β-burning sequence of Pn�Pm, so
bβ(Pn�Pm) ≤ (n− 2) · (m− 2). On the other hand, the number of vertices with influ-
ence less than 1

4 is (n− 2) · (m− 2) which implies that bβ(Pn�Pm) ≥ (n− 2) · (m− 2). So,
we have bβ(Pn�Pm) = (n− 2) · (m− 2).

Case 3. 1
3 < β ≤ 1

2 .
As shown in Figure 10, all vertices except {(u1, v1), (u1, vn), (um, v1), (um, vn)} with

degree 2 cannot be burned by their neighbor; thus, bβ(Pn�Pm) ≥ mn− 4. Furthermore,
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also notice that ((u1, v2), . . . , (u1, vn−1), (um, v2), . . . , (um, vn−1), (u2, v1), . . . , (um−1, vn)) is
a β-burning sequence of Pn�Pm. Thus, bβ(Pn�Pm) = mn− 4 while 1

3 < β ≤ 1
2 .

Case 4. 1
2 < β ≤ 1.

All vertices should be set on fires directly; thus, bβ(Pn�Pm) = mn.

(u1, v1) (u1, v2) (u1, v3) (u1, vn−1) (u1, vn)

(u2, v1) (u2, v2) (u2, v3) (u2, vn−1) (u2, vn)

(um, v1) (um, v2) (um, v3) (um, vn−1) (um, vn)

Figure 10. An example of a Pn�Pm (3 ≤ m ≤ n) graph.

5. Conclusions and Future Work

In this paper, we introduced a new generalized graph burning model called the
Independent Cascade Graph Burning model (abbreviated as the IC Model), which is more
realistic than the traditional graph burning model. Regarding the IC burning number, we
carried out the following work:

1. The upper and lower bounds of the IC burning numbers of general graphs
were discussed.

2. The IC burning numbers of several special graphs were determined.

As for future research, we are interested in related algorithms to calculate IC burning
numbers on large networks, and we also intend to calculate the IC burning number of some
other special graphs.
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