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Abstract: Some exact solutions of boundary or initial conditions formulated for Bogomolny equations
(derived by using the strong necessary conditions and associated with some ordinary equation and
some partial differential equations) have been found. The solution obtained for the restricted baby
Skyrme model, as well the density of energy for this solution, are localized. Moreover, it turns out
that the densities of the ungauged Hamiltonian and the gauged Hamiltonian are correspondingly,
non-zero and zero for the found solution of the Cauchy problem associated with the Bogomolny
equation of the restricted baby Skyrme model. Hence, a degeneracy of the Hamiltonian for this model
has been established. As such, one can see the breaking of some symmetry.

Keywords: Lagrangian; Bogomolny equations; degeneracy of energy; boundary and initial conditions;
Cauchy problem; soliton solutions

1. Introduction

There are several approaches to solving of nonlinear partial differential equations (see
for e.g., refs. [1–34] and proper references therein). Four decades ago, another method—
the so-called strong necessary conditions method (SNCM)—was formulated for solving
nonlinear partial differential equations (resulting from variational principles). The main
idea leading to its achievement is to replace the Euler–Lagrange equations by another
variational method with other equations, which possess an order smaller than the original
ones. Moreover, the set of the solutions derived by the considered method has to be
included in the set of the solutions of the original Euler–Lagrange equations. For some
simple examples of the applications of SNCM, see references [35–52]. In 2001, Professor
Bolesław Szafirski pointed out that it was not known how to implement boundary and
initial conditions, as well as how to set the Cauchy problem for the Bogomolny equations
derived using SNCM, and whether one can find a solution to this Cauchy problem [53]. This
paper provides a method for satisfying Prof. Szafirski’s requirement. The results presented
in this paper have been included in [54]. This paper is organized as follows. The next section
is devoted to presentation of a classical method of obtaining the Bogomolny equation (the
so-called completing to square). In Section 2, we briefly present the deriving of Bogomolny
equations using the classical method, i.e. completing to square. The next section is devoted
to a description of the Strong Necessary Conditions Method (SNCM). In the Section 4 we
present a solution of the Cauchy problem associated with the Bogomolny equation (which
is an ordinary differential equation),derived using SNCM for a one-dimensional harmonic
oscillator. The Section 5 is devoted to presentation of the Cauchy problems associated
with Bogomolny equations derived using SNCM, for the continuous Heisenberg model
and the restricted baby Skyrme model. It turns out that in the case of the restricted baby
Skyrme model, for the found solution of the mentioned Cauchy problem, the densities of
the ungauged Hamiltonian and gauged Hamiltonian are non-zero (and localized) and zero,
correspondingly. Section 6 includes some conclusions.
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2. A Brief Introduction to the Bogomolny Equations

The Euler–Lagrange equations of many field-theoretical models are nonlinear partial
differential equations of the second order. However, in [55], Bogomolny derived the
equations, called Bogomolny equations and sometimes called Bogomol’nyi equations
(although independently, they were derived in [56], for another model—SU(2) Yang–Mills
theory); similar results were obtained in [57] (cited in this context, only in [58]). We show
the Bogomolny idea on the example of scalar field theory, concretely a model φ4 with
spontaneous symmetry breaking:

E =
∫ ∞

−∞

(
1
2

(
dφ

dx

)2

+
λ

2
(φ2 − γ2)2

)
dx, (1)

where:

φ(x) ∈ R,

lim
x→±∞

φ(x) = ±γ. (2)

We can avoid solving of the Euler–Lagrange equations for this model:

d2φ

dx2 = 2λφ(φ2 − γ2), (3)

by writing the formula for E in (1) as follows, ref. [55]:

E =
∫ ∞

−∞

(
1
2

(
dφ

dx
+
√

λ(φ2 − γ2)

)2

−
√

λ
dφ

dx
(φ2 − γ2)

)
dx. (4)

Now, let us notice that the second term in (4) is a total derivative of
√

λ( φ3

3 − γ2φ); as
such, we can integrate this term and we get, ref. [55]:

E =
∫ ∞

−∞

1
2

(
dφ

dx
+
√

λ(φ2 − γ2)

)2

dx +
2
√

λ

3
γ2 | Q |, (5)

where Q = φ(∞)− φ(−∞) is the so-called topological charge. The origin of this name is
such that this quantity reacts only to the boundary conditions, ref. [59]. We write more
precisely on topological charges in the next section.

