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Abstract: A comprehensive review of symmetry and conditional symmetry is made from the core
conception of symmetry and conditional symmetry. For a dynamical system, the structure of sym-
metry means its robustness against the polarity change of some of the system variables. Symmetric
systems typically show symmetrical dynamics, and even when the symmetry is broken, symmetric
pairs of coexisting attractors are born, annotating the symmetry in another way. The polarity balance
can be recovered through combinations of the polarity reversal of system variables, and furthermore,
it can also be restored by the offset boosting of some of the system variables if the variables lead to
the polarity reversal of their functions. In this case, conditional symmetry is constructed, giving a
chance for a dynamical system outputting coexisting attractors. Symmetric strange attractors typically
represent the flexible polarity reversal of some of the system variables, which brings more alterna-
tives of chaotic signals and more convenience for chaos application. Symmetric and conditionally
symmetric coexisting attractors can also be found in memristive systems and circuits. Therefore,
symmetric chaotic systems and systems with conditional symmetry provide sufficient system options
for chaos-based applications.

Keywords: symmetry; conditional symmetry; offset boosting; chaotic system

1. Introduction

For a dynamical system, the structure of it typically determines the solution feature.
From the view of symmetry, the polarity reversal of some of the system variables may not
influence the solution because of the symmetric structure. The Lorenz system [1], Chen
system [2] and Chua circuit [3] are all examples of such structures. In addition, symmetric
systems have aesthetic characteristics; a symmetric system seems to be more robust accord-
ing to the polarity revision from a variable. Symmetric chaotic systems do not reject the
specific feedback of a hyperbolic sinusoidal function [4]. A cyclic symmetric conservative
chaotic system can also be constructed with offset boosting [5]. Rotational symmetry has
its specific detection method [6,7], and symmetry breaking exists commonly in dynamical
systems [8]. When some of the variables are polarity reversed, the system outputs the
symmetric attractor without any influence or even gives symmetric pairs of attractors.
As found, symmetry-breaking, amplitude control and constant Lyapunov exponents may
coexist in a single system [9]. A hyperchaotic memcapacitor oscillator may have infinite
equilibria and coexisting attractors without losing symmetry [10]. Various synchronization
phenomena can be found in a bidirectionally coupled double scroll circuit [11]. An infinite-
dimensional stochastic system may still own the symmetric structure [12], and multistable
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dynamics and control can be realized in a symmetric 4D memristive system [13]. But for
asymmetric systems, any polarity disturbance will destroy the solution. From this view,
symmetric systems have stronger stability. More changes in variables in a dynamical system
do not necessarily bring more instability. However, in a conditional symmetric system,
the polarity reversal could be consumed by offset boosting in some of the dimensions. As
shown in Figure 1, here, polarity balance is broken and recovered among those different
topologies of the system structure. We can see that in a symmetric system the polarity
balance is recovered by the polarity reversal of some of the system variables. Typically,
an asymmetric system will lose polarity balance when some of the system variables are
polarity reversed. But function-oriented polarity balance can be obtained in symmetric
systems and asymmetric systems, which is called as conditional symmetry.
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The issue of symmetry in fact widely appears in various systems of different fields,
such as in mechanical systems [14–16], economic systems [17,18], chemical systems [19–21],
neuron systems [22,23], ecosystems [24,25], electronic systems [26,27], physical systems [28,29],
geographic systems [30,31] and environmental systems [32,33]. Polarity reversal means
various patterns of evolution and indicates different physical properties. Specifically, in
electronic engineering, symmetric evolution implies the polarity reversal of associated
system variables and correspondingly means that a single system can output multiple
electronic signals by selecting different initial conditions. Methods of qualitative theory
in nonlinear dynamics also reveal an associated principle hidden in symmetry [34]. A
symmetric system typically exhibits specifical bifurcation [35], and more strikingly, this
topology can also be revised to include multiple-wing attractors [36–38]. Some symmet-
ric systems have an infinite number of periodic orbits or aperiodic trajectories [39–41].
The diverse and flexible evolutionary attributes of symmetric chaotic systems give them
extensive application value in various fields, such as image encryption [42–45], speech
encryption [46–48] and random number generating [49,50].

Extensive work indicates that stronger performance is achieved by the specific symmet-
ric topology. Furthermore, toward this direction, symmetric chaotic systems can be rebuilt,
and even partially symmetric systems marked by conditional symmetry can be obtained
based on offset boosting of a system variable. In this work, our goal is to demonstrate
those coexisting attractors hidden in the specific topology of symmetry. We summarize
those regimes of symmetric systems that host coexisting symmetric pairs of attractors
along with those symmetric attractors in Section 2. In Section 3, the mechanism hidden
in the offset boosting for system symmetrization is disclosed and reviewed. Symmetric
pairs of coexisting attractors are produced based on this approach with desired distances.
In Section 4, offset boosting is applied for constructing chaotic systems with conditional
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symmetry under various structures, where coexisting conditional symmetric pairs of at-
tractors are obtained. Section 5 reviews symmetry and elegance in simple chaotic circuits,
which are also prone to output coexisting symmetric pairs of attractors under some specific
conditions. Thereafter, a concise conclusion is offered in the last section.

2. Symmetric Strange Attractors and Symmetric Pairs of Coexisting Attractors
2.1. Various Regimes of Symmetry

The topology of a symmetric system means a unique structure that shows the in-
variance of the system under some transformation of polarity reversal. And furthermore,
when the symmetry is broken, normally, a pair of coexisting asymmetric solutions may
appear, sometimes along with some symmetric solutions, and the system outputs coexisting
asymmetric and symmetric strange attractors. The fundamental striction is polarity balance
in a dynamical system. For a dynamical equation, any transformation should obey some
basic laws, and the basic rule is polarity balance. Not all of the systems can resist polarity
transformation; many lose polarity balance when any of the state variables are polarity
reversed. However, some of the systems named symmetric ones can recover the polarity
balance when some of the dimensions are polarity reversed. Furthermore, the polarity
balance of a dynamical system can be obtained by any operation such as offset boosting
from any of the variables for the reason that the polarity reversal of any of the variables can
also be induced by the offset boosting of any of the variables. We know that the derivative
of −xih gives a definitely negative polarity on the left-hand side in the dimension of ih;
meanwhile a negative sign on the right-hand side could be obtained by many approaches,
including the offset boosting of a variable or from a function.

