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Abstract: Proposing new families of probability models for data modeling in applied sectors is a
prominent research topic. This paper also proposes a new method based on the trigonometric function
to derive the updated form of the existing probability models. The proposed family is called the
cotangent trigonometric-G family of distributions. Based on the cotangent trigonometric-G method,
a new version of the Weibull model, namely, the cotangent trigonometric Weibull distribution, is
studied. Certain mathematical properties of the cotangent trigonometric-G family are derived. The
estimators of the cotangent trigonometric-G distributions are obtained via the maximum likelihood
method. The Monte Carlo simulation study is conducted to assess the performances of the estimators.
Finally, two applications from the health sector are considered to illustrate the cotangent trigonometric-
G method. Based on seven evaluating criteria, it is observed that the cotangent trigonometric-G
significantly improves the fitting power of the existing models.

Keywords: cotangent function; trigonometric function; Weibull distribution; distributional properties;
medical datasets; statistical modeling

1. Introduction

It is a well-established and proven fact that no particular probability distribution can
provide an adequate fit in all situations. Therefore, almost every sector of life needs to
generate new probability distributions with updated distributional flexibility and new criteria.
This fact has diverted the attention of researchers and encouraged them to explore new
potential statistical distributions with practical implications in different areas of life. In the
literature, a considerable number of papers have been published that have introduced new
probability distributions to adequately fit data in various fields of applied sciences [1–14].

Among the probability distributions developed and implemented in the literature,
the Weibull model occupies an important place [15,16]. Due to the simplest form of the
probability density function (PDF), nice physical interpretation of the parameters, and a
closed form of the cumulative distribution function (CDF), the Weibull distribution has
attracted researchers to keep it on top of the list for analyzing real-world phenomena (i.e.,
practical applications or real-life datasets); see [17].

Let G(w; ξξξ) be the CDF and g(w; ξξξ) be the PDF of the Weibull distribution with σ ∈ R+

(scale parameter) and α ∈ R+ (shape parameter). The CDF of the Weibull distributed
random variable W ∈ R+, is given by

G(w; ξξξ) = 1− e−σwα
, w ∈ R+, (1)
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with PDF g(w; ξξξ) given by

g(w; ξξξ) = ασwα−1e−σwα
, w ∈ R+, (2)

where ξξξ = (α, σ).
To be fair, the Weibull distribution has always been the first choice of researchers to

apply for modeling data that have a single-state failure rate. Of course, it provides an
excellent fit for such a of dataset in almost every field of life. Unfortunately, however, the
Weibull distribution does not provide a good fit for datasets that do not have failure rates
in a single state [18–21]. To address this shortcoming of the Weibull distribution, a series of
modified versions of the Weibull distribution have been considered and implemented. For
detailed reviews of such modifications to the Weibull distribution, we refer to [22,23].

Thanks to these modified versions of the Weibull distribution, many of them have
achieved the desired goals to provide the best fit to the mixed-state failure rate data. But,
on the other hand, the number of model parameters also increased rapidly. In fact, some of
these modified versions have parameters increased to six or even seven parameters [24].

It is an obvious fact that sometimes introducing a new probability distribution with
additional parameter(s) can lead to a re-parameterization and estimation problem. There-
fore, to avoid the re-parameterization problems that arise from adding new parameters,
we introduce a new trigonometric-based family of distributions. The new family is intro-
duced by incorporating the cotangent function and can be called the new cotangent-G
(NCT-G) family of distributions. An interesting fact about the NCT-G family is that it has
no additional parameters.

Definition 1. Suppose W ∈ R has the family of NCT-G distributions without any additional
parameters. Then, its CDF F(w; ξξξ) is given by

F(w; ξξξ) = 1− Ḡ(w; ξξξ)

ecot[ π
2 Ḡ(w;ξξξ)]

, w ∈ R, (3)

with PDF f (w; ξξξ) = d
dw F(w; ξξξ), given by

f (w; ξξξ) =
g(w; ξξξ)

ecot[ π
2 Ḡ(w;ξξξ)]

[
1 +

π

2
Ḡ(w; ξξξ) csc2

(π

2
Ḡ(w; ξξξ)

)]
, w ∈ R. (4)

The survival function (SF) S(w; ξξξ) = 1− F(w; ξξξ) of the NCT-G family is expressed by

S(w; ξξξ) =
Ḡ(w; ξξξ)

ecot[ π
2 Ḡ(w;ξξξ)]

, w ∈ R.

The hazard function (HF) h(w; ξξξ) =
f (w;ξξξ)
S(w;ξξξ) of the NCT-G family is given by

f (w; ξξξ) =
g(w; ξξξ)

Ḡ(w; ξξξ)

[
1 +

π

2
Ḡ(w; ξξξ) csc2

(π

2
Ḡ(w; ξξξ)

)]
, w ∈ R.

The cumulative HF (CHF) H(w; ξξξ) = − log[S(w; ξξξ)] of the NCT-G family is

H(w; ξξξ) = − log
(

Ḡ(w; ξξξ)

ecot[ π
2 Ḡ(w;ξξξ)]

)
, w ∈ R.

In Section 2, we combine Equation (1) with the proposed cotangent-based method
expressed by Equation (3) to obtain the CDF of the special member of the NCT-G family.
The special member of the NCT-G family is a new variant of the Weibull distribution and
can be called a new cotangent–Weibull (NCT-Weibull) distribution.
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2. The NCT-Weibull Distribution

In this section, we present some important distributional functions of the NCT-Weibull
model such as CDF, PDF, SF, HF, and CHF. In addition to mathematical descriptions, visual
illustrations of these functions are also presented.

Assume W ∈ R+ follows the NCT-Weibull distribution with parameters α > 0 and
σ > 0. Its CDF F(w; ξξξ) is given by

F(w; ξξξ) = 1− e−σwα

ecot( π
2 e−σwα)

, w ≥ 0, (5)

with PDF

f (w; ξξξ) =
ασwα−1e−σwα

ecot[ π
2 Ḡ(w;ξξξ)]

[
1 +

π

2
e−σwα

csc2
(π

2
e−σwα

)]
, w > 0. (6)

The SF S(w; ξξξ) of the NCT-Weibull distribution is

S(w; ξξξ) =
e−σwα

ecot( π
2 e−σwα)

, w > 0.

