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Abstract: This review considers the chiral phosphorus-containing drugs used to treat patients in the
clinic, as well as the promising and experimental drugs that are in the process of being researched.
Natural and synthetic representatives of phosphorus-containing drugs, such as tenofovir (hepatitis B
and HIV treatment), fosfomycin (antibiotic), valinofos (antibiotic), phosphazinomycin A (antibiotic),
(R)-phospholeucine, various antibacterial and antifungal agents, renin inhibitors, etc., have found
practical applications as medicines and bioregulators and other medicines. The influence of the
chirality of both carbon atoms and phosphorus atoms on the pharmacodynamics, pharmacokinetics,
and toxicological properties of phosphorus drugs has been demonstrated. Therefore, the choice of
enantiomers is critical since the wrong choice of a chiral drug can lead to undesirable consequences,
carcinogenicity, and teratogenicity. New chiral technologies affecting drug development are discussed,
such as the “chiral switch” of racemates already on the market, as well as phosphorus-containing
prodrugs with a higher biological selectivity and low adverse effects.

Keywords: chiral phosphorus compounds; prodrugs; natural pharmaceuticals synthetic phosphorus drugs;
bisphosphonates; phosphonosulfonates; phosphonopeptides; “troyan horse” antibiotics; chiral switches

1. Introduction

In recent years, the trend towards the use of chiral pharmaceuticals has steadily
increased, although the requirements for this problem were published by the US Food and
Drug Administration (FDA) back in 1992 in a document entitled “Development of new
stereoisomeric drugs” [1].

These guidelines have changed the possibilities and strategies for marketing and
patenting successful drugs. They force stereochemistry to be taken into account when
searching for new drugs. The 1992 FDA guidelines require that absolute stereochemistry
be known for compounds with chiral centers and that this information is established early
in drug discovery and development for the analysis to be considered rigorous and valid for
inclusion in a drug application [2]. Enantiomers require the use of “specialized chiral meth-
ods for their correct identification, characterization, separation and measurement” [2,3].
The means of identification and quantification may include optical rotation measurement,
chiral chromatography, optical rotational dispersion, circular dichroism, and NMR with
chiral shift reagents [3]. The FDA leaves it up to developers to decide whether to develop
a drug as a racemate or a single enantiomer. However, the rationale for the decision to
develop a drug as a racemate or a single enantiomer should be included in the application
for the registration of the drug. In addition to the patent for the racemate, which does not
guarantee patent protection for the enantiomers, the patentee must also apply for patent
protection for each enantiomer [2]. Similar guidelines have been adopted by the European
Medicines Agency (EMA) [4,5] and Health Canada [5].

The EMA guidelines also state that for manufacturing processes the starting materials,
intermediates, and end products must be fully characterized in terms of their identity and
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purity because stereoisomer interconversions (chiral to achiral, achiral to chiral) can oc-
cur [5]. Under these conditions, chiral technologies were formed and developed, primarily
in the form of chiral switching, which extends the patent protection of the drug when the
patent for the racemate is out of patent; then, the patent for the eutomer can extend the
patent for the drug [6].

The “chiral switching” attracted special attention. Based on the new guidelines in the
1990s, most pharmaceutical companies and research institutes began to focus on single
enantiomers at an early stage when they identified a potential chiral drug [7]. As these
authors demonstrated, within 10 years of the release of the 1992 FDA guidelines, there
was a very definite shift towards single enantiomeric drugs. As a result, global sales of
single-enantiomer drugs grew by 13% per year from 2000 [8].

Therefore, FDA regulation requires that only drugs with one enantiomer can be
provided to patients in need of treatment, despite the considerable effort required to obtain
enantiomerically pure drugs. In rare cases, both enantiomers have been shown to bind
separately in the binding pocket, but never simultaneously [7–18].

A large number of experimental and review articles have been devoted to the pharma-
cological properties of organophosphorus compounds that have been used or proposed
for a variety of applications, including chemical warfare agents (nerve agents) [15,19],
insecticides [16], herbicides [16,17], industrial application products, and various phar-
maceuticals [15–17]. Some of them mention the influence of chirality on the activity of
drugs [14,15]. However, we did not find a single review article that discussed the effect
of chirality on the pharmaceutical properties of organophosphorus drugs. This prompted
us to prepare this review article and to bring it to the attention of readers. The presented
review article is a continuation of our previous publications devoted to the effect of chirality
on the biological properties of organophosphorus compounds [16–18].

2. Discussion
2.1. Chiral Natural Phosphorus Compounds

Phosphorus compounds are necessary for fixing information in RNA and DNA. They
serve as the main source of biochemical energy in ATP and other phosphagens [15,16].
Phosphoramidate nucleotides are found in many antibiotics, such as the antibiotic HC 62,
isolated from Bacillus sp. HC-62; antibiotics 1100-50; and EM 2487 (Human Immunodefi-
ciency Virus Tat gene product inhibitors) [15,16] (Figure 1).
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Natural phosphonates are represented by various types of low molecular weight
compounds [16]. For example, aminophosphonic acids [19,20] and hydroxyphosphonic
acids [19] are widely known; many of them have been studied in detail and have found
practical applications. These compounds are analogues of natural amino- and hydroxy-
carboxylic acids, in which the planar carboxyl group is replaced by a tetrahedral fragment
of phosphonic acid. Some of them have found commercial applications in agriculture
and medicine as insecticides, fungicides, herbicides, pharmaceutical intermediates, and
others. For example, aminophosphonic acids and their peptide conjugates have antibacte-
rial, antitumor, antiviral, and antifungal effects. Some natural phosphonates are shown in
Figures 2 and 3 [21–25]. These compounds have been isolated from a variety of prokary-
otic and eukaryotic organisms, including fungi and organotrophs: Fusarium avenaceum,
Fusarium oxysporum, Fusarium tricinctum, and Talaromyces flavus [26]. They are moderately
active against some species of Gram-negative bacteria, and their synergistic effect with
glucose-6-phosphate was observed against Staphylococcus aureus and Escherichia coli. Mi-
fobate [27], fosinopril (Monopril®) [28–30], Ridaforolimus* [31] are low molecular weight
rapamycin inhibitors (immunosuppressant) (Figure 3).
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Fosfomycin sodium as an antibiotic is mainly used to treat bladder infections [32].
This drug is also used in combination with amikacin sulfate to further inhibit the ribosomal
subunit of the 30S protein [33–35]. Drugs in this category, which includes antiviral drugs
such as fosarylate and the cardiovascular drugs fostedil and mifobate, continue to be tested
in clinical trials [36]. Unlike most of the angiotensin-converting enzyme (ACE) inhibitors
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that are a part of cardiovascular drugs, fosinopril [37], with a phosphinate structure, is better
suited for the treatment of hypertension and chronic heart failure due to excretion from the
body by both renal and hepatic routes. [38]; fosinoprilat is obtained by the de-esterification
of fosinopril, which competitively binds to ACE in vivo [30].