Let us now require reaching the minimum by the functional (5). Hence, the first term
must vanish, ref. [55]:

dφ

dx
=
√

λ(γ2 − φ2). (6)

A very well-known solution of this equation is the so called “kink”:

φ(x) = γ tanh (γ
√

λ(x− x0)). (7)

As such, the following inequality (Bogomolny bound) is satisfied, ref. [55]:

E ≥ Emin =
2
√

λ

3
γ2 | Q |, (8)

where Emin—the minimum of the functional (5). The Equation (6) is called the “Bogomolny
equation” (also called the BPS equation).

The method applied to obtain this Bogomolny equation, shown above, we call “com-
pleting to square”. The other methods (known to us currently) of deriving these equations
are: the strong necessary conditions method (described in the next section and somewhat
developed in [35]) and the so-called on-shell method (first introduced and applied in [2])
and some methods inspired by the on-shell approach (for e.g., ref. [3]).
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3. A Presentation of the Strong Necessary Conditions Method

The main idea of the concept of strong necessary conditions [36–44] is that instead of
considering the Euler–Lagrange equations:

F,u −
d

dx
F,u,x −

d
dy

F,u,y = 0, (9)

which follow from the varying of the functional:

Φ[u] =
∫

E2
F(u, u,x, u,y) dxdy, (10)

one considers strong necessary conditions, refs. [36–38,41–44]:

F,u = 0, (11)

F,u,x = 0, (12)

F,u,y = 0, (13)

where F,u ≡ ∂F
∂u , etc. Obviously, a set of the solutions of the system of Equations (11)–(13) is

a subset of the set of the solutions satisfying the Euler–Lagrange Equation (9). On the other
hand, even if this subset is non-empty, its elements (solutions of the system (11)–(13)) are
very often trivial solutions. As such, in order to extend this subset, we consider the gauged
functional (10):

Φ̃ = Φ + I, (14)

where I is such a functional that its local variation vanishes, with respect to u(x, y): δI ≡ 0.
The gauging of the functional here just means adding to this an invariant I. This gauge
operation is necessary because of two reasons. The first one is that we do not change the
original Euler–Lagrange Equations (9), i.e., the Euler–Lagrange equations resulting from
requiring the extremum of (10) possess the same form as the Euler–Lagrange equations
resulting from requiring the extremum of (14). The second reason is that the structure of
the equations following from the strong necessary conditions (11)–(13) is more rich, which
makes obtaining the solutions for a given model more possible.

Let us note that the order of the system of the partial differential equations, consti-
tuted by strong necessary conditions (11)–(13), is less than the order of Euler–Lagrange
Equation (9). The method of derivation of Bogomolny equations (Bogomolny decomposi-
tion, BPS equations), by using the strong necessary conditions, was included and applied
in [36,40,45] and developed in [35]. As we can see, this approach differs from the classical
approach of deriving Bogomolny equations (the so-called completing to a square, shown in
a simple example in Section 2), presented and applied in [55–58,60]. In [47], the Bogomolny
equations for baby Skyrme models were derived by using the concept of strong necessary
conditions. A crucial role in SNCM is played by the set of topological invariants. The set of
solutions of NPDE depends on the subset of implemented invariants. The empty subset of
invariants always corresponds to an empty set or a set of trivial solutions.

Here, we use the name “topological invariant” as a synonym of “topological charge”.
It is a well-known fact that some soliton solutions (for e.g., in the case of sine-Gordon
equation) are stable due to non-zero values of topological charges. In this paper, the phrase
“topological invariant” is a synonym of “topological charge”, which is used in the literature
(for e.g., refs. [61,62]). As we have written above, the simplest example of the topological
charge is, refs. [59,63]:

Qtopol =
∫ ∞

−∞

∂u
∂x

dx = u |∞ −u |−∞ . (15)

This charge corresponds to the so-called homotopy group π1(S1), ref. [64]. It is obvious
that the density of this charge (invariant): ∂u

∂x ≡ u,x is the total derivative of the function
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F1(u) = u, with respect to the independent variable x. One can consider a generalized case,
when F is an unspecified function of u, and then the generalized version of Qtopol will be:

Qtopol =
∫ ∞

−∞

∂F
∂u

∂u
∂x

dx =
∫ ∞

−∞
F,uu,xdx. (16)

For some computational purposes (which will be explained for a moment), it is acceptable
to put F,u = G(u), where now the function G is this function, which is to be determined
later (during the computations, when we want to derive Bogomolny equation). This is for
the simplest case of homotopy group, such as π1(S1).