The HF h(w; ξξξ) of the NCT-Weibull distribution is

h(w; ξξξ) =
ασwα−1e−σwα

e−σwα

[
1 +

π

2
e−σwα

csc2
(π

2
e−σwα

)]
, w > 0.

The CHF H(w; ξξξ) of the NCT-Weibull distribution is

H(w; ξξξ) = − log

(
e−σwα

ecot( π
2 e−σwα)

)
, w > 0.

The visual illustrations of F(w; ξξξ) and S(w; ξξξ) of the NCT-Weibull distribution are pro-
vided in Figure 1. The graphs of F(w; ξξξ) and S(w; ξξξ) are obtained for different values of α and
σ using the range of W between 0 and 3; see w-axis of Figure 1. The plots in Figure 1 confirm
that the NCT-Weibull distribution has a valid CDF, as the curves of F(w; ξξξ) lie between 0 and 1.
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Figure 1. For different values of α and σ, the visual illustrations of (a) F(w; ξξξ) and (b) S(w; ξξξ) of the
NCT-Weibull distribution.

The plots of f (w; ξξξ) of the NCT-Weibull distribution are obtained for different values
of α and σ using the range of W between 0 and 3; see w-axis of Figure 2. These plots
show that f (w; ξξξ) of the NCT-Weibull distribution has four different shapes, that is, (i)
unimodal (red curve), (ii) right-skewed (grey curve), (iii) symmetrical (green curve), and
(iv) left-skewed (black, magenta, and blue curves).
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Furthermore, the plots of h(w; ξξξ) of the NCT-Weibull distribution are also obtained for
different values of α and σ using the range of W between 0 and 3; see w-axis of Figure 3. The
plots in Figure 3 show that the NCT-Weibull distribution is able to capture two monotonic
and two non-monotonic shapes of h(w; ξξξ). The monotonic category includes increasing
(red curve) and decreasing (grey curve) shapes of h(w; ξξξ), whereas the non-monotonic
category includes the bathtub (green curve) and modified unimodal (blue curve) shapes of
h(w; ξξξ). The modified unimodal failure rate function is also called an increasing–decreasing–
increasing failure rate function.
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Figure 2. Different plots of f (w; ξξξ) of the NCT-Weibull distribution, including (a) right-skewed,
(b) decreasing, (c) symmetrical, and (d) left-skewed.
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Figure 3. Different plots of h(w; ξξξ) of the NCT-Weibull distribution, including (a) increasing, (b) de-
creasing, (c) bathtub, and (d) modified unimodal.

3. Distributional Properties

This section explores some mathematical properties of the NCT-G family of distribu-
tions such as the quantile function (QF), rth moment, skewness, kurtosis, quartiles, and
moment generating function (MGF). We only provide a manual derivation of these features.
Statistical software (programming software), for example, Mathematica, Python, or R, can
be implemented for numerical analysis of these properties/quantities.

3.1. The Quantile Function

This subsection explores the QF of the NCT-G distributions. Suppose W ∈ R follows
the NCT-G distributions with CDF F(w; ξξξ) and PDF f (w; ξξξ). Then, its QF, denoted by wq,
is obtained by solving the inverse form of F(w; ξξξ), as given by
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wq = F−1(u), (7)

where 0 < q < 1, and u is the solution of

cot(u) + log(1− q)− log[1− u] = 0.

3.2. The Quartile Measures, Skewness, and Kurtosis

In this subsection, we provide the quartile measures, skewness, and kurtosis of the
NCT-G distributions.

• The first quartile of the NCT-G distributions, represented by Q1 or w 1
4
, is obtained as

w 1
4
= F−1(u),

where u is the solution of

cot(u) + log
(

1− 1
4

)
− log[1− u] = 0.

• The second quartile of the NCT-G distributions, represented by Q2 or w 1
2
, is obtained as

w 1
2
= F−1(u),

where u is the solution of

cot(u) + log
(

1− 1
2

)
− log[1− u] = 0.

• The third quartile of the NCT-G distributions, represented by Q3 or w 3
4
, is obtained as

w 3
4
= F−1(u),

where u is the solution of

cot(u) + log
(

1− 3
4

)
− log[1− u] = 0.

• The skewness of the NCT-G distributions (Galton’s skewness) is derived as

Q2/8 − 2Q4/8 + Q6/8

Q6/8 −Q2/8
,

where the statistical quantities Q2/8, Q4/8, and Q6/8 are obtained, respectively, by
incorporating q = 2

8 , q = 4
8 , and q = 6

8 in Equation (7).
• The kurtosis of the NCT-G distributions (Moor’s kurtosis) is derived as

Q7/8 −Q5/8 −Q1/8 + Q3/8

Q6/8 −Q2/8
,

where the statistical quantities Q1/8, Q3/8, Q5/8, and Q7/8 are obtained, respectively,
by incorporating q = 1

8 , q = 3
8 , q = 5

8 , and q = 7
8 in Equation (7).

Table 1 presents a comprehensive overview of the quantile values, as well as the
corresponding coefficients of skewness (β1) and kurtosis (β2), obtained for various q values
and parameter configurations. This table serves as a valuable resource for examining the
statistical properties and asymmetry characteristics of the proposed model. The coefficients
of skewness (β1) provided in the table serve as indicators of the symmetry or asymmetry
of the proposed model’s distribution. Positive values of β1 indicate a right-skewed dis-
tribution, suggesting a longer right tail and a concentration of observations towards the
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left. Conversely, negative values of β1 signify a left-skewed distribution, characterized by
a longer left tail and a concentration of observations towards the right. Furthermore, a
graphical representation of the skewness and kurtosis of the proposed distribution is also
presented in Figure 4.