Fosmidomycin and its homologues are potent inhibitors of 1-deoxy-D-xylulose-5-
phosphate reductoisomerase, an important enzyme in the non-mevalonate isoprenoid
biosynthesis pathway that is active against a wide range of enterobacteria. Phosphinothricin
is an active inhibitor of glutamine synthetase [39–41]. Other glutamine synthetase inhibitors
have been reported to be promising for the treatment of tuberculosis and neurological
diseases [41]. Bioenzymatic methods have been used to synthesize D- and L-enantiomers of
phosphinothricin (2-amino-4-hydroxymethylphosphinylbutanoic acid) and its derivatives.

Based on in vitro studies, it was proposed to use phosphomidosines as potential
antitumor agents. A fosmidosine analogue with a nacilsulfamate bond and strong antitu-
mor activity against cancer cells was synthesized by sulfamoylation of an 8-oxoadenosine
derivative [42]. Sekin et al. reported on the synthesis of stable biotin-fosmidosin, which is
necessary for the isolation of the biomolecules that bind to fosmidosin [43,44].

S-alkylthiohydroxymate and N-acetyl-Cys moieties of phosphonocystoximate are
chemically similar to glucosinolate biosynthetic intermediates, which are natural plant
products with potential antioxidant and anticancer properties (Figure 4) [45].

Symmetry 2023, 15, x FOR PEER REVIEW 4 of 27 
 

 

excretion from the body by both renal and hepatic routes. [38]; fosinoprilat is obtained by 
the de-esterification of fosinopril, which competitively binds to ACE in vivo [30]. 

Fosmidomycin and its homologues are potent inhibitors of 1-deoxy-D-xylulose-5-
phosphate reductoisomerase, an important enzyme in the non-mevalonate isoprenoid bi-
osynthesis pathway that is active against a wide range of enterobacteria. Phosphinothricin 
is an active inhibitor of glutamine synthetase [39–41]. Other glutamine synthetase inhibi-
tors have been reported to be promising for the treatment of tuberculosis and neurological 
diseases [41]. Bioenzymatic methods have been used to synthesize D- and L-enantiomers 
of phosphinothricin (2-amino-4-hydroxymethylphosphinylbutanoic acid) and its deriva-
tives. 

Based on in vitro studies, it was proposed to use phosphomidosines as potential an-
titumor agents. A fosmidosine analogue with a nacilsulfamate bond and strong antitumor 
activity against cancer cells was synthesized by sulfamoylation of an 8-oxoadenosine de-
rivative [42]. Sekin et al. reported on the synthesis of stable biotin-fosmidosin, which is 
necessary for the isolation of the biomolecules that bind to fosmidosin [43,44]. 

S-alkylthiohydroxymate and N-acetyl-Cys moieties of phosphonocystoximate are 
chemically similar to glucosinolate biosynthetic intermediates, which are natural plant 
products with potential antioxidant and anticancer properties (Figure 4) [45]. 

 
Figure 4. Phosphoramide nucleotide antibiotics. 

The selective antibiotic Agrocin 84, which is a member of the adenine nucleotide fam-
ily, has attracted close attention [46]. Agrocin 84, which is a 6-N-phosphoramide, was iso-
lated from Agrobacterium radiobacter K84 found in Australia [45–49]. Agrocin 84 is selec-
tively active against several strains of phytopathogenic agrobacteria, such as Agrobacte-
rium tumefaciens and Agrobacterium rhizogenes. The toxic effect is achieved by inhibiting the 
tRNA synthetase of the pathogen. The structure of Agrocin 84 was confirmed by inde-
pendent synthesis l. Microcin C (McC) is a member of the microcin family containing a 
heptapeptide covalently linked to 3-aminopropyl-AMP via an acylphosphoramide bond. 
The intracellular action of Microcin C proceeds according to the “Trojan horse” mecha-
nism, which is currently being actively discussed in the chemical literature. The “Trojan 
horse” mechanism promotes the transport of inhibitory metabolites into the cell [50,51]. 
Microcin C consists of a peptide with formylmethionine on the lateral nitrogen and a C-
terminal asparagine linked to nebularin-50-monophosphate via a trimethylene chain. The 
antibiotic is active against Gram-negative bacteria of various taxonomic groups, as well as 
some Gram-positive bacteria (Figure 5). 

Figure 4. Phosphoramide nucleotide antibiotics.

The selective antibiotic Agrocin 84, which is a member of the adenine nucleotide
family, has attracted close attention [46]. Agrocin 84, which is a 6-N-phosphoramide, was
isolated from Agrobacterium radiobacter K84 found in Australia [45–49]. Agrocin 84 is selec-
tively active against several strains of phytopathogenic agrobacteria, such as Agrobacterium
tumefaciens and Agrobacterium rhizogenes. The toxic effect is achieved by inhibiting the
tRNA synthetase of the pathogen. The structure of Agrocin 84 was confirmed by inde-
pendent synthesis l. Microcin C (McC) is a member of the microcin family containing a
heptapeptide covalently linked to 3-aminopropyl-AMP via an acylphosphoramide bond.
The intracellular action of Microcin C proceeds according to the “Trojan horse” mechanism,
which is currently being actively discussed in the chemical literature. The “Trojan horse”
mechanism promotes the transport of inhibitory metabolites into the cell [50,51]. Microcin
C consists of a peptide with formylmethionine on the lateral nitrogen and a C-terminal
asparagine linked to nebularin-50-monophosphate via a trimethylene chain. The antibiotic
is active against Gram-negative bacteria of various taxonomic groups, as well as some
Gram-positive bacteria (Figure 5).

Some bacterial species produce phosphoramide antibiotics containing peptides. The
peptide part of this phosphoramide facilitates the transport of the antibiotic to the target
cell [52].
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2.2. Synthetic Chiral Phosphorus Drugs

Synthetic compounds of this class have found practical applications as medicines,
bioregulators, and other pharmaceutical preparations, such as tenofovir (hepatitis B and
HIV treatment), fosfomycin (antibiotic), valinofos (antibiotic), phosphazinomycin A
(antibiotic), (R)-phospholeucine, various antibacterial and antifungal agents, renin
inhibitors, etc. [53].