We know that some of the variables being polarity reversed will not break the
polarity balance in a symmetric dynamical system; at the same time, an asymmetric
one will lose its polarity balance. For example, for a dynamical system

.
X = F(X) =

( f1(X), f2(X), . . . , fN(X)) ( X = (x1, x2, . . . , xN)), if we take the variable substitution as:
ui1 = −xi1 , ui2 = −xi2 , · · · , uik = −xik , ui = xi, (here, 1 ≤ i1, · · · , ik ≤ N, i1, · · · , ik are not

identical, i ∈ {1, 2, . . . , N}\{i1, · · · , ik}) satisfying
.

U = F(U) (U = (u1, u2, . . . , uN)), then
the system

.
X = F(X) ( X = (x1, x2, . . . , xN)) can be called a symmetric system. For a three-

dimensional dynamical system,
.

X = F(X) ( X = (x1, x2, x3)), if xi0 = −ui0(i0 ∈ {1, 2, 3})
is subject to the same governing equation, the system is named a reflection-symmetric
system. If xi0 = −ui0 , xj0 = −uj0(i0, j0 ∈ {1, 2, 3}, i0 6= j0) does not influence the governing
equation, the system exhibits rotational symmetry, and if x1 = −u1, x2 = −u2, x3 = −u3
leading to the same governing equation, the system exhibits inversion symmetry. All kinds
of symmetric systems could hatch coexisting attractors when the symmetry is broken,
where coexisting attractors are located in those independent sub-phase spaces. In the
following, we see that those coexisting attractors could be a symmetric pair of attractors or
combined with a symmetric one.

2.2. Multiple Modes of Coexisting Attractors in a Symmetric System

The topology of a symmetric system typically means that the structure of its solution is
also symmetric. In a reflection-symmetric system, the coexisting pair of attractors have the
single possibility of broken polarities. As an obviously typical system, the Lorenz system
gives such an attractor of a symmetric structure. We know that the Lorenz system is one
of rotational symmetry since the polarity reversals of x and y do not destroy the polarity
balance [51]. 

.
x = σ(y− x),
.
y = −xz + rx− y,
.
z = xy− bz.

(1)

And thus, system (1) gives a rotational symmetric attractor as shown in Figure 2. The
structure of the attractor shows a beautiful double-wing structure.
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Figure 2. Attractor of rotational symmetry in system (1) when σ = 0.279, r = 0, b = −0.3 and
IC = (−0.1, 0.1, −2): (a) x–y, (b) x–z.

Broken symmetry will bring pairs of independent solutions for the local stability, as
shown in Figure 3. In this case, different polarities represent those independent zones with
separated solutions. As shown in Figure 4, when the parameters are σ = 0.256, r = 0, b =−0.3,
a symmetric pair of coexisting attractors appears. Note that here, the coexisting attractors
occupy the regions of x in the regions of positive and negative polarities separately, but for
the dimension y, all attractors share the same bipolar space. In some specific circumstances,
a symmetric attractor may coexist with pairs of asymmetric attractors. As shown in Figure 5,
when σ = 0.279, r = 0, b = −0.3, three chaotic attractors coexist, one of which is a symmetric
attractor with bipolar x and y, and the other two are the symmetric pair of attractors with
positive x and negative x.
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For other regimes of symmetric systems, the power of broken symmetry also leads
to coexisting symmetric pairs of attractors. For a system of inversion symmetry, such as
system (2) [51], the symmetric attractor crosses the zone of positive and negative polarities,
shown in Figure 6. But for the case of broken symmetry, the coexisting pair of attractors has
broken polarities of x; meanwhile, the dimensions of y and z share the whole polarity, as
shown in Figure 7. For the system of reflection symmetry, the coexisting pair of attractors
can only stand in separated phase spaces divided by the dimension with polarity reversal.
Let us see the example of system (3) [51]: when the symmetry is broken, the symmetric
attractor turns out to be two petals of coexisting attractors, as shown in Figures 8 and 9.

.
x = y,
.
y = z,
.
z = −z− ay− x3 + bx.

(2)


.
x = x− xy,
.
y = z,
.
z = −y− az + x2.

(3)Symmetry 2023, 15, x FOR PEER REVIEW 8 of 39 
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Figure 9. A symmetric pair of attractors in a reflection invariant system (3) with a = 0.7 and
IC1 = (−2, 2, 0) (cyan), IC2 = (2, 2, 0) (purple): (a) x–y, (b) x–z.

2.3. Diversities of Stability in Symmetric Systems

Symmetric systems bursting out symmetric pairs of attractors seems to be associated
with the equilibrium points. We can see that the symmetric structure is often combined
with the same type of symmetric equilibrium points. When symmetry is broken, the system
typically has corresponding symmetric equilibria, as listed in Table 1. Symmetric systems
typically have an equilibrium of the origin (0, 0, 0), which can be considered to satisfy any
condition of symmetry. The eigenvalues of the equilibria could be various combinations,
indicating they are saddle-foci, index-1 saddle points, or nonhyperbolic equilibrium points.
Note that the symmetry type of the coexisting equilibria agrees with the topology of the
system even when the symmetry is broken.
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Table 1. Coexisting equilibria under broken symmetry and corresponding stabilities [51,52].