Table 1. Numerical values for quartiles along with coefficients of skewnenss and kurtosis of the
NCT-Weibull distribution.

Parameters Measures
σ α Q1 Q2 Q3 β1 β2

0.25

0.25 0.0450 1.6655 27.2954 0.8811 4.4220
0.7 0.3304 1.1998 3.2575 0.4059 1.4424
1.0 0.4606 1.1360 2.2857 0.2599 1.2547
1.5 0.5964 1.0887 1.7353 0.1354 1.1798
2.5 0.7334 1.0522 1.3918 0.0316 1.1715
4.0 0.8239 1.0324 1.2296 −0.0278 1.1887

0.7

0.25 0.0007 0.0272 0.4441 0.8806 4.4202
0.7 0.0759 0.2756 0.7484 0.4060 1.4422
1.0 0.1645 0.4057 0.8163 0.2598 1.2552
1.5 0.3002 0.5480 0.8733 0.1352 1.1803
2.5 0.4858 0.6972 0.9221 0.0307 1.1718
4.0 0.6368 0.7981 0.9505 −0.0282 1.1883

1.0

0.25 0.0001 0.0065 0.1066 0.8810 4.42203
0.7 0.0457 0.1654 0.4496 0.4071 1.4428
1.0 0.1152 0.2840 0.5715 0.2600 1.2545
1.5 0.2367 0.4321 0.6886 0.1353 1.1802
2.5 0.4212 0.6045 0.7994 0.0309 1.1711
4.0 0.5825 0.7300 0.8695 −0.0280 1.1888

1.5

0.25 0.5825 0.7300 0.8695 −0.0280 1.1888
0.7 0.0254 0.0928 0.2519 0.4046 1.4421
1.0 0.0767 0.1894 0.3808 0.2592 1.2551
1.5 0.1807 0.3297 0.5255 0.1355 1.1800
2.5 0.3581 0.5140 0.6799 0.0313 1.1705
4.0 0.5263 0.6596 0.7856 −0.0284 1.1890

2.5

0.25 4 × 10−6 0.0005 0.0028 0.6667 4.4566
0.7 0.0123 0.0447 0.1214 0.4059 1.4439
1.0 0.0460 0.1136 0.2285 0.2590 1.2562
1.5 0.1285 0.2346 0.3738 0.1353 1.1803
2.5 0.2921 0.4189 0.5541 0.0318 1.1721
4.0 0.4634 0.5806 0.6914 −0.0278 1.1899

4.0

0.25 6 × 10−7 0.0005 0.0007 −0.3333 2.1218
0.7 0.0064 0.0230 0.0620 0.4017 1.4498
1.0 0.0290 0.0711 0.1430 0.2603 1.2565
1.5 0.0939 0.1713 0.2734 0.1377 1.1792
2.5 0.2419 0.3470 0.4592 0.0324 1.1705
4.0 0.4119 0.5162 0.6149 −0.0277 1.1879
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Figure 4. A graphical illustration of the coefficients of skewness and kurtosis of the NCT-Weibull
distribution.

3.3. The rth Moment and MGF of the NCT-G Distributions

This subsection offers the mathematical derivation of the rth moment (denoted by µ′r)
and MGF (denoted by Mt(w)) of the NCT-G distributions. Suppose W ∈ R has the NCT-G
distributions with PDF f (w; ξξξ); its rth moment is derived as

µ′r =
∫

Ω
wr f (w; ξξξ)dw. (8)

Using Equation (4) in (8), we have

µ′r =
∫

Ω
wr g(w; ξξξ)

ecot[ π
2 Ḡ(w;ξξξ)]

[
1 +

π

2
Ḡ(w; ξξξ) csc2

(π

2
Ḡ(w; ξξξ)

)]
dw. (9)

Using the series

ew =
∞

∑
i=1

wi

i!
. (10)

Using w = cot
[

π
2 Ḡ(w; ξξξ)

]
in Equation (10), we obtain

ecot[ π
2 Ḡ(w;ξξξ)] =

∞

∑
i=1

(
cot
[

π
2 Ḡ(w; ξξξ)

])i

i!
. (11)

Incorporating Equation (11) in (9), we have

µ′r =
∞

∑
i=1

1
i!

∫
Ω

wrg(w; ξξξ)
(

cot
[π

2
Ḡ(w; ξξξ)

])i[
1 +

π

2
Ḡ(w; ξξξ) csc2

(π

2
Ḡ(w; ξξξ)

)]
dw,

µ′r =
∞

∑
i=1

1
i!

∫
Ω

wrg(w; ξξξ)
(

cot
[π

2
Ḡ(w; ξξξ)

])i
dw

+
π

2

∞

∑
i=1

1
i!

∫
Ω

wrg(w; ξξξ)Ḡ(w; ξξξ)
(

cot
[π

2
Ḡ(w; ξξξ)

])i
csc2

(π

2
Ḡ(w; ξξξ)

)
dw,

µ′r =
∞

∑
i=1

1
i!
[∆1,i(t; ηηη) + ∆2,i(t; ηηη)],

where



Symmetry 2023, 15, 1528 8 of 21

∆1,i(t; ηηη) =
∫

Ω
wrg(w; ξξξ)

(
cot
[π

2
Ḡ(w; ξξξ)

])i
dw,

and

∆2,i(t; ηηη) =
∫

Ω
wrg(w; ξξξ)Ḡ(w; ξξξ)

(
cot
[π

2
Ḡ(w; ξξξ)

])i
csc2

(π

2
Ḡ(w; ξξξ)

)
dw.

The MGF Mt(w) of the NCT-G distributions is obtained as

Mt(w) = E
(
etw) = ∞

∑
r=1

tr

r!

∫
Ω

wr f (w; ξξξ)dt.

Finally, we obtain

Mt(w) =
∞

∑
r=1

∞

∑
i=1

tr

i!r!
[∆1,i(t; ηηη) + ∆2,i(t; ηηη)].