Chiral molecules exhibit selective activity; so, these molecules often differ in their
pharmaceutical properties and mechanisms of action. Individual enantiomers show marked
differences in pharmacodynamic, pharmacokinetic, and toxicological properties. Tenofovir
is used as a drug to treat HIV and hepatitis B. Phosphonoformate (foscarnet) is used to
treat malaria. FR-33289 is a hydroxylated version of FR-900098 that retains its biological
activity [51]; SF2312 uses the natural phosphonate inhibitor of enolase (Figure 6).
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The chiral phosphinoferrocenyl fragments in the lower rim were synthesized by V.
Kalchenko et al. [54,55] by the Mitsunobu reaction of tert-butyltetrahydroxycalixarene
with the (S)-enantiomer of thiophosphino(methylol)ferrocene in high yield. Convenient
methods have been developed for the synthesis of chiral calix [4]arenes asymmetrically
substituted with achiral diphenylphosphino groups along the upper rim, as well as by
phosphate fragments along the lower rim. Chiral phosphorus-containing calix [4]arenes are
a promising molecular platform for creating stereochemically pure bioactive compounds.
Calix [4]arene and thiacalix [4]arene derivatives have proven to be effective inhibitors
of NPP1 with micromolar IC50 values. Thiacalix [4]arenephosphinic acid is not a low
micromolar inhibitor of PTP1B. Kinetic experiments have shown that inhibitors compete
with the substrate for the active site of the enzyme [53–55] (Figure 7).
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Bisphosphonates are extremely important phosphorus-containing drugs, whose main
use is certainly in the treatment and prevention of osteoclast-mediated bone diseases [56],
such as osteoporosis, Paget’s disease, hypercalcemia, bone metastases, etc. [57,58]. Bis-
phosphonates are metabolically stable analogs of pyrophosphate, in which the bridging
oxygen atom has been replaced by a substituted methylene group. Further modifications
of the R1 and R2 groups associated with the Cα position have resulted in a variety of
bisphosphonates with diverse structures. Bisphosphonates containing asymmetric chi-
rogenic centers have been obtained. Studies of the influence of chirality on the biological
properties of bisphosphonates have been carried out. A number of bisphosphonates have
been derived from naturally occurring terpenes and sesquiterpenes. For example, starting
from (+)-(R)-citronellal, a chiral bisphosphonate was obtained [59–61]. The same method
was used to synthesize the bisphosphonates shown in Figure 8; these are derivatives of
terpenes containing an asymmetric center in the side chain [60] (Figure 9).

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 27 
 

 

 
Figure 7. Typical examples of chiral phosphonocalixarenes. 

Bisphosphonates are extremely important phosphorus-containing drugs, whose 
main use is certainly in the treatment and prevention of osteoclast-mediated bone diseases 
[56], such as osteoporosis, Paget’s disease, hypercalcemia, bone metastases, etc. [57,58]. 
Bisphosphonates are metabolically stable analogs of pyrophosphate, in which the bridg-
ing oxygen atom has been replaced by a substituted methylene group. Further modifica-
tions of the R1 and R2 groups associated with the Cα position have resulted in a variety of 
bisphosphonates with diverse structures. Bisphosphonates containing asymmetric chiro-
genic centers have been obtained. Studies of the influence of chirality on the biological 
properties of bisphosphonates have been carried out. A number of bisphosphonates have 
been derived from naturally occurring terpenes and sesquiterpenes. For example, starting 
from (+)-(R)-citronellal, a chiral bisphosphonate was obtained [59–61]. The same method 
was used to synthesize the bisphosphonates shown in Figure 8; these are derivatives of 
terpenes containing an asymmetric center in the side chain [60] (Figure 9). 

 
Figure 8. Synthesis of bisphosphonates, chiral in the side chain. 

 
Figure 9. Examples of chiral bisphosphonates. 

N-Moc- and N-Boc-proline chlorides react with triethylphosphite on cooling to form 
(S)-ketophosphonate. In the presence of pyridinium perchlorate, the ketophosphonate re-
acted with trialkyl phosphite in methylene chloride at room temperature or when cooled 
to 0 °C to form hydroxy-1,1-bis-phosphonate. In the 1H, 13C, 31P NMR spectra of com-
pounds, the signals of some groups, including those of both ketophosphonate and 
bisphosphonate, are doubled due to the presence of rotamers, which are typical for 

Figure 8. Synthesis of bisphosphonates, chiral in the side chain.

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 27 
 

 

 
Figure 7. Typical examples of chiral phosphonocalixarenes. 

Bisphosphonates are extremely important phosphorus-containing drugs, whose 
main use is certainly in the treatment and prevention of osteoclast-mediated bone diseases 
[56], such as osteoporosis, Paget’s disease, hypercalcemia, bone metastases, etc. [57,58]. 
Bisphosphonates are metabolically stable analogs of pyrophosphate, in which the bridg-
ing oxygen atom has been replaced by a substituted methylene group. Further modifica-
tions of the R1 and R2 groups associated with the Cα position have resulted in a variety of 
bisphosphonates with diverse structures. Bisphosphonates containing asymmetric chiro-
genic centers have been obtained. Studies of the influence of chirality on the biological 
properties of bisphosphonates have been carried out. A number of bisphosphonates have 
been derived from naturally occurring terpenes and sesquiterpenes. For example, starting 
from (+)-(R)-citronellal, a chiral bisphosphonate was obtained [59–61]. The same method 
was used to synthesize the bisphosphonates shown in Figure 8; these are derivatives of 
terpenes containing an asymmetric center in the side chain [60] (Figure 9). 

 
Figure 8. Synthesis of bisphosphonates, chiral in the side chain. 

 
Figure 9. Examples of chiral bisphosphonates. 

N-Moc- and N-Boc-proline chlorides react with triethylphosphite on cooling to form 
(S)-ketophosphonate. In the presence of pyridinium perchlorate, the ketophosphonate re-
acted with trialkyl phosphite in methylene chloride at room temperature or when cooled 
to 0 °C to form hydroxy-1,1-bis-phosphonate. In the 1H, 13C, 31P NMR spectra of com-
pounds, the signals of some groups, including those of both ketophosphonate and 
bisphosphonate, are doubled due to the presence of rotamers, which are typical for 

Figure 9. Examples of chiral bisphosphonates.