Equations Parameters Equilibria Eigenvalues
.
x = y
.
y = z
.
z = −z− ay− x3 + bx

[51]
a = 2.1
b = 2

(0, 0, 0)
(
√

2, 0, 0)
(−
√

2, 0, 0)

(0.6366, −0.8183 ± 1.5723i)
(−1.4516, 0.2258 ± 1.6446i)


.
x = a(y− x)
.
y = −xz + cx− y
.
z = xy− bz

[51]

a = 0.279
b = −0.3

c = 0

(0, 0, 0)
(
√

30/10,
√

30/10, −1)
(−
√

30/10, −
√

30/10, −1)

(−1, −0.279, 0.3)
(−1.1722, 0.0966 ± 0.3653i)


.
x = y− x
.
y = −xz
.
z = xy− a

[51]
a = 4.7 (

√
470/10,

√
470/10, 0)

(−
√

470/10, −
√

470/10, 0)
(−1.6369, 0.3185 ± 2.3751i)


.
x = y− bx
.
y = yz− x
.
z = a− y2

[51]
a = 1

b = 1.06
(50/53, 1, 50/53)

(−50/53, −1, 50/53) (−0.8218, 0.3526 ± 1.5669i)


.
x = x− xy
.
y = z
.
z = −y− az + x2

[51]
a = 0.7

(0, 0, 0)
(1, 1, 0)

(−1, 1, 0)

(1, −0.35 ∓ 0.9368i)
(−1.2216, 0.2608 ± 1.2527i)


.
x = y− x
.
y = −axz + u
.
z = xy− 1
.
u = −by

[52]
a = 6

b = 0.1 None None

Sometimes, even when the chaotic system has no equilibrium point, the system still
can exhibit symmetric pairs of coexisting attractors, in which case, all the attractors are
named as hidden attractors [52]. One example is the simple seven-term system with two
quadratic nonlinearities. 

.
x = y− x,
.
y = −xz + u,
.
z = xy− a,
.
u = −by.

(4)

This is exactly the diffusionless Lorenz system with an added variable u. The coefficients
of five of the seven terms can be normalized to ±1 through a linear rescaling of the four
variables and time without loss of generality; system (1) is completely described by only
two independent parameters, taken here as a and b. Although system (4) has no equilibrium
point, system (4) can still give chaotic or even hyperchaotic solutions [53,54]. For example,
when a = 6, b = 0.1, a quasi-periodic torus coexists with a symmetric pair of chaotic attractors,
as shown in Figure 10.
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3. Offset Boosting for Symmetric Pairs of Strange Attractors

Symmetry can also be reconstructed even though the system is an asymmetric one. In
this way, the desired number of coexisting symmetric pairs of attractors can be obtained.
And even the distances between the coexisting pairs of attractors can be defined. If a vari-
able substitution ui = xi, uj = xj + dj, (here, 1 ≤ j ≤ N,i ∈ {1, 2, . . . , N}\{j}) in a dynami-

cal system
.

X = F(X) ( X = (x1, x2, . . . , xN)) leads to
.

U = F
(
U, dj

)
(U = (u1, u2, . . . , uN)),

the variable xj in system
.

X = F(X) obtains the operation of offset boosting, and for
this reason its average value is boosted by the new introduced constant dj. The vari-
able xj can be a signal in an electrical system, and correspondingly, the signal is offset-
boosted by a direct current voltage of dj. When the operation ui = xi, uj = xj + dj only
introduces an independent constant dj in one dimension in the system, then the sys-
tem is named a variable-boostable system [55]. For a variable-boostable dynamical sys-
tem

.
X = F(X) = ( f1(X), f2(X), . . . , fN(X)) ( X =

(
x1, x2, . . . , xi0 , . . . , xN

))
, there exists

one and only one f j0
(
x1, x2, . . . , xi0 , . . . , xN

)
(i0 6= j0) satisfying f j0

(
x1, x2, . . . , xi0 , . . . , xN

)
=

hj0
(

x1, x2, . . . , xi0−1, xi0+1, . . . , xN
)
+ kxi0 , where k is a nonzero constant.

Offset boosting is an effective technique for shifting an attractor in phase space without
changing the basic dynamics of a system [56–62]. In a system

.
X = F(X),

X = (x1, x2, . . . , xn), take the substitution of ui = xi, uj = xj + dj, i ∈ {1, 2, . . . , n}\{j},
1 ≤ j ≤ N, and the offset of the variable xj is boosted. The offset parameter dj controls
the attractor to switch between the negative zone and the positive one according to the
dimension of xj, 1 ≤ j ≤ N. In fact, an attractor can be moved in any dimension by offset
boosting. From this view, when the offset boosting is completed by an absolute-value func-
tion, corresponding attractors can be doubled by the combination of polarity compensation.
The mechanism is as explained in [63–65].

For a dynamical system, 
.
x1 = f1(x1, x2, · · · , xn),.
x2 = f2(x1, x2, · · · , xn),
· · ·
.
xn = fn(x1, x2, · · · , xn).

(5)

If system (5) has coexisting solutions identified by attractors like, O1, O2, . . . , Om,
take the offset-boosting constants as ds > 0, s = 1, 2, . . . , n, subjecting to any state vec-
tor (x1, x2, . . . , xm) ∈ O1 ∪O2 ∪ . . . ∪Om to satisfy |x 1|< d1, |x 2|< d2, . . . , |x n|< dn , then
substituting xi with |x i|−di , i ∈ {1, 2, . . . , n} into system (5) like,

.
x1 = f1(x1, x2, · · · , xi−1,

∣∣xi
∣∣−di, xi+1, . . . , xn),.

x2 = f2(x1, x2, · · · , xi−1,
∣∣xi
∣∣−di, xi+1, . . . , xn),

· · ·
.
xi = sgn(xi) fi(x1, x2, · · · , xi−1,

∣∣xi
∣∣−di, xi+1, . . . , xn),

· · ·
.
xn = fn(x1, x2, · · · , xi−1,

∣∣xi
∣∣−di, xi+1, . . . , xn).

(6)

Then:

(I) System (6) is one of symmetry according to the dimension of xi;
(II) System (6) has 2 m coexisting attractors O11, O12, · · · , O1m, O21, O22, · · · , O2m;
(III) All the attractors Okj, k = 1, 2, j = 1, 2, . . . , m, in system (6) share the same structure

with the ones in system (5), and all the equilibria in system (6) have the same stabilities
with those of system (5).
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Take the above method for constructing coexisting attractors in the Rössler sys-
tem [66–68], which is described by

.
x = −y− z,
.
y = x + ay,
.
z = b + z(x− c).