4. Estimation and Simulation

This section presents the estimation of the parameters (α, σ) of the NCT-Weibull
distribution. The estimation process is carried out using the maximum likelihood method.
In addition to the mathematical derivation of the maximum likelihood estimators (MLEs)
(α̂MLE, σ̂MLE) of the parameters of the NCT-Weibull distribution, a simulation study (SS) is
also performed. The SS is performed to test how α̂MLE and σ̂MLE show performance.

4.1. Estimation

Assume a set of samples, say W1, W2, ..., Wn, with values w1, w2, ..., wn, observed ran-
domly from the NCT-Weibull distribution with PDF f (w; ξξξ). Then, corresponding to
f (w; ξξξ), the likelihood function (LF), expressed by δ(α, σ), is given by

δ(α, σ) =
n

∏
i=1

f (wi; ξξξ). (12)

Using Equation (6) in (12), we obtain

δ(α, σ) =
n

∏
i=1

ασwα−1
i e−σwα

i

ecot
[

π
2 e−σwα

i
] [1 + π

2
e−σwα

i csc2
(π

2
e−σwα

i

)]
. (13)

Corresponding to δ(α, σ) presented in Equation (13), the log-likelihood function (LLF),
say λ(α, σ), is given by

λ(α, σ) = n log α + n log σ + (α− 1)
n

∑
i=1

log wi − σ
n

∑
i=1

wα
i −

n

∑
i=1

cot
[π

2
e−σwα

i

]
+

n

∑
i=1

log
[
1 +

π

2
e−σwα

i csc2
(π

2
e−σwα

i

)]
. (14)

The maximum likelihood estimators (MLEs) can be obtained by maximizing Equation (4)
with respect to the unknown parameters. However, it is important to note that these
estimators cannot be obtained in explicit analytical forms. Instead, the estimation process
involves solving a system of two non-linear equations in order to compute the MLEs.
The non-linear nature of the equations makes it necessary to employ numerical methods
or optimization algorithms to find the solutions. Iterative techniques such as Newton–
Raphson or gradient-based algorithms are commonly used to solve the system of equations
and obtain the MLEs. These methods iteratively update the parameter estimates until
convergence is achieved, ensuring that the likelihood function is maximized. The two
non-linear equations are given by
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∂

∂α
λ(α, σ) =

n
α
− σ

n

∑
i=1

(log wi)wα
i −

σπ

2

n

∑
i=1

(log wi)wα
i e−σwα

i csc2
[π

2
e−σwα

i

]

+
σπ

2

n

∑
i=1

(log wi)wα
i e−σwα

i csc2
(

π
2 e−σwα

i

)[
πe−σwα

i cot
(

π
2 e−σwα

i

)
− 1
]

[
1 + π

2 e−σwα
i csc2

(
π
2 e−σwα

i

)]
+

n

∑
i=1

log wi,

and
∂

∂σ
λ(α, σ) =

n
σ
−

n

∑
i=1

wα
i −

π

2

n

∑
i=1

wα
i e−σwα

i csc2
[π

2
e−σwα

i

]

+
π

2

n

∑
i=1

wα
i e−σwα

i csc2
(

π
2 e−σwα

i

)[
πe−σwα

i cot
(

π
2 e−σwα

i

)
− 1
]

[
1 + π

2 e−σwα
i csc2

(
π
2 e−σwα

i

)] ,

Upon equating and solving ∂
∂α λ(α, σ) and ∂

∂σ λ(α, σ) to zero, we obtain, respectively, the
MLEs α̂MLE and σ̂MLE.

The asymptotic variance–covariance matrix is a crucial component in statistical inference,
as it provides valuable information about the precision and uncertainty of the maximum
likelihood estimators (MLEs). In order to obtain this matrix, an important step involves
inverting the information matrix. The elements of the information matrix are derived from the
expected values of the second-order derivatives of the logarithms of the likelihood functions.
By taking the negative expected values of these second-order derivatives, the information
matrix is constructed. Inverting this matrix yields the asymptotic variance–covariance matrix,
which represents the approximate covariance structure of the MLEs.

In the present situation, it seems appropriate to approximate the expected values
by their maximum likelihood estimates [25]. Accordingly, we have as the approximate
variance–covariance matrix[

−I11 −I12
−I21 −I22

]−1

=

[
V(α̂) Cov(α̂, σ̂)

Cov(α̂, σ̂) V(σ̂)

]
,

where

I11 =
∂2λ(α, σ)

∂α2 |α̂,σ̂ = − n
α2 +

n

∑
i=1

[
1
2

πσ2w2α
i log2(wi)e−σwα

i csc2
(

1
2

πe−σwα
i

)
− 1

2
π2σ2w2α

i log2(wi)e−2σwα
i cot

(
1
2

πe−σwα
i

)
csc2

(
1
2

πe−σwα
i

)
− 2σwα

i log2(wi)

− 1
2

πσwα
i log2(wi)e−σwα

i csc2
(

1
2

πe−σwα
i

)]
+

n

∑
i=1

[(
2σwα

i log(wi)eσwα
i

+ π2σwα
i log(wi)e−σwα

i cot
(

1
2

πe−σwα
i

)
csc2

(
1
2

πe−σwα
i

))(
−

2σwα
i log(wi)eσwα

i(
2eσwα

i + π csc2
(

1
2 πe−σwα

i

))
2

−
π2σwα

i log(wi)e−σwα
i cot

(
1
2 πe−σwα

i

)
csc2

(
1
2 πe−σwα

i

)
(

2eσwα
i + π csc2

(
1
2 πe−σwα

i

))
2

)
+

1

2eσwα
i + π csc2

(
1
2 πe−σwα

i

)
(
2σwα

i log2(wi)eσwα
i + π2σwα

i log2(wi)e−σwα
i cot

(
1
2

πe−σwα
i

)
csc2

(
1
2

πe−σwα
i

)
+ 2σ2w2α

i log2(wi)eσwα
i − π2σ2w2α

i log2(wi)e−σwα
i cot

(
1
2

πe−σwα
i

)
csc2

(
1
2

πe−σwα
i

)
1
2

π3σ2w2α
i log2(wi)e−2σwα

i csc4
(

1
2

πe−σwα
i

)
+ π3σ2w2α

i log2(wi)