N-Moc- and N-Boc-proline chlorides react with triethylphosphite on cooling to form
(S)-ketophosphonate. In the presence of pyridinium perchlorate, the ketophosphonate re-
acted with trialkyl phosphite in methylene chloride at room temperature or when cooled to
0 ◦C to form hydroxy-1,1-bis-phosphonate. In the 1H, 13C, 31P NMR spectra of compounds,
the signals of some groups, including those of both ketophosphonate and bisphosphonate,
are doubled due to the presence of rotamers, which are typical for pyrrolidine derivatives
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and confirm the structure of the compounds (Figure 10) [60]. According to a similar react-
ing scheme, the Garner’s aldehyde was reacted with triethyl phosphite in the presence of
pyridinium perchlorate. As a result, chiral bisphosphonates were obtained in the form of
two diastereomers in a ratio of 3:1 (Figure 11) [60].
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Squalene synthase catalyzes the conversion of (E,E)-farnesyl diphosphate to squalene
via the formation of cyclopropylcarbinyl intermediate—presqualene diphosphate (PSPP).
The key intermediates of aziridine-2-methanol (6-OH, 7-OH, and 8-OH) were prepared by
N-alkylation and N-acylation reduction of (2R,3S)- or (2S,3R)-2,3-aziridinofarnesol (9-OH)
protected by tert-butyldimethylsilyl ethers. Nucleophilic SN2 substitution of the corre-
sponding methanesulfonates with pyrophosphate and methanediphosphonate anions gave
aziridine-2- methyldiphosphates and methanediphosphonates containing N-undecyl, N-
bis-homogeranyl, and N-(R)-methylene)bis-homogeranyl substituents, which were studied
as mimics of 2,6,10-trimethylundeca-2,5,9-trienyl side chain PSPP. The aziridine diphos-
phate of (2R,3S)-PSPP absolute configuration was a stronger inhibitor (IC50 1.17) (0.08 µM
in the presence of inorganic pyrophosphate) than the (2S,3R) stereoisomer that was four
times higher [62] (Figure 12).
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Aziridine 6–OPP proved to be one of the most active inhibitors of squalene synthase.
The IC50 value of 1.2 µM for the (2R,3S)-enantiomer and the submicromolar Ki previously
determined for the racemate indicates a fairly strong interaction with the enzyme, despite
the absence of a proximal double bond and a methyl group in the side chain on the aziridine
nitrogen. The increased inhibition by the (2R,3S) enantiomer corresponding to the PSPP
configuration when compared to the “wrong” (2S,3R) stereoisomer, both in the absence and
in the presence of the PPi additive (by 16 and 4 times, respectively), indicates a significant
influence of stereochemistry. The increased affinity of these aza analog inhibitors for the
enzyme when compared to the FPP substrate (S0.5 FPP = 19 (6 µM) and PSPP intermediate
(Ki PSPP = 75 (20 µM)) suggests that these compounds may be mimics of carbocationic
transition intermediates. Although the synergistic effect of PPi addition on the inhibitory
properties of enantiomerically pure aziridine diphosphates was more pronounced for the
“wrong” enantiomer (2S,3R)-6-OPP (about four times compared to almost no change), the
(2R,3S) enantiomer remained four times more active under these conditions. Among the
methanediphosphonate derivatives, aziridine 6-OMDP and 7-OMDP inhibited squalene
synthase in the presence of PPi addition, with IC50 values of 13.8 and 17.4 µM, respectively.
A strong interaction of the PP group of inhibitors with any of them effectively prevents
squalene synthesis (Figure 13) [63,64].
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Derivatives of α-phosphonosulfonate contain an asymmetric center. The tetrahedral
geometry and interatomic distances of alkyl sulfonic acid and alkyl phosphonic acids are
relatively close to each other, which is proved by X-ray diffraction analysis [63]. It was
found that the absolute carbon configuration of these compounds affected the inhibitory
activity of phosphonates. The (S)-alkylphosphonosulfonate enantiomer is 16 times more
effective against Homo sapiens SQS (Hs-SQS) than its (R)-stereomer. These compounds
behave as analogues of the precursors of squalene diphosphate, which is the product of
the first step of the reductive binding of two molecules of farnesyl diphosphate, which
ultimately leads to the formation of squalene (Figure 14) [65–67].
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Squalene synthase is able to distinguish between phosphonate and sulfonate moieties
at different binding sites. The dibasic phosphonate group and the monobasic sulfonate
group have significant structural similarities. Both have second-row tetrahedral functions
with C3V mapping of negatively charged oxygen atoms. The data on bond angles and
bond lengths of the compounds obtained on the basis of X-ray diffraction analysis confirm
the close isosteric relationship between the phosphonate and sulfonate groups [63–65].
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Protein tyrosine phosphatases (STEPs) control a wide range of cellular activities, including
proliferation, differentiation, metabolism, and immune response [68]. STEP has been chosen
for neuropsychiatric disorders, including Alzheimer’s disease, schizophrenia, and fragile
X syndrome [68]. Based on the previously described phosphorus-containing inhibitors
that exhibit moderate activity against the target STEP enzyme, an effective inhibitor has
been developed. This levorotatory enantiomer was about 40 times more active than the
corresponding dextrorotatory isomer; X-ray diffraction analysis of the STEP-associated
inhibitors was performed, and they were found to occupy mismatched binding sites. The
information obtained was used to optimize the structure of the inhibitor to achieve a Ki of
110 nM with a 15–60-fold selectivity in the phosphatase series. As a result, a phosphonate
(-)-3 with a Ki of 110 nM was identified (Figure 15) [68–71].
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This inhibitor has shown interesting selectivity over other tyrosine and dual inhibitors.
Fosfomycin (monurol or monural), produced by Pseudomonas and Streptomyces, is an impor-
tant therapeutic agent in the treatment of inflammation of the urinary tract and diabetic
foot. It is a covalent inactivator of muramyl ligase A, the first enzyme in peptidoglycan syn-
thesis. Bisphosphonate synthons have been developed using (R)-(+)-α-ethylbenzylamine
or methyl (R)-excipients (-)-phenylglycine and provided with an o-nitrobenzyl ether pro-
tecting group to allow photochemical deprotection. Selective acid hydrolysis of the amide
provides a phosphonate for binding to activated dCMP, followed by deprotection to form
the desired individual β,γ-CHX-dCTP (X=F, Cl, Br) diastereomers. The nucleotide configu-
ration of the product 4 was determined using X-ray crystallography (Figure 16) [61].
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Aminophosphonate antibiotics with an amino group in the gamma position with
respect to the phosphonic functional group, namely fosmidomycin and its derivatives
FR900098 and FR-33289, were isolated from biological sources of Streptomyces, as well as
cyclic phosphonate SF2312, isolated from Micromonospora sp. [65–67]. The natural secondary
metabolite SF2312, produced by the actinomycete Micromonospora, exhibits broad-spectrum
antibacterial properties against Gram-positive and Gram-negative bacteria. Studies have
shown that SF2312 acts as a potent inhibitor of human enolase (Figure 17). Alafosfalin,
also known as alaphosphin, is a phosphonodipeptide with antibacterial and antifungal
properties (Figure 18).
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With the use of genetic engineering methods, it was possible to create new pep-
tidomimetics, such as dihydroxypropylphosphonate, phosphonocystoximate argolaphos A
and B, etc. Argolaphos has a wide spectrum of antibacterial activity against a number of
very harmful infectious diseases. Of particular interest is phosphonocystoximate, which is
a sulfur-containing phosphonate natural product.