(7)

We know, when a = b = 0.2, c = 5.7, the system is chaotic with Lyapunov exponents
(LEs) of (0.0714, 0, −5.3943) and a Kaplan-Yorke dimension of DKY = 2.0132. Replace the
variable z with an absolute function |z| − d,

.
x = −y− (

∣∣z∣∣−d),
.
y = x + ay,
.
z = sgn(z)(b + (

∣∣z∣∣−d)(x− c)).
(8)

This time, system (8) turns out to be a reflection invariant system since it has polarity
balance when z turns to be −z, and the attractors are doubled according to the z-axis, as
shown in Figure 11. The larger offset constant d will separate the coexisting attractors
farther away in this direction. For example, let d = 12, the two attractors stand in phase
space far away, as shown in Figure 12. More absolute functions can turn the original Rössler
system to be other regimes of symmetry. That is to say, take |x| − d1, |y| − d2, |z| − d3,
the derived system is one of inversion symmetry, and when the variables x, y, and z are
polarity inversed, the derived system keeps the same equation, as written in system (9),

.
x = sgn(x)(−(

∣∣y∣∣−d2)− (
∣∣z∣∣−d3)),.

y = sgn(y)((
∣∣x∣∣−d1) + a(

∣∣y∣∣−d2)),.
z = sgn(z)(b + (

∣∣z∣∣−d3)((
∣∣x∣∣−d1)− c)).

(9)

And at this time, the original attractor has three instances of doubling and in total
eight attractors appear, as displayed in Figure 13.
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4. Coexisting Strange Attractors of Conditional Symmetry

The polarity balance cannot always be preserved when the polarities of some of the
variables are reversed. Sometimes an additional operation with some of the variables
can return the polarity balance and lead to conditional symmetry. As we know, a system
variable like x can be written as x = |x|sgn(x). In fact, any variable in an equation includes
two types of inherent features: the amplitude and the polarity of the variable. Therefore,
there are two effective polarity adapters: one is the signum function for maintaining the
polarity, and the other is the absolute value function removing the polarity. The combination
of the signum function and the absolute-value function can produce coexisting doubled
attractors. At the same time, the absolute-value function is an effective way of producing
functional polarity reversal leading to coexisting conditional symmetric attractors [69–76].
Therefore, from the conception of conditional symmetry, we could conclude that if some
of the variables are the polarities reversed, the additional operation like offset boosting
may return the polarity balance and result in symmetrical attractor doubling or conditional
symmetry, as shown in Figure 14. The polarity adapter and slide polarity converter are
widely applied in a dynamical system for giving conditional symmetry or for attractor
self-reproduction.
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For a dynamical system
.

X = F(X) = ( f1(X), f2(X), . . . , fN(X)) ( X = (x1, x2, . . . , xN)),
when the variable substitution including polarity reversal and offset boosting such as
ui1 = −xi1 , ui2 = −xi2 , · · · , uik = −xik , uj1 = xj1 + dj1 , uj2 = xj2 + dj2 , · · · , ujl = xjl +
djl , ui = xi, (here, 1 ≤ i1, · · · , ik ≤ N,1 ≤ j1, · · · , jl ≤ N, i1, · · · , ik and j1, · · · , jl are not
identical, i ∈ {1, 2, . . . , N}\{i1, · · · , ik, j1, · · · , jl,}) leads to the derived system retaining its
polarity balance and satisfies

.
U = F(U) (U = (u1, u2, . . . , uN), then the system

.
X = F(X)

( X = (x1, x2, . . . , xN)) is one of one-dimensional conditional symmetry since the polarity
balance needs one-dimensional offset boosting. For a three-dimensional system,

.
X = F(X)

( X = (x1, x2, x3)), the regime could be conditional rotational symmetry in one dimension
or conditional reflection symmetry in one dimension or two dimensions.

The mechanism of conditional symmetry is associated with offset boosting for polarity
balance. Suppose we want to construct a conditional reflection symmetric system. Here,
the variable xi is polarity reversed, which will revise the polarity of

.
xi and in turn requires

the polarity reversal on the right-hand side of
.
xi to obtain − f i(X) without influencing any

of the other dimensions for polarity balance. To this end, based on exhaustive researching,
a chaotic system of conditional reflection symmetry was found as shown,

.
x = y2 − 0.4z2,
.
y = −z2 − 1.75y + 3,
.
z = yz + (

∣∣x∣∣−3).
(10)

When z is polarity reversed, the polarity of the last dimension is destroyed unless the
function F(x) = |x| − 3 obtains a reversed polarity to recover this balance. The polarity
reversal of F(x) is induced by the offset boosting of x; that is to say, when x→ x + d, the first
two dimensions do not change, but the function F(x + d) turns out to be −F(x) since the
absolute-value function has two reverse slopes during different positions of its variable.
The newly balanced polarity brings a pair of coexisting attractors across the x- and z-axes
in phase space, as shown in Figure 15. We see that the direction of the attractor in the
dimension of x does not change, but the direction in the dimension of z is overturned.
Therefore, we can call this polarity balance a ‘one-jump polarity balance’. Here, the polarity
reversal of z depends on the offset boosting in the dimension of x. We call the operation of
‘offset boosting’ as ‘one jump’. This balance is therefore called ‘one-jump polarity balance’.
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The ‘one-jump polarity balance’ can also happen in rotational symmetric systems. As 
for system (11), here, the polarity reversal in the dimensions y and z breaks the polarity 
balance in the last dimension until the offset boosting of x returns its balance without de-
stroying the first dimension since adding a constant term does not change the value of the 
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Figure 15. Coexisting conditional reflection symmetric attractors of system (10) with IC1 = (3, −1.5,
−2) (red), IC2 = (3, −1.5, 1) (green): (a) x–z, (b) y–z.

The ‘one-jump polarity balance’ can also happen in rotational symmetric systems. As
for system (11), here, the polarity reversal in the dimensions y and z breaks the polarity
balance in the last dimension until the offset boosting of x returns its balance without
destroying the first dimension since adding a constant term does not change the value of
the derivative. As shown in Figure 16, this time the direction of the coexisting attractors
does not change in the x-axis but changes in both the y and z dimensions.

.
x = y2 − 1.22,
.
y = 8.48z,
.
z = −y− z + (

∣∣x∣∣−3).
(11)
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Figure 16. Coexisting conditional rotational symmetric attractors of system (11) with IC1 = (3, 1, 0.5)
(red), IC2 = (−3, 1, 0.5) (green): (a) x–y, (b) x–z.