+ e−2σwα
i cot2

(
1
2

πe−σwα
i

)
csc2

(
1
2

πe−σwα
i

))]
,
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I12 = I21 =
∂2λ(α, σ)

∂α∂σ
|α̂,σ̂ =

n

∑
i=1

(
− 1

2
πwα

i log(wi)e−σwα
i csc2

(
1
2

πe−σwα
i

)
− 1

2
π2σw2α

i log(wi)e−2σwα
i cot

(
1
2

πe−σwα
i

)
csc2

(
1
2

πe−σwα
i

)
− 2wα

i log(wi)

+
1
2

πσw2α
i log(wi)e−σwα

i csc2
(

1
2

πe−σwα
i

))
+

n

∑
i=1

[(
−

2wα
i eσwα

i(
2eσwα

i + π csc2
(

1
2 πe−σwα

i

))
2

−
π2wα

i e−σwα
i cot

(
1
2 πe−σwα

i

)
csc2

(
1
2 πe−σwα

i

)
(

2eσwα
i + π csc2

(
1
2 πe−σwα

i

))
2

)(
2σwα

i log(wi)eσwα
i

+ π2σwα
i log(wi)e−σwα

i cot
(

1
2

πe−σwα
i

)
csc2

(
1
2

πe−σwα
i

))
+

1

2eσwα
i + π csc2

(
1
2 πe−σwα

i

)
(

2wα
i log(wi)eσwα

i + π2wα
i log(wi)e−σwα

i cot
(

1
2

πe−σwα
i

)
csc2

(
1
2

πe−σwα
i

)
+ 2σw2α

i log(wi)eσwα
i − π2σw2α

i log(wi)e−σwα
i cot

(
1
2

πe−σwα
i

)
csc2

(
1
2

πe−σwα
i

)
1
2

π3σw2α
i log(wi)e−2σwα

i csc4
(

1
2

πe−σwα
i

)
+ π3σw2α

i log(wi)

+ e−2σwα
i cot2

(
1
2

πe−σwα
i

)
csc2

(
1
2

πe−σwα
i

))]

I22 =
∂2λ(α, σ)

∂σ2 |α̂,σ̂ = − n
σ2 +

n

∑
i=1

(
1
2

πw2α
i e−σwα

i csc2
(

1
2

πe−σwα
i

)
− 1

2
π2w2α

i e−2σwα
i cot

(
1
2

πe−σwα
i

)
csc2

(
1
2

πe−σwα
i

))
+

n

∑
i=1

[(
2wα

i eσwα
i + π2wα

i e−σwα
i cot

(
1
2

πe−σwα
i

)
csc2

(
1
2

πe−σwα
i

))
(
−

2wα
i eσwα

i(
2eσwα

i + π csc2
(

1
2 πe−σwα

i

))
2
−

π2wα
i e−σwα

i cot
(

1
2 πe−σwα

i

)
csc2

(
1
2 πe−σwα

i

)
(

2eσwα
i + π csc2

(
1
2 πe−σwα

i

))
2

)

+

(
2eσwα

i + π csc2
(

1
2

πe−σwα
i

))−1(
2w2α

i eσwα
i − π2w2α

i e−σwα
i cot

(
1
2

πe−σwα
i

)
csc2

(
1
2

πe−σwα
i

))
s
(

1
2

π3w2α
i e−2σwα

i csc4
(

1
2

πe−σwα
i

)
+ π3w2α

i + e−2σwα
i cot2

(
1
2

πe−σwα
i

)
csc2

(
1
2

πe−σwα
i

))]
4.2. Simulation

This subsection describes the performances of α̂MLE and σ̂MLE through Monte Carlo
SS. The SS of the NCT-Weibull distribution is carried out for three different combination
values of α and σ. These combination values are

• α = 0.9 and σ = 1.5;
• α = 1.6 and σ = 1.2;
• α = 1.5 and σ = 1.

For all these three combination values, random numbers are generated from the NCT-
Weibull distribution using the QF (it is also referred to as inverse CDF) with the help of an
R-script. For each combination value, the random numbers n = 50, 100, 200, 300, . . . 5000 are
generated.

After obtaining the random numbers, the next step is calculating the evaluating
criteria for judging the performances of α̂MLE and σ̂MLE. For this purpose, we choose two
evaluating criteria, including
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• Bias
1

1000

1000

∑
i=1

(
ξ̂ξξ i − ξξξ

)
.

• Mean square error (MSE)
1

1000

1000

∑
i=1

(
ξ̂ξξ i − ξξξ

)2
.

The numerical values of the MLEs and their evaluating criteria are computed using
optim() with the help of R software. The results of the Monte Carlo SS of the NCT-Weibull
distribution are presented in Tables 2–4.

From Tables 2–4, we reach the conclusion that as the value of n increases, the values
of the

• MLEs α̂MLE and σ̂MLE get closer and closer to the true value;
• MSEs of α̂MLE and σ̂MLE decrease;
• Biases of α̂MLE and σ̂MLE go to zero.