Phosphonopeptides are of limited use in human medicine since they are easily hy-
drolyzed in the body and release aminophosphonic acids that are unable to overcome
bacterial or fungal cell barriers and have an antibiotic effect. In addition, they are easily
excreted from the body. Examples of interesting phosphonobiotics are phosphazinomycins
A and B, isolated from Streptomyces lavendofoliae and Streptomyces unzenensis [16]. They are
very specific because they contain a hydrazide bond between peptidylarginine carboxylic
acid and phosphonic acid. Bialaphos attracts the greatest theoretical and practical interest.
The antibacterial activity of bialaphos is typical for many phosphonopeptides. The peptide
parts of these antibiotics promote the transport of phosphonic acids through the mem-
branes of bacteria (or fungi), which, after hydrolysis, exhibit their toxic effect, inhibiting
the vital activity enzymes of harmful organisms in the case of glutamine synthetase. With
the antibacterial and antifungal properties of phosphazinomycins and valinophos, K-26
and its analogs are a family of bacterial secondary metabolites with tripeptides ending in
an unusual tyrosine phosphonate analog. Antibiotics, rhizocticins, plumbemycins, and
fosacetamycin, which were first isolated as secondary metabolites of Bacillus subtilis based
on their antifungal activity, have similar properties [72,73]. Bialaphos was isolated as an
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antibiotic from culture filtrates of Streptomyces viridochromogenes and Streptomyces hygroscop-
icus [72–75]. It was found that the antibacterial activity of Bialaphos is a consequence of the
development of the bacterial transport of the peptide through the membrane, followed by
hydrolysis of the peptide and the release of the terminal phosphonate, phosphinothricin,
which inhibits glutamine synthetase. This enzyme converts glutamic acid and ammonia
into glutamine, which is an important step in the nitrogen contamination of flora and fauna.
The antibacterial activity of bialaphos is characteristic of other phosphonopeptides. The
peptide portions of these antibiotics usually function as a targeting unit. Thus, peptides
are efficiently transported through bacterial membranes and, after hydrolysis, they release
phosphonic acid, which exhibits its toxic effect by inhibiting bacterial vital activity enzymes
in the case of glutamine synthetase (Figure 19).
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Thus, after release from the peptide, aminophosphonate acts as a powerful inhibitor
of this enzyme [16].

2.3. Phosphorus Prodrugs

A prodrug is a pharmacologically inactive compound that, after ingestion, is converted
in the body into the active drug. Therefore, instead of directly taking the drug, a prodrug
can be used to improve its acceptance by the patient’s body. According to the IUPAC
definition, a prodrug is a chemical compound that undergoes biotransformation before
exhibiting pharmacological effects. The simplest prodrug is aspirin, first developed by
Felix Hoffmann at Bayer in 1897, which is a synthetic prodrug of salicylic acid. Today,
approximately 10% of all drugs sold in the world can be considered prodrugs. Since 2008,
the FDA has approved more than 30 prodrugs, of which phosphorus-containing prodrugs
are gaining in importance. Among the most interesting prodrugs are Sovaldi (Sofosbuvir,
an antiviral drug for the treatment of hepatitis C) and Tedizolid phosphate, which is used
to treat Gram-positive bacterial infections, as well as a number of other prodrugs, which
are described in detail in this section (Figure 20) [76–78].
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The use of a prodrug strategy allows the problematic molecule to overcome bio-
logical obstacles such as poor bioavailability, low absorption, instability, low specificity,
formulation difficulties, and other side effects. Prodrugs are increasingly being used as
drug substitutes, which have encountered hurdles in the development process. In the
last decade, about 20% of the new chemical compounds approved by the FDA were pro-
drugs [77].Among such examples, chiral representatives of phosphates and phosphonates
are encountered more and more frequently [78,79]. The representatives of phosphorus acids
have a unique feature of interactions with a biological target and are characterized by a high
negative charge [80–87]. Therefore, due to the charge of phosphonates at physiological pH
values, diffusion through biological membranes remains difficult, but it can be corrected
with protective groups [88]. Phosphonate prodrugs can be classified according to the sub-
stituents they contain, most commonly esters and amides, and the substitution pattern they
carry. Phosphonate prodrugs may be mono- or disubstituted and symmetric or asymmetric.
With asymmetric disubstitution, a new chiral center to the phosphorus atom is introduced
into the molecule, which leads to a more selective action of the drug. To determine the
optimal substitution figure, the reason for using the prodrug must be considered, as well
as the mechanism for cleavage of the protecting groups. A.J. Wiemer and D.J. Wiemer in
their review article [81] show how phosphonate and phosphate prodrugs can cross the
membrane. Because natural substrates carry one or more negative charges, drugs that target
these enzymes typically must also be charged by means other than the endocytosis barrier.
Prodrugs are usually charged molecules, which facilitate their passage through biological
membranes and overcome biological barriers (Figure 21). Many prodrugs have antiviral
activity not only in vitro but also in vivo. For example, among the recently discovered
prodrugs were drugs that were found to be active against Herpes HSV-1, Herpes HSV-2,
HIV-1, and HIV-2. It was found that CEM/TK-cells represent a promising alternative
with which to improve the biological activity of nucleoside analogs in antiviral and cancer
chemotherapy [88]. Tenofovir disoproxil is a prodrug of bis(isopropyloxymethyl)carbonate.
Tenofovir is used to treat HIV-1 and HBV infection. Tenofovir provides the necessary
pharmacokinetic effects and bioavailability. Other combinations of tenofovir alafenamide 8
have been suggested for the treatment of HIV-1 infection (an HIV-1 nucleoside analogue
reverse transcriptase inhibitor). The prodrug targets T cells for HIV-1 but is also broken
down in the liver and thus also used for HBV infection.