Sometimes, more operations of offset boosting are needed for balancing the polarity
reversal of some of the variables. At this time, the conditional symmetry could be marked
by ‘two-jump polarity balance’ or ‘more-jump polarity balance’. Like system (12), here,
the polarity reversal of z is washed out by the offset boosting in the dimensions of x and y.
This time, we can see that the direction of the coexisting attractors does not change in the
x and y dimensions but turns down in the z-axis, as shown in Figure 17. The ‘two-jump
polarity balance’ may also happen in the same dimension and leave more variables for
polarity reversal, as displayed in system (13). Here, two variables are polarity reversed like
x and y, but the polarity balance is returned by the offset boosting in the z dimension. As
shown in Figure 18, when compared with system (12), system (13) has coexisting attractors
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with opposite directions in the dimensions of x and y but with the same direction in the z
dimension. 

.
x = 1− (

∣∣y∣∣−5)z,
.
y = az2 − (

∣∣y∣∣−5)z,
.
z =
∣∣x∣∣−3.

(12)


.
x = −y,
.
y = x+

∣∣z∣∣−5,
.
z = 2y2 − x(

∣∣z∣∣−5)− a.
(13)Symmetry 2023, 15, x FOR PEER REVIEW 19 of 39 
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More operations of offset boosting from the absolute-value functions could be in-
troduced for recovering the polarity balance, such as in system (14), which contains six
absolute-value functions for balancing the polarity reversal of the variable x. As shown in
Figure 19, here, the direction of the coexisting attractors in the x dimension is reversed, but
the direction does not change in the y and z dimensions except for the two-dimensional
offset boosting. More interestingly, sometimes conditional symmetry may happen in sym-
metric systems. In this case, the offset boosting of some of the system variables also may
return other types of conditional symmetry. As we know, the original version of system (15)
is the simplified Lorenz system, but the two-dimensional offset boosting with y and z
returns a conditional reflection symmetry, as shown in Figure 20. Note that system (5) is an
asymmetric system now, although it has symmetric attractors in a conditionally symmetric
way, which means an asymmetric system may host symmetric attractors.
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.
x =

∣∣y∣∣−10,
.
y = a(

∣∣y∣∣−10)(
∣∣y∣∣−10)− x(

∣∣z∣∣−12),
.
z = x2 + x(

∣∣y∣∣−10)− bx(
∣∣z∣∣−12).

(14)


.
x =

∣∣y∣∣−5− x,
.
y = −x(

∣∣z∣∣−5),
.
z = x(

∣∣y∣∣−5)− 1.
(15)
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Figure 20. Coexisting attractors in symmetric system (15) with IC1 = (1, 5, 5.5) (red), IC2 = (1, −5,
−4.5) (green): (a) x–z, (b) y–z.

Many candidates of chaotic systems with coexisting attractors have been explored
based on various system structures, such as those of chaotic systems with hidden attrac-
tors [70]. More candidates of chaotic systems with conditional symmetry [69–75] are listed
in Table 2, where the system equations, parameters, initial conditions, Lyapunov exponents
(Les) and the corresponding Kaplan–York dimension (DKY) are included. Those systems
could be systems of symmetry or asymmetry or jerk systems. Readers could check these
systems to see if they have polarity balance. Here, the factors for polarity balance are
from the system variables and are also recovered by the absolute functions. The broken
polarity originates from the polarity reversal of some of the system variables, and the
polarity balance is reconstructed by the internal polarity reversals of the absolute-value
function. A one absolute-value function introduces a one-time polarity reversal by offset
boosting; multiple absolute-value functions drive multiple instances of a polarity jump due
to offset boosting. Those chaotic systems with amplitude control [77–79] or other coexisting
attractors [80–82] may preserve this property since the polarity reversal induced by the
offset boosting does not fundamentally change the system structure.
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Table 2. Chaotic systems of conditional symmetry proposed in [69–75].

Equations Parameters (x0, y0, z0) LEs DKY
.
x = y2 − az2
.
y = −z2 − by + c
.
z = yz + F(x)

[69]

F(x) = |x| − 3

a = 0.4
b = 1.75

c = 3

(3, −1.5, −2)
(3, −1.5, 1) 0.1191, 0, −1.2500 2.0953


.
x = y2 − a
.
y = bz
.
z = −y− z + F(x)

[69]

F(x) = |x| − 3

a = 1.22
b = 8.48

(3, 1, 0.5)
(−3, 1, 0.5) 0.2335, 0, −1.2335 2.1893


.
x = F(y)
.
y = z
.
z = −x2 − az + b(F(y))2 + 1

[69]

F(y) = |y| − 4

a = 2.6
b = 2

(0.5, 4, −1)
(0.5, −4, −1) 0.0463, 0, −2.6463 2.0175


.
x = y
.
y = F(z)
.
z = x2 − ay2 + bxy + xF(z)

[69]

F(z) = |z| − 8

a = 1.24
b = 1

(4, 0.8, −2)
(4, 0.8, 14) 0.0645, 0, −1.2582 2.0513


.
x = 1−G(y)z
.
y = az2 −G(y)z
.
z = F(x)

[69]

F(x) = |x| − 3
G(y) = |y| − 5

a = 0.22 (−1, 1, −1)
(2, 6, −1) 0.0729, 0, −1.6732 2.0436


.
x = F(y)
.
y = G(z)x
.
z = −axF(y)− bxG(z)− x2 + (F(y))2

[69]

F(y) = |y| − 5
G(z) = |z| − 5

a = 3
b = 1.2

(0, −6, −6)
(0, 6, 6) 0.0506, 0, −0.2904 2.1735


.
x = −y
.
y = x + F(z)
.
z = 2y2 + xF(z)− a

[70]

F(z) = |z| − 5

a = 0.35 (0, 0.4, 6)
(0, 0.4, −5) 0.0776, 0, −1.5008 2.0517


.
x = y
.
y = −x + F(z)
.
z = −0.8z2 + F(z)2 + a

[70]

F(z) = |z| − 12

a = 2.0 (0, 2.3, 12)
(0, −2.3, −12) 0.0252, 0, −6.8521 2.0037


.
x = F(z)
.
y = x− y
.
z = −4x2 + 8xy + yF(z) + a

[70]