Table 2. The numerical description of the SS of the NCT-Weibull distribution for α = 0.9 and σ = 1.5.

n Parameters MLE MSE Bias
α 0.9355044 0.01082877 0.035504420

50 σ 1.5807460 0.06715720 0.080745775

α 0.9201044 0.00479964 0.020104365
100 σ 1.5444920 0.03049332 0.044492288

α 0.9151175 0.00277550 0.015117474
200 σ 1.5243870 0.01430133 0.024387130

α 0.9105759 0.00186720 0.010575924
300 σ 1.5193200 0.00989402 0.019319599

α 0.9084876 0.00125306 0.008487576
400 σ 1.5145360 0.00661767 0.014535798

α 0.9073618 0.00094190 0.007361801
500 σ 1.5099910 0.00507208 0.009991227

α 0.9048286 0.00076818 0.004828569
1000 σ 1.5098150 0.00412407 0.009415482

α 0.9046138 0.00062513 0.004613809
1500 σ 1.5079170 0.00356039 0.008917051

α 0.9045965 0.00058086 0.004596521
2000 σ 1.504196 0.00286160 0.004196165

α 0.9040372 0.00043847 0.004507215
2500 σ 1.5038410 0.00201378 0.003840787

α 0.9030904 0.00037242 0.004190369
3000 σ 1.5027150 0.00215174 0.003315493

α 0.9022970 0.00035733 0.004096963
3500 σ 1.5018020 0.00162623 0.002802116

α 0.9014026 0.00022969 0.003402595
4000 σ 1.5011270 0.00132665 0.002427410

α 0.9010336 0.00022699 0.002733606
4500 σ 1.5003060 0.00110904 0.002005540

α 0.9002476 0.00020651 0.001147633
5000 σ 1.5001260 0.00108060 0.004276054

MLE = maximum likelihood estimator, MSE = mean square error, n = sample size.
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Table 3. The numerical description of the SS of the NCT-Weibull distribution for α = 1.6 and σ = 1.2.

n Parameters MLE MSE Bias
α 1.647293 0.03745800 0.04729255

50 σ 1.257434 0.04245403 0.05743403

α 1.627257 0.01732586 0.02725739
100 σ 1.235155 0.01727730 0.03515506

α 1.618928 0.00993020 0.01892835
200 σ 1.216921 0.00978696 0.01692071

α 1.610806 0.00749452 0.01080646
300 σ 1.209155 0.00590437 0.00915519

α 1.607756 0.00578927 0.00875570
400 σ 1.207724 0.00522039 0.00772403

α 1.607377 0.00495649 0.00837722
500 σ 1.206386 0.00413462 0.00638614

α 1.607077 0.00404159 0.00807700
1000 σ 1.204783 0.00370541 0.00608253

α 1.605926 0.00357296 0.00592560
1500 σ 1.202933 0.00310211 0.00553341

α 1.605566 0.00342711 0.00506591
2000 σ 1.201824 0.00299849 0.00524317

α 1.603931 0.00269719 0.00430580
2500 σ 1.201376 0.00258171 0.00437642

α 1.603272 0.00248891 0.00427248
3000 σ 1.201039 0.00238806 0.00383875

α 1.602213 0.00226258 0.00381321
3500 σ 1.200925 0.00215743 0.00332455

α 1.601890 0.00211945 0.00338986
4000 σ 1.200769 0.00206960 0.00286931

α 1.600817 0.00197970 0.00301707
4500 σ 1.200167 0.00170270 0.00216691

α 1.600798 0.00118820 0.00149835
5000 σ 1.200115 0.00124240 0.00139478

MLE = maximum likelihood estimator, MSE = mean square error, n = sample size.

Table 4. The numerical description of the SS of the NCT-Weibull distribution for α = 1.5 and σ = 1.

n Parameters MLE MSE Bias

α 1.536557 0.02935531 0.036556898
50 σ 1.032626 0.02028196 0.032626058

α 1.523453 0.01454322 0.023453154
100 σ 1.022780 0.01560843 0.022780097

α 1.512594 0.00878291 0.018594240
200 σ 1.012194 0.00617592 0.012193633

α 1.512682 0.00751053 0.012682101
300 σ 1.011429 0.00479729 0.011428825

α 1.509734 0.00474624 0.009734084
400 σ 1.008920 0.00435279 0.008920038

α 1.506511 0.00435750 0.007510780
500 σ 1.008418 0.00389977 0.007417519
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Table 4. Cont.

n Parameters MLE MSE Bias

α 1.505726 0.00376879 0.006726321
1000 σ 1.007672 0.00348127 0.007071814

α 1.505137 0.00321440 0.005837298
1500 σ 1.006518 0.00312391 0.005518071

α 1.503928 0.00292193 0.005128123
2000 σ 1.005165 0.00296230 0.004164561

α 1.502614 0.00273244 0.004613729
2500 σ 1.004497 0.00250790 0.003497397

α 1.501920 0.00244730 0.003920174
3000 σ 1.003782 0.00201760 0.002781555

α 1.501252 0.00220965 0.002252233
3500 σ 1.002927 0.00143502 0.002427178

α 1.501022 0.00181327 0.001721648
4000 σ 1.002255 0.00130605 0.002254885

α 1.500701 0.00144591 0.001300919
4500 σ 1.002055 0.00118396 0.002055212

α 1.500362 0.00106532 0.000932209
5000 σ 1.004314 0.00113503 0.001313930

MLE = maximum likelihood estimator, MSE = mean square error, n = sample size.

5. Data Analyses

This section demonstrates and validates the applicability of the NCT-Weibull distribu-
tion by considering two practical examples (i.e., analyzing two datasets). Both examples
are based on the use of medical datasets. We apply the NCT-Weibull distribution to both
medical datasets in comparison with some rival distributions.

5.1. Description of the Datasets

This subsection provides a description of medical datasets that are considered to
demonstrate and validate the applicability of the NCT-Weibull distribution.

The first dataset (this can be represented by Data 1) represents the survival times
(measured in years) of the patients. This dataset consists of the survival times of 45 patients
who received chemotherapy treatment; see [26,27]. The second dataset (represented by
Data 2) also represents the survival times (measured in weeks) of the patients. Data 2
consists of survival times for 32 patients diagnosed with acute myelogenous leukemia [28].

Some key measures (i.e., summary measures) of Data 1 and Data 2 are presented in
Table 5. Additionally, some key plots of Data 1 and Data 2 are also shown, respectively, in
Figures 5 and 6.

Table 5. Key measures of the chemotherapy and acute myelogenous leukemia data.