Esters of phosphonates containing various substituents at phosphorus contain a chi-
rogenic center on phosphorus and can be resolved into stereomers. One of the strategies
for obtaining asymmetric esters proposed by C. Meier is to obtain salicylic derivatives of
phosphonates [89,90]. This strategy was first used to improve the cell entry of phosphate
acyl nucleosides but was later used to protect the PMEA that will be split. Despite the
presence of less toxic by-products, cycloSal PMEA prodrugs showed lower activity than
bis(POM)-PMEA but two times higher activity than phosphonic acid PMEA. In cases
where the phosphorus atom was the center of chirality, the cycloSal-PMEA enantiomers
were tested for biological activity. As a result, it was shown that phosphorus enantiomers
with cycloSal fragments differed in biological activity by a factor of 3–80 [90]. A vari-
ant of the cycloSal prodrug concept is known; it uses DNA bases rather than salicylic
alcohol [91]. The activity of some alkoxyalkyl esters of acyclic nucleoside phosphonates
against bovine virus Phosphotriesters showed high activity against HIV-1 and HIV-2 in
wild-type human T-lymphocytes (CEM/O), as well as thymidine kinase-deficient mu-
tant cells (CEM/TK-). A 3–80-fold difference in antiviral activity was found between the
two diastereoisomers. It has been proven that cycloSal-d4TMP exclusively delivers the
d4TMP nucleotide not only under simulated hydrolysis conditions but also under cellular
conditions. Acyclic nucleotide (S)-1-[3-hydroxy-2-(phosphonylmethoxy) propyl]cytosine
(HPMPC) has been found to have potent activity against herpes simplex viruses (HSV-1 and
HSV-2), the vaccinia virus and human cytomegalovirus (CMV). Its mechanism of action
has been attributed to diphosphate, produced by cellular enzymes, which is a selective
inhibitor of viral DNA polymerase. (S)- HPMPC (Cidofovir) showed higher efficacy in vivo
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compared to the drugs acyclovir and ganciclovir [91–94]. In the preparation of (S)-(9-
(3-Hydroxy-2-phosphonyl-methoxypropyl) derivatives, the base-catalyzed nucleophilic
opening of the oxirane ring in (S)-2-(trityloxymethyl)oxirane or (S)-glycidol is used. The
3-O-substituted (S)-2,3-dihydroxypropyl derivatives thus obtained were then treated with
diisopropyltosyloxymethane phosphonate and finally deprotected. The preparation of
diisopropyltosyloxymethanephosphonate consists of treating diisopropyl phosphite with
paraformaldehyde and triethylamine followed by tosylation (Figure 22).
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Cidofovir 10 is used to treat severe cases of papillomatosis, progressive multifocal
leukoencephalopathy, adenovirus infections, and others [95–102]. This involves the synthe-
sis of (S)-l-[3-hydroxy-2-(phosphonylmethoxy)propyl]cytosine by alkylation of cytosine
with chiral synthons such as tosylate (or mesylate) diethyl (S)-(3-benzyloxy-1-hydroxy-2-
propoxy)methylphosphonate or (S)-2,3-O-isopropylidene-1-O-mesylglycerol. (R)-Glycidol
was treated with cytosine in the presence of a catalytic amount of potassium carbonate in
DMF at 72 ◦C for 5 h to obtain a regiospecific epoxide opening in a satisfactory yield [87].
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Optical purity analyses of the product by derivatization with Mosher’s chiral ester in combi-
nation with 1H and 19F NMR as well as chiral HPLC confirmed that the high optical purity
of the final nucleotide was the same as that of (R)-glycidol. Cidofovir can be synthesized
from a pyrimidone derivative and a protected glycidol derivative [87]. (R)-Glycidol was
treated with cytosine in the presence of a catalytic amount of potassium carbonate in DMF
at 72◦ to achieve a regiospecific opening of the epoxide. The crude reaction product was
then converted to (S)-tritylnucleoside in a 40% yield. Tritylation of (R)-glycidol with trityl
chloride followed by crystallization of the product gave the optically pure (S)-trityl ester in
a 77% yield (Figure 23) [92].
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Another method used unsymmetrical diesters containing a stereogenic center in
a diol esterified with phosphorus. Erion and coworkers pioneered this type of cyclic
phosphonate prodrug [103,104]. Compared to the bis-POM prodrug adefovir, the HepDirect
approach was found to induce higher liver and lower renal and intestinal accumulation
in experimental animals after oral delivery—compounds 11–15 (Figure 24). Adefovir is
used to treat diseases caused by the hepatitis B virus. The prodrug form of adefovir
is known under the commercial names Preveon and Hepsera. Adefovir is a nucleotide
reverse transcriptase inhibitor (ntRTI) analogue and is produced as a prodrug of adefovir
dipivoxil (Figure 25) [103–107].

Adefovir is used to treat hepatitis B and herpes simplex virus [84]. The use of
methoxymethylphosphonic acid together with L-alanine ethyl ester to produce chiral
phosphonamidate prodrugs has proven to be very useful for both oral delivery and the
phenolic formulation propofol or HSK3486 (Figure 25) [108–110].