F(z) = |z| − 12

a = 0.1 (0.5, 0, 11)
(0.5, 0, −13) 0.0665, 0, −2.0410 2.0326


.
x = −y
.
y = x + F(z)
.
z = xy + xF(z) + 0.2yF(z)− a

[70]

F(z) = |z| − 15

a = 0.4 (2.5, 0, 15)
(−2.5, 0, −15) 0.1026, 0, −2.1275 2.0482


.
x = y
.
y = F(z)
.
z = x2 − y2 + axF(z) + yF(z)

[70]

F(z) = |z| − 15

a = 2.0 (1, 0, 11)
(1, 0, −19) 0.0538, 0, −11.8591 2.0045


.
x = y
.
y = F(z)
.
z = x2 − y2 + xy + 0.4xF(z) + a

[70]

F(z) = |z| − 30

a = 1.0 (0, 1, 26.1)
(0, 1, −32.9) 0.1105, 0, −1.3882 2.0796
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Table 2. Cont.

Equations Parameters (x0, y0, z0) LEs DKY
.
x = z
.
y = −ay− zF(x)
.
z = z− bz2 + yF(x)

[70]

F(x) = |x| − 9

a = 1.62
b = 0.2

(9, 1, 0.8)
(−9, 1, 0.8) 0.0645, 0, −0.6845 2.0943


.
x = G(y)
.
y = aG(y)2 − xF(z)
.
z = x2 + xG(y)− bxF(z)

[70]

G(y) = |y| − 10
F(z) = |z| − 12

a = 0.4
b = 1

(0, 14, 17)
(0, −6, −7) 0.0749, 0, −0.7390 2.1013


.
x = y
.
y = c

∣∣y∣∣F(z) + 0.1y
∣∣y∣∣−x

.
z = 0.5x2 − axy− bxF(z)

[70]

F(z) = |z| − 4

a = 0.8
b = 0.5
c = 0.5

(1, 0.5, 5)
(−1, −0.5, −4) 0.0177, 0, −0.4092 2.0433


.
x = ay− ax + eF(z)
.
y = cx− y− x

∣∣F(z)∣∣+u
.
z = xy− b

∣∣F(z)∣∣
.
u = −kx

[71]

F(z) = |z| − 50

a = 10
b = 8/3
c = 28
k = 4
e = 2

(0, −0.3, 2, 0)
(0, −0.3, 50, 0)

0.2563, 0.1674, 0,
−14.0917 3.0301


.
x = 1− ayz
.
y = z

∣∣z∣∣−z
.
z = F(x)− bz

[72]

F(x) = |x| − 3

a = 3.55
b = 0.6

(−3, 0, −1)
(3, 0, −1) 0.1455, 0, −0.7455 2.1952


.
x = y2 − az2
.
y = −z2 − by + c
.
z = yz + F(x)

[73]

F(x) = |x| − 3

a = 0.4
b = 1.75

c = 3

(3, −1.5, −2)
(3, −1.5, 1) 0.1191, 0, −1.2500 2.0953


.
x = y2 − a
.
y = bz
.
z = −y− z + F(x)

[73]

F(x) = |x| − 3

a = 1.22
b = 8.48

(3, 1, 0.5)
(−3, 1, 0.5) 0.2335, 0, −1.2335 2.1893


.
x = F(y)
.
y = z
.
z = −x2 − az + b(F(y))2 + 1

[74]

F(y) = |y| − 4

a = 2.6
b = 2

(0.5, 4, −1)
(0.5, −4, −1) 0.0463, 0, −2.6463 2.0175


.
x = y
.
y = F(z)
.
z = x2 − ay2 + bxy + xF(z)

[74]

F(z) = |z| − 8

a = 1.24
b = 1

(4, 0.8, −2)
(−4, 0.8, 2) 0.0645, 0, −1.2582 2.0513


.
x = 1−G(y)z
.
y = az2 −G(y)z
.
z = F(x)

[74]

F(x) = |x| − 3
G(y) = |y| − 5

a = 0.22 (−1, 1, −1)
(2, 6, −1) 0.0729, 0, −1.6731 2.0436


.
x = F(y)
.
y = xG(z)
.
z = −axF(y)− bxG(z)− x2 + (F(y))2

[74]

F(y) = |y| − 5
G(z) = |z| − 5

a = 3
b = 1.2

(0, −6, −6)
(0, 6, 6) 0.0506, 0, −0.2904 2.1742


.
x = F(y)− x
.
y = −xG(z)
.
z = xF(y)− a

[75]

F(y) = |y| − 5
G(z) = |z| − 5

a = 1 (1, 5, 6)
(1, −5, −4) 0.2102, 0, −1.2102 2.1737
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Table 2. Cont.

Equations Parameters (x0, y0, z0) LEs DKY
.
x = ayG(z)
.
y = F(x)− y
.
z = 1− yF(x)

[75]

F(x) = |x| − 7
G(z) = |z| − 7

a = 1 (8, 1, 6)
(−6, 1, −8) 0.2100, 0, −1.210 2.1736


.
x = −G(y)z
.
y = (F(x))2 − 1
.
z = F(x)− az

[75]

F(x) = |x| − 4
G(y) = |y| − 5

a = 2 (5, 6, −1)
(−3, −4, −1) 0.0568, 0, −2.0568 2.0276


.
x = az
.
y = −x2 + 1
.
z = bx− z− x

∣∣F(y)∣∣ [75]

F(y) = |y| − 22

a = 18
b = 1.93

(1, 23, −1)
(−1, −21, 1) 0.120, 0, −1.12 2.1071


.
x = −ax + bx

∣∣F(y)∣∣
.
y = −x2 + (G(z))2 + F(y)G(z)
.
z = −c(F(y))2 − dF(y)G(z) + 1

[75]

F(y) = |y| − 5
G(z) = |z| − 12

a = 0.33
b = 0.75
c = 0.35
d = 0.9

(2, 1, −1)
(−2, 1, −1) 0.0301, 0, −2.0419 2.0148


.
x = −ax

∣∣F(y)∣∣+bx
∣∣z∣∣

.
y = −x2 − F(y)z + 1
.
z = cF(y) + z

[75]