Description Mean 1st Quartile 2nd Quartile 3rd Quartile

Data 1 1.341 0.395 0.841 2.178
Data 2 42.060 4.000 22.000 65.000

Description Standard deviation Variance Minimum Maximum

Data 1 1.246 1.554 0.047 4.033
Data 2 46.944 2203.802 1.00 156.00

Description Range Skewness Kurtosis Data size

Data 1 3.986 0.972 2.663 45
Data 2 155 1.124 3.026 32

Data 1 = Chemotherapy dataset, Data 2 = Myelogenous leukemia dataset.
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Figure 5. The chemotherapy dataset represented by (a) kernel density plot, (b) histogram, (c) box
plot, and (d) violin plot.
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Figure 6. The acute myelogenous leukemia dataset represented by (a) kernel density plot,
(b) histogram, (c) box plot, and (d) violin plot.

5.2. The Rival Distributions and Decisive Measures

This subsection presents some rival distributions that are considered alternative mod-
els for analyzing Data 1 and Data 2. The rival distributions include the (i) Weibull dis-
tribution (two-parameter model), (ii) new extended exponential Weibull (NEE-Weibull)
distribution, which is a three-parameter model, and (iii) new alpha cosine Weibull (NAC-
Weibull) distribution, which is also a three-parameter model.

The proposed NCT-Weibull distribution is applied to medical datasets (which are
described above) with these rival distributions to determine its utility and best fit compared
to the rival distributions. The distribution functions of the rival distribution are given by

• Weibull distribution

G(w; ξξξ) = 1− e−σwα
, w ≥ 0, α > 0, σ > 0.

• NEE-Weibull distribution

G(w; β, ξξξ) = 1− βe−σwα

β + 1− e−σwα , w ≥ 0, α > 0, σ > 0, β > 0.



Symmetry 2023, 15, 1528 15 of 21

• NAC-Weibulll distribution

G(w; α1, ξξξ) =
α

cos
(

π
2 e−σwα

)
1 − 1

α1 − 1
, w ≥ 0, α > 0, σ > 0, α1 > 0, α1 6= 1.

Now, we describe some decision tools that we apply to establish the superior perfor-
mance (i.e., best fitting power) of the NCT-Weibull distribution over competing distribu-
tions using medical datasets. The decision-making tools consist of four information criteria
(IC), calculated as follows:

• Akaike information criterion (AIC)

2k− 2δ(.).

• Consistent Akaike information criterion (CAIC)

2nk
n− k− 1

− 2δ(.).

• Bayesian information criterion (BIC)

k log(n)− δ(.).

• Hannan–Quinn information criterion (HQIC)

2k log[log(n)]− 2δ(.).

In the expressions of decision-making tools, the quantities n, k, and δ(.) represent the
size of the data, the number of model parameters, and the LLF of the fitted distribution,
respectively.

Among the NCT-Weibull and rival distributions, the model with the lowest values of
the decision-making tools is considered the best-suited model for the chemotherapy and
acute myelogenous leukemia datasets.

5.3. Analysis of Data 1

The first example (i.e., the first illustration) of the NCT-Weibull distribution using
survival times for chemotherapy patients is provided in this subsection. Corresponding to
this dataset, the values of the MLEs α̂, σ̂, β̂ and α̂1 of the NCT-Weibull distribution and rival
models are reported in Table 6.

Furthermore, using the survival times of the chemotherapy patients’ data, the unique-
ness and existence of α̂ and σ̂ of the NCT-Weibull distribution are shown visually in Figure 7
and Figure 8, respectively. The plots in Figure 7 show that α̂ and σ̂ have unique solutions,
whereas the plots in Figure 8 indicate the existence of the LLF, as each curve intersects the
x-axis at one point.

Using the survival times of the chemotherapy patients’ data, the values of the decisive
measures of the NCT-Weibull and rival distributions are obtained in Table 6. Based on the
reported results of the IC in Table 7, we can easily observe that the NCT-Weibull distribution
has the smallest values, leading to the fact that the NCT-Weibull distribution is the most
appropriate model for analyzing Data 1 as compared to rival distributions. For the NCT-
Weibull distribution, the values of the IC quantities are AIC = 118.8058, CAIC = 119.0916,
BIC = 122.4192, and HQIC = 120.1529. For this dataset, the second most appropriate model
is the NEE-Weibull distribution with AIC = 121.6609, CAIC = 122.2462, BIC = 127.0808, and
HQIC = 123.6814. The Weibull distribution ranked as the third most suitable model for
analyzing the chemotherapy patients’ dataset.

Having numerically demonstrated the appropriateness of the NCT-Weibull distribu-
tion for chemotherapy patient data, we now establish visually the appropriateness of the
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NCT-Weibull distribution. For a visual illustration of the performance of the fitted distri-
butions, we obtain the fitted plots of the NCT-Weibull and rival distributions. The fitted
plots considered in this paper include empirical CDF, estimated PDF, and Kaplan–Meier
survival plots; see Figures 9 and 10. Based on the plots in Figures 9 and 10, we can see that
the NCT-Weibull distribution closely follows the chemotherapy patients’ dataset.
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Figure 7. The profiles of the LLF of (a) α̂MLE and (b) σ̂MLE of the NCT-Weibull distribution for the
chemotherapy treatment dataset.
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Figure 8. The visual illustrations of the existence of (a) α̂MLE and (b) σ̂MLE of the NCT-Weibull
distribution for the chemotherapy treatment dataset.

Table 6. The numerical values of α̂, σ̂, β̂, and α̂1 of the fitted models for the chemotherapy treatment
dataset.

Dist. α̂ σ̂ β̂ α̂1

NCT-Weibull 1.05365 0.28907 - -
Weibull 1.05460 0.71613 - -
NEE-Weibull 1.26571 0.38501 0.62759 -
NAC-Weibull 1.08096 0.33115 - 0.49814

Table 7. The values of the decisive tools of the NCT-Weibull and its rival probability distributions for
the chemotherapy treatment dataset.