Several phosphorus asymmetric cycloSal prodrugs have been resolved into stereomers
and studied for biological activity. As a result, an 11-fold difference in the biological activity
of prodrug stereoisomers was observed [95]. It has recently been shown that excipients
derived from valine can be used to control the formation of the phosphorus stereocen-
ter [98–100]. The diastereomers of methyl-substituted d4TMP cycloSal pronucleotides were
tested against HIV-1 and HIV-2 infected with CEM/0 and a wild type [101,102]. All the
diastereomers tested showed significant antiviral activity in CEM/0 and high activity in
CEM/TK-cell cultures. The antiviral activity depended on the chirality of the phosphate
group and the position of the methyl group in the cycloSal residue. It was found that
in cultures of CEM/TK-cells, the difference in antiviral activity was from 7 to 20 times.
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Diastereomers of unsymmetrical phosphate prodrugs were derived from optically active
diols, esterified with phosphorus. A number of compounds of this kind were obtained and
were resolved into stereoisomers using column chromatography and HPLC with chiral
columns, which showed a difference in biological activity, especially in the case of the
(2R,4S)-stereoisomers (Figure 26).
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Cidofovir has been found to have broad spectrum antiviral activity against her-
pesviruses, papillomaviruses, and poxviruses, while adefovir has potent activity against
retroviruses and some DNA viruses, including herpesviruses and hepadnaviruses. Cido-
fovir and adefovir are dianions at physiological pH and have a low oral bioavailability in an-
imals and humans. The clearance of cidofovir in patients with renal insufficiency is linearly
related to creatinine clearance. Cidofovir (((S)-1-(3-hydroxy-2-phosphonomethoxypropyl)
cytosine, (S)-HPMPC is a potent inhibitor of various double-stranded DNA viruses and has
been approved by the US FDA for the treatment of cytomegalovirus in AIDS patients [84–91].
These compounds show a considerable increase in potency and bioavailability compared
to the parent phosphonates against a range of viral infections [93–97] (Figure 27).
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Brincidofovir (CMX001) is a prodrug of cidofovir. This antiviral drug was developed
by the pharmaceutical company Chimerix of Durham for the treatment of adenovirus,
cytomegalovirus, ebolavirus, and poxvirus. The lipid-conjugated compound is designed
to release Cidofovir intracellularly, resulting in higher intracellular and lower plasma
concentrations of Cidofovir, effectively increasing the activity against viruses with double-
stranded DNA, as well as the oral bioavailability. Brincidofovir was approved for medical
use in the United States in June 2021. Another approach to the development of asymmetric
prodrugs based on phosphonate esters is the HepDirect strategy [103–107]. By protecting
the phosphonate with a chiral diol, the phosphorus atom is the center of chirality. How-
ever, unlike the cycloSal prodrugs, which require water cleavage, and the aforementioned
diesters, which can be cleaved prior to cell entry, HepDirect prodrugs are designed to be
activated in hepatocytes. Methoxymethylphosphonic acid phosphonamidate (MMPA) with
propofol and L-alanine ethyl ester has proven to be an effective target for oral prodrug
delivery. Prodrugs 16 and 17 were purified by supercritical fluid chromatography. The
absolute configuration of 18a was determined by chemical correlation using X-ray diffrac-
tion analysis of intermediates as (S, SP)-16,17 [111]. The anesthetic effects of each pair of
the enantiomerically pure compounds 16 and 17 were studied. Compounds (S,SP)-16 and
(S,RP)-16 contributed to an increase in the duration of anesthesia and created a significant
difference in the onset of anesthetic action and LORR. These results showed that the chi-
rality of phosphorus strongly influences the pharmacological behavior of anesthetics. At
the same time, compounds (S, SP)-17 and (S, RP)-17 showed little difference in the onset of
anesthetic action (Figure 28).
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The aryl group attached to the oxygen atom, as well as the stereochemistry of the
methyl group attached to the carbon atom adjacent to the amino group, and the bulky
alkyl group as part of the ester functionality are critical to effective biological action. The
great usefulness of the ProTideTM prodrug approach from inception to clinical use, where
sofosbuvir [108] is potent, has recently been reviewed. Sofosbuvir, sold specifically under
the brand name Sovaldi, is a medicine used to treat hepatitis C. In combination with
ledipasvir, daclatasvir, or simeprevir, it is not recommended for use with amiodarone due
to the risk of an abnormally slow heartbeat. Sofosbuvir belongs to a family of drugs that
are nucleotide analogues, and it works by blocking the hepatitis C NS5B protein. The
SN-38 prodrug is an anticancer drug. It is an active metabolite of irinotecan (an analogue
of camptothecin, an inhibitor of topoisomerase I) but has 1000 times more activity than
irinotecan itself. In vitro cytotoxicity assays show that the activity of SN-38 compared to
irinotecan varies from 2 to 2000 times. SN38 is formed by the hydrolysis of irinotecan by
carboxylesterases and is metabolized via glucuronidation by UGT1A1. SN-38 inhibits DNA
synthesis in a dose- and time-dependent manner. The corresponding IC50 values for SN-38
in DNA synthesis are 0.077 µM (Figure 29).
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Figure 29. Structure of the SN-38 (19) methoxymethylphosphonate prodrugs and the naloxone
prodrug 20.

Sofosbuvir is a direct-acting antiviral drug used as part of a combination therapy
for the treatment of chronic hepatitis C, an infectious liver disease caused by hepatitis
C virus (HCV) infection. The treatment options for chronic hepatitis C have expanded
significantly with the development of direct-acting antivirals such as Sofosbuvir. As a
prodrug nucleotide analog, Sofosbuvir is metabolized to its active form of the antiviral
agent 2′-deoxy-2′-α-fluoro-β-C-methyluridine-5′-triphosphate, which acts as a defective
substrate for the synthesis of NS5B (non-structural protein 5B). NS5B, an RNA-dependent
RNA polymerase, is essential for the transcription of hepatitis C viral RNA, as well as its
high replication rate and genetic diversity 4. In summary, Sofosbuvir and other direct-acting
antivirals are very effective treatment options for hepatitis C because they possess a high
barrier against the development of resistance. The compound 21 (Figure 30) is effective
against HIV, while compound 22 is effective against the Epstein–Barr virus (EBV). The
free nucleoside (BVDU) lacks antiviral activity, probably because EBV thymidine kinase is
unable to transform BVDU into the corresponding monophosphate [111–113]. Fortunately,
cycloSal phosphotriesters represent an excellent strategy for efficient intracellular delivery
of free nucleotides from lipophilic prodrugs. The cycloSal prodrug strategy has been found
to be a successful approach to the facilitating of the transport of these prodrugs across cell
membranes [114–117] (Figure 31).
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Hepatitis C virus (HCV) infection is an important medical problem requiring effective
treatment. Therefore, the search and development of potential treatments for hepatitis
C has attracted the close attention of researchers [118]. An example is the effort to study
the stereoisomers of phenylphosphoramidate phosphate, which have been isolated and
identified by X-ray diffraction analysis. The more active (SP) stereoisomer has been clini-
cally studied for the treatment of HCV by the inhibition of NS5B polymerase [119]. These
data showed that one of the consequences of the formation of arylphosphoramidates is the
introduction of a new stereogenic center at the phosphorus atom, which can strongly affect
biological activity [120,121]. In another study, stereoisomers of phosphoramidate with
an asymmetric center on phosphorus were separated. The absolute configuration of the
stereoisomers was determined by X-ray diffraction analysis, after which the stereoisomers
were subjected to biological studies. The stereoisomer (SP) turned out to be more active.
The prodrug produces high levels of triphosphate in many species after oral ingestion.
Its toxicity is low, with high efficacy against HCV, even in resistant cells, which is why it
has recently been approved for the treatment of HCV as Sofosbuvir. The monophosphate
prodrug approach has yielded a number of compounds exhibiting submicromolar activity
in HCV replicon assays. Further optimization of pharmacokinetics has led to the identifica-
tion of a candidate for the clinical development of GS-6620 (25). The potential for potent
activity has been demonstrated in a Phase I clinical trial. This result showed that the issue of
phosphorus stereochemistry is extremely important and promising in the case of prodrugs
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based on arylphosphoramidates. It is interesting to note that the (SP)-stereoisomer was
more active in all cases [119] (Figures 32 and 33). GS6620 is an antiviral drug, a nucleotide
analog. This drug is currently under study. However, it continues to be researched as a
potential treatment for various viral diseases such as the Ebola virus disease.
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Figure 33. Prodrug 26 analyzed as (SP)-isomers.