For the case of the homotopy group π2(S2), the corresponding generalization of
the topological invariant (topological charge) will be (the so-called winding number or
Pontrygain index), ref. [64]:

Qtopol =
∫ ∞

−∞

∫ ∞

−∞
(ω,xω∗,y −ω,yω∗,x)dxdy. (17)

Again, it is useful to generalize this above quantity (this was performed for the first time
in [41,42]):

Qtopol =
∫ ∞

−∞

∫ ∞

−∞
G1(ω, ω∗)(ω,xω∗,y −ω,yω∗,x)dxdy, (18)

where G1(ω, ω∗) ∈ C1 is a function to be determined later (during the computations, when
we want to derive Bogomolny equation). Apart from using the topological invariants
(topological charges), we use also the so-called divergent invariant. Thus, for e.g., in the
case of the restricted baby Skyrme model, we gauge the original functional of this model Φ
on the set of the invariants: the topological one Qtopol (given above) and the divergent ones:

∫ ∞

−∞

∫ ∞

−∞

dG2

dx
dxdy +

∫ ∞

−∞

∫ ∞

−∞

dG3

dy
dxdy =∫ ∞

−∞

∫ ∞

−∞
(G2,ωω,x + G2,ω∗ω

∗
,x)dxdy +

∫ ∞

−∞

∫ ∞

−∞
(G3,ωω,y + G3,ω∗ω

∗
,y)dxdy,

(19)

where the functions Gk = Gk(ω, ω∗) ∈ C1(k = 2, 3) are some functions to be determined
after applying the strong necessary conditions to the gauged functional.

Why are such invariants and generalizations always important when one applies
strong necessary conditions? As we have written, the aim of this paper is to investigate
how the concept of strong necessary conditions works when we apply this to derive the
Bogomolny decomposition (the Bogomolny equations) and we want to solve the Cauchy
problems connected to these Bogomolny equations (for some given linear and nonlinear
models). In order to derive the Bogomolny decomposition, we need to make the dual
equations (following from strong necessary conditions) self-consistent. The generalizations
of the topological charges (topological invariants) make it possible to properly choose
the functions, such as G(u) or Gi(ω, ω∗), i = 1, 2, 3, in order to make the dual equations
self-consistent. Thus, there are the following opportunities:

• making a certain part of the dual equations linearly dependent—the remaining equa-
tions are just the Bogomolny equations;

• obtaining a condition for the potential of the given field-theoretical model. The Bogo-
molny decomposition (the Bogomolny equations) exists only for this model, which
potentially satisfies such a condition.

If we compute the corresponding local variations of these invariants, i.e., the topological
ones and divergent ones, then, of course, it turns out these variations vanish tautologically.

The idea that the Lagrangian after adding to it a total derivative of a function depen-
dent only on the field variable generates the same Euler–Lagrange equations as the original
Lagrangian has been known very well in the literature (cf. for e.g., refs. [65,66]). However,
gauging the Lagrangian on a complete set of invariants and applying this to derivation
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of Bogomolny equations, by using the concept of strong necessary conditions, was first
presented in [40].

At the end of this section, we give an important mention; namely, we work with the
densities of the Lagrangians, Hamiltonians, and the topological invariants (topological
charges). Of course, it is a well-known fact that in the literature, people often use the
notions Lagrangian, Hamiltonian, and the density of the Lagrangian and the density of the
Hamiltonian as synonyms, correspondingly.

4. The Case of Ordinary Differential Equations

In this section, we present an application of SNCM in an initial conditions problem for
the ordinary differential equation. We consider now (as an introductory example) a linear
equation resulting from the SNCM applied to the Lagrangian of the one-dimensional
harmonic oscillator:

L =
m
2

((
dx
dt

)2

−ω2x2
)

. (20)

Of course, this is a very well-known issue in physics, described, for e.g., in [67–69]. How-
ever, we want to explore whether the Bogomolny equations can be derived in this case
(using strong necessary conditions), and whether the corresponding