Dist. AIC CAIC BIC HQIC

NCT-Weibull 118.8058 119.0916 122.4192 120.1529
Weibull 122.2476 122.5334 125.8610 123.5947
NEE-Weibull 121.6609 122.2462 127.0808 123.6814
NAC-Weibull 122.2846 122.8700 127.7046 124.3052



Symmetry 2023, 15, 1528 17 of 21

w

(a)

F
it
te

d
 P

D
F

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

NCT−Weibull

W

(b)

F
it
te

d
 P

D
F

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Weibull

W

(c)

F
it
te

d
 P

D
F

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

NEE−Weibull

W

(d)

F
it
te

d
 P

D
F

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

NAC−Weibull

Figure 9. The fitted PDF plots of the (a) NCT-Weibull, (b) Weibull, (c) NEE-Weibull, and (d) NAC-
Weibull for the chemotherapy treatment dataset.
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Figure 10. Corresponding to the chemotherapy treatment dataset, the fitted (a) CDF and (b) SF of the
NCT-Weibull distribution and rival models.

5.4. Analysis of Data 2

This subsection presents another practical example of the NCT-Weibull distribution
using the acute myelogenous leukemia dataset. The values of the MLEs α̂, σ̂, β̂, and α̂1 of
the NCT-Weibull and rival distribution are shown in Table 8.

Using the acute myelogenous leukemia dataset, we again show the uniqueness and
existence of α̂ and σ̂ of the NCT-Weibull distribution; see Figures 11 and 12. The plots in
Figures 11 and 12 confirm the unique solutions and existence of α̂ and σ̂ of the NCT-Weibull
distribution, respectively.

Using the acute myelogenous leukemia dataset, the values of the decisive measures
of the NCT-Weibull and rival distributions are reported in Table 9. Corresponding to
the given results in Table 9, it is obvious that the NCT-Weibull distribution performs
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better than the Weibull, NEE-Weibull, and NAC-Weibull distributions. For the acute myel-
ogenous leukemia dataset, the IC measures of the NCT-Weibull distribution are given
by AIC = 303.0642, CAIC = 303.4780, BIC = 305.9956, and HQIC = 304.0359. For Data
2, the second most appropriate model is the Weibull distribution with AIC = 304.3037,
CAIC = 304.7175, BIC = 307.2352, and HQIC = 305.2754. Similarly, the NEE-Weibull distri-
bution and NAC-Weibull distribution are, respectively, ranked as the third and fourth most
suitable models for analyzing the myelogenous leukemia dataset.

In addition to the numerical demonstration of the appropriateness of the NCT-Weibull
distribution for the myelogenous leukemia dataset, we revisit the visual approach to
demonstrate the suitability of the NCT-Weibull distribution. For the visual demonstra-
tion, we again consider the fitted plots that are discussed in the previous subsection; see
Figures 13 and 14. The visual comparison, using the fitted plots in Figures 13 and 14, also
confirms the appropriateness of the NCT-Weibull distribution for Data 2.
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Figure 11. The profiles of the LLF of (a) α̂MLE and (b) σ̂MLE of the NCT-Weibull distribution for the
acute myelogenous leukemia dataset.
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Figure 12. The visual illustrations of the existence of (a) α̂MLE and (b) σ̂MLE of the NCT-Weibull
distribution for the acute myelogenous leukemia dataset.

Table 8. The numerical values of α̂, σ̂, β̂, and α̂1 of the fitted models for the acute myelogenous
leukemia dataset.

Dist. α̂ σ̂ β̂ α̂1

NCT-Weibull 0.78815 0.02369 - -
Weibull 0.79167 0.05780 - -
NEE-Weibull 0.86363 0.03308 1.71726 -
NAC-Weibull 0.82236 0.02428 - 0.44785
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Table 9. The values of the decisive tools of the NCT-Weibull and its rival probability distributions for
the acute myelogenous leukemia dataset.

Dist. AIC CAIC BIC HQIC

NCT-Weibull 303.0642 303.4780 305.9956 304.0359
Weibull 304.3037 304.7175 307.2352 305.2754
NEE-Weibull 306.1248 306.9820 310.5221 307.5824
NAC-Weibull 306.5065 307.3637 310.9037 307.9641
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Figure 13. The fitted PDF plots of the (a) NCT-Weibull, (b) Weibull, (c) NEE-Weibull, and (d) NAC-
Weibull for the acute myelogenous leukemia dataset.
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Figure 14. Corresponding to the acute myelogenous leukemia dataset, the fitted (a) CDF and (b) SF
of the NCT-Weibull distribution and rival models.

6. Concluding Remarks

Probability distributions have wider applications in almost every field of life. However,
no probability distribution provides a satisfactory fit to all types of datasets. Therefore,
introducing new probability distributions with better fitting power is an important research
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topic, and the demand for it is increasing rapidly. Because of the practical importance of
probability distributions, researchers are focusing on the development of new probability
distributions to meet the need. In this regard, so far, several new probability distributions
with updated features have been developed and implemented. Often, the new probability
distributions provide a better fit than the baseline model or other traditional models. But,
in most cases, the number of parameters has also increased from one to seven. Additional
parameters sometimes lead to re-parameterization problems.

In order to avoid re-parameterization problems as well as to update the fitting power
and distributional flexibility of the baseline model, this paper introduced a new probabilistic
method. The proposed method was based on the trigonometric function implementation
and was named a new cotangent-G (NCT-G) family of distributions. Certain distributional
properties of the NCT-G distributions were derived. A special member of the NCT-G
distributions (taking the Weibull as the baseline model) called the NCT-Weibull distribution
was considered for illustrative purposes. MLEs of the NCT-Weibull distribution were
obtained. The uniqueness of the MLEs of the NCT-Weibull distribution was visually
demonstrated using two practical datasets. Furthermore, the MLEs of the NCT-Weibull
distribution were also evaluated by Monte Carlo SS using two statistical criteria. Finally, the
practical importance of the NCT-Weibull distribution was demonstrated by considering two
examples from the medical field. Based on the four ICs, it was shown that the NCT-Weibull
distribution outperforms the Weibull distribution and its two other variants.
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