A number of new (SP)-arylphosphoramidates were synthesized with high diastere-
oselectivity (up to 95% de) and tested for their anti-HIV activity, showing high antiviral
activity of the (SP)-stereomers. Stereospecific synthesis of the prodrugs of phosphorami-
dates was achieved starting from stereochemically pure phosphorodiamidates. It was
observed that 3- and 4-substituted phenol derivatives led to higher diastereoselectivity.
(SP)-arylphosphoramidates synthesized in the form of diastereomerically pure compounds
showed high antiviral activity. Moreover, (SP)-4-substituted phosphoramidates showed
higher antiviral activity than their (RP) analogues [120]. The synthetic route uses (S)-4-
isopropylthiazolidine-2-thione 26 as a chiral auxiliary, which is converted in three steps
to the key intermediates 27a-d. These compounds were obtained with 81% de. Through
column chromatography, the diastereomeric purity increased to 95%. X-ray diffraction
analysis of three different intermediates, 27,28, showed that the RP stereoomer was pref-
erentially obtained. Phosphoramidate derivatives (RP)-28a-d and (SP)-29a-d were reacted
separately with d4T to give the phosphoramidate prodrugs (SP)-30a-d and (RP)-31a-d
as almost stereomerically pure compounds (95% de). Antiviral tests of stereomers 8a,b
showed significantly different antiviral properties in CEM/TK-deficient cells and thus
confirmed the importance of the phosphorus configuration for possible antiviral activity
(Figure 34) [121].
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3. Conclusions and Future Directions

The set of methods developed in recent years that contribute to the creation of effective
drugs has been called “Chiral technologies”, among which the most interesting were
“Chiral switches” and “Prodrugs” as the most promising areas for future research. The
“Chiral switch” as a chiral drug that has already been approved as a racemate but has been
redesigned as a separate enantiomer is of increasing interest to organophosphate chemists.
An essential principle of chiral switching is the change in chirality status. In general, the
term “chiral switch” defines the problem more accurately than the term “racemic switch”
because it typically separates the racemate into enantiomers and switches from the racemate
to the corresponding single enantiomer. In addition, chiral phosphorus prodrugs have
accounted for a significant percentage of new drugs approved by the US Food and Drug
Administration over the past decade. This indicates the need to consider the use of prodrugs
prior to clinical evaluation, especially in the case of the traditional problems of overcoming
the double negative charge at physiological pH. It has become almost common practice to
test phosphonate prodrugs before using them since most prodrugs show better potency and
availability than the parent phosphoric acid [121–125]. In addition to chiral drug research
in pharmacology, stereochemical analysis is important for safe drug development and risk
assessment. The importance of stereochemistry in various fields of biomedical research
and pharmacology, including toxicology and the study of long-term side effects of drugs, is
obvious. We hope that this review will stimulate further studies of these interesting and
promising types of organophosphorus compounds.

4. Recommendations for Future Research

(1) According to the FDA regulations, drug discovery and development researchers must
determine at an early stage of research whether racemates or enantiomerically pure
compounds should be sought.

(2) Virtual screening and molecular modeling methods make it possible to identify lead-
ing compounds using calculated free binding energies. However, due to synthetic
difficulties in obtaining enantiomerically pure stereomers and the methods for linking
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them, it is important to start by determining the exact stereochemistry of compounds
in virtual drug candidate libraries.

(3) In the approval process, justification must be provided for the development of a
racemic mixture or an enantiomerically pure compound. Molecular modeling and
virtual screening are indispensable tools in the early stages of new drug development
in initial screening and design.

(4) The effect of chirality in drugs is the main goal of the intensive research on the active
principle of the drug being developed; the other enantiomer can be considered as
“isomeric ballast”. However, it is not uncommon for the second enantiomer to exhibit
significantly different biological properties, ranging from agonistic or antagonistic
binding to the same receptor to interaction with other biological targets, which can
lead to unwanted adverse effects.

(5) In some cases, the presence of a distomer in a racemic mixture may interfere with
the results due to the detrimental effect of the distomer or its conversion to the
eutomeric configuration.
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Arg—Argenine; ATF—Adenosyn triphosphate; Gly—Glycine; Asp—Asparagine; Boc—tert-
Butoxycarbonyl; de—diastereomeric excess; ee—enantiomeric excess; d4TMP—30-deoxy- 20,30- dide-
hydrothymidine monophosphate; HPLC—high performance liquid chromatography; HPMPA—9-(3-
Hydroxy-2-phosphonyl- methoxy-propyl)adenine; HPMPC—9-[3-hydroxy-2-phosphonomethoxypropyl]
cytosine (cidofovir); Moc—methoxycarbonyl, i-Pr—iso-Propyl; MMPA—Methoxymethylphosphonic
acid phosphonamidate; McC—Microcin C; PMEA—9-[2-(Phosphonomethoxy)ethyl]adenine; PMPA—
9-[2-(Phosphonomethoxy) ethyl]adenine; Py—Pyridine; rac—racemate; Val—Valine.
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