F(y) = |y| − 3

a = 16.8
b = 2.8
c = 8.25

(−1, 1, −1)
(1, 1, −1) 0.2985, 0, −1.1319 2.2638


.
x = −aF(y)z + bx

∣∣F(y)∣∣−cx
∣∣z∣∣

.
y = x2 − z2 + d
.
z = z + xF(y)− z

∣∣F(y)∣∣ [75]

F(y) = |y| − 3

a = 7.3
b = 6.4
c = 118
d = 0.1

(1, 4, 1)
(−1, −2, 1)

0.0708,
0,

−25.6071
2.0028


.
x = y− y

∣∣z∣∣
.
y = −y + y

∣∣F(x)
∣∣

.
z = aF(x)

∣∣y∣∣−bz
∣∣F(x)

∣∣ [75]

F(x) = |x| − 4

a = 1
b = 20

(5, 1, 3)
(−3, 1, −3) 0.4543, 0, −20.4543 2.0222

From this view, the route for conditional symmetry is just drawing support from offset
boosting to balance the destroyed polarity. The absolute value is just a polarity carrier
for returning the polarity balance. The conditional symmetry is in fact a specific attractor
rotation of offset dependence [83] without rotation matrix, where conditional reflectional
symmetry could be regarded as the attractor rotation of one-dimensional 180 degrees,
namely antiphase rotation (and could be regarded as being from the first quadrant to the
second quadrant); meanwhile, the conditional rotational symmetry could be regarded
as the attractor rotation of two-dimensional 135 degrees, namely anti-quadrant rotation
(and could be regarded as being from the first quadrant to the third quadrant in a two-
dimensional plane). In fact, more generally, the polarity balance may be recovered from
any combinations of a variable and its offset boosting. We can also conclude that even a
3D chaotic system of inversion symmetry can recover its polarity balance based on offset
boosting, and such an additional selection of polarity balance can also be employed for
repellor construction [84]. As displayed in system TCSS6,

.
x =

∣∣y∣∣−1.6,
.
y =

∣∣z∣∣−2,
.
z = −2.03(

∣∣∣z∣∣∣−2)−
∣∣∣x∣∣∣+6 + (

∣∣∣x∣∣∣−6) (|y|−1.6) 2.
(16)
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The offset boosting of the variables x, y, and z introduces polarity reversal for balancing
the polarity destroyed from the variable of t, and thus returns coexisting repellors, as shown
in Figure 21. Here, various operations of offset boosting of the variables return two repellors
with conditional symmetry to the coexisting attractors.
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sional plane). In fact, more generally, the polarity balance may be recovered from any 
combinations of a variable and its offset boosting. We can also conclude that even a 3D 
chaotic system of inversion symmetry can recover its polarity balance based on offset 
boosting, and such an additional selection of polarity balance can also be employed for 
repellor construction [84]. As displayed in system TCSS6, 
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 (16)

The offset boosting of the variables x, y, and z introduces polarity reversal for balanc-
ing the polarity destroyed from the variable of t, and thus returns coexisting repellors, as 
shown in Figure 21. Here, various operations of offset boosting of the variables return two 
repellors with conditional symmetry to the coexisting attractors. 

 
Figure 21. Coexisting repellors with conditional symmetry in system (16): (a) y–x, (b) z–x. (IC = (0, 
0.96, 0) is red, IC = (6, 2, 2) is yellow, IC = (0, −0.96, 0) is green, IC = (−6, −2, −2) is blue). 
Figure 21. Coexisting repellors with conditional symmetry in system (16): (a) y–x, (b) z–x. (IC = (0,
0.96, 0) is red, IC = (6, 2, 2) is yellow, IC = (0, −0.96, 0) is green, IC = (−6, −2, −2) is blue).

The offset boosting within a trigonometric function, such as a sinusoidal function or a
tangent function [85–89], can also balance the polarity reversal and thus reproduce infinitely
many coexisting attractors of conditional symmetry [76]. As appears in system (17),

.
x = y2 − 1.22,
.
y = 8.48z,
.
z = −y− z + d sin(0.8x).

(17)

Here, the sinusoidal function of x also brings a new polarity reversal and returns the
polarity balance in the last dimension of system (17), thus introducing more coexisting at-
tractors based on periodic offset boosting, as shown in Figure 22. The flexible combinations
of offset-boosting-oriented polarity reversal and variable polarity reversal lead to abundant
candidates of chaotic systems with infinitely many coexisting attractors or repellors.
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5. Symmetry and Elegance in Simple Chaotic Circuits

Furthermore, symmetry and conditional symmetry can be seen in nonlinear cir-
cuits [90–93], and in this case, coexisting attractors indicate multiple signal outputting. As
we know, the restriction of voltage and current in a circuit is under the rule governed by
the structure of circuit topology and the individual characteristic of a circuit component.
The structure of circuit topology gives a macro-restriction with the voltage and current,
while the individual characteristic of a circuit component leads to a local micro-restriction.
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The former corresponds to the circuit law of Kirchhoff law, and the latter is related to the
local restriction from a circuit element. All the circuit variables must obey the two types
of constraints: one is from the topology, and one is from the local specific component.
We still see that the local component provides flexibility with the voltage and current
constraint because the components vary in many ways. Therefore, using vocabulary from
ancient Chinese philosophy, we call these two constraints ‘a square earth with a round sky
above’, as shown in Figure 23. The concept of ‘a square earth with a round sky above’ is a
philosophical idea in ancient China that is a manifestation of the theory of ‘Yin and Yang’.
The sky and circle symbolize movement, but the earth and square represent stillness. In
fact, the combination shows a balance of ‘Yin and Yang’ with complementary movement
and stillness. The concept of ‘round sky and square earth’ has been shown in ancient
Chinese architecture, currency and other aspects, such as the Temple of Heaven, square
hole coins and other patterns and structures. In circuits, ‘Sky’ means the fundamental
constraint from the ‘Node’ and ‘Loop’. (In fact, they are also combined with ‘Branch’ and
‘Mesh’.) Meanwhile, the ‘Earth’ means the other striction from all kinds of circuit elements.
Two kinds of circuit constraints leave much more space for the symmetric evolvement of
the circuit system. This special understanding of circuit constraints calls for the insight of
circuit design and poses great help for the application of circuit laws.

Moreover, in circuits, there are many cases of symmetry and duality. Dynamical
behaviors in a chaotic jerk circuit can obtain a smooth symmetry control based on a
memristive diode emulator [94]. The effects of symmetry breaking can be seen even in a
simple autonomous jerk circuit [95]. Rigorous analyses of windows in a symmetric circuit
are revealed in [96]. More observations of symmetry in chaotic systems and circuits are
made in [97]. We can enumerate many circuit structures and corresponding circuit laws and
see the elegant symmetry or duality, such as capacitive and inductive components, voltage
source and current source, series for voltage and parallel for current, series resonance and
parallel resonance, the time constant of the resistor and capacitor and the time constant
of conduction and inductance. And even more, it seems that the new findings regarding
memristors are also associated with the symmetry observation. Furthermore, many circuits
of series structure could be transformed to be of parallel structure and give symmetric
attractors or coexisting attractors of conditional symmetry. As shown in Figure 24, the
simple series circuit [98] including an inductor, a capacitor and a memristor can produce
a symmetric chaotic attractor, as shown in Figure 25. The circuit realizes the equation of
system (18) with rotational symmetry according to the variables y and z.

.
x = α(y2 − 1),
.
y = −ωz− xy,
.
z = ωy.

(18)
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Figure 25. Symmetric attractor in system (18) with α = 1, ω = 1 and IC = (4.1, 0.7, 5): (a) x–y, (b) y–z.

Conditional symmetry of coexisting attractors can also be generated in a simple
parallel circuit structure [99]. The chaotic system (19),

.
x =

∣∣y∣∣−b,
.
y = z,
.
z = −az− y+

∣∣x∣∣−c.
(19)

has coexisting chaotic attractors of rotational conditional symmetry when a = 0.6, b = 1, c = 2,
as displayed in Figure 26. The structure of system (19) is unique and can be implemented
based on a parallel circuit with a capacitor, a resistor and an meminductor, as shown in
Figure 27. This simple structure also oscillates outputting two coexisting attractors, as
shown in Figure 28. We can declare that people can realize these systems with a dual circuit
structure if they want to switch the circuit between the series and parallel.
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Figure 28. Conditional symmetric chaotic attractors of system (19) with a = 0.6, b = 1, c = 2 observed
in oscilloscope, (a) z–y, (b) z–x. (IC = (2, 0, −1) is green, IC = (−2, 0, 1) is brown).

In fact, the elegant structure or symmetric property of a system does not indicate its
simple or easy structure. For example, for doubling the coexisting attractors [63–65], let us
see system (20), 

.
x = sgn(x)(c− (b

∣∣y∣∣−1)z),
.
y = az2 − yz,
.
z =
∣∣x∣∣−d.

(20)

The coexisting attractors are located in phase space according to the axis of symmetry x = 0.
Here, the constant d modifies the distance between two coexisting symmetric attractors.
When it increases from d = 4.11 to be d = 8, the distance between those symmetric attractors
is also increased, as shown in Figures 29 and 30. Here, the chaotic phase trajectories are
elegant and simple, but the circuit for realizing them is not simple. Typically, it is realized
based on three lines of operational-amplifier-based integral structure.
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Figure 29. Chaotic attractors in system (20) with a = 0.6, b = 1, c = 1, d = 4.11 and IC = (1, 1, −1). Here,
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(IC = (−1, 1, −1) is left, IC = (1, 1, −1) is right).

For many of those symmetric chaotic systems, the simple circuit could be constructed
by utilizing the inherent characteristics of a multiplier and the differential constraint of the
capacitor [100]. As we know, the multiplier AD633 can convert voltage to current with an
external resistor. The external voltage transformation characteristic of AD633 obeys the
relationship of W = (X1 − X2)(Y1 − Y2)/10 + Z. If a resistor connects the output point W
and Z in series, as shown in Figure 31a, the output current satisfies i2 ≈0 and i1 ≈ i3 for
a large input resistor of the Z port with a small input current. Thus, the output voltage
satisfies the balance of current: W = (X1 − X2)(Y1 − Y2)/10 + W−i1R. Consequently, the
current associated with AD633 is subject to i1 ≈ i3 = (X1 − X2)(Y1 − Y2)/10R. Various
combinations of inputs realize those terms with different degrees according to the input
variable, and therefore, a multiplier provides the linear terms and quadratic terms for the
circuit calculation. Furthermore, the connection of resistor and capacitor drives a flexible
integration calculation. When two capacitors are coupled with a resistor as shown in
Figure 31b, the current i4 identified by (u 2−u1)/R1 equals the current through the capacitor
C1 resulting in

.
u1 = (u 2−u1

)
/R1C1, and similarly leads to the symmetric restraint like

.
u2 = (u 1−u2

)
/R1C2. When a capacitor and a resistor connect in parallel, the current

equation is
.

u3 = −u3/R2C3. From the above two classes of basic circuit constraints, many
symmetric chaotic systems with quadratic terms could be implemented in an easy way, like
the system written as 

.
x = y− x,
.
y = 5x− y− xz,
.
z = 0.5x2 − 0.5z.

(21)

It can be realized with a compact structure, as shown in Figure 32.
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6. Conclusions

In the physical world, there are many symmetric systems keeping their stability
against the reversal of polarity from some of the dimensions. Symmetric systems pro-
vide symmetric solutions, and even when the symmetry is broken, the symmetry turns
out to be accompanied by the coexisting symmetric pairs of attractors. More coexisting
attractors indicate more freedom of choice for engineering, and sometimes imply more
uncertainty and more risks. The observation of symmetry within a dynamical system poses
an important suggestive value for fully utilizing the property of symmetry of a practical
system. Furthermore, symmetry can be rebuilt, and even can be modified in an imprecise
or flexible form. The polarity revision can resort to direct polarity reversals from some of
the system variables or be derived by offset boosting with any of the variables. Therefore,
a symmetric system can be reconstructed by introducing an absolute-value function and
a signum function. More widely, offset boosting can also be employed for rebuilding the
chaotic system with conditional symmetry. The structure of a system is not necessarily
related to a symmetric or elegant circuit structure. A simple or elegant circuit structure
depends on the combinations of modern circuit components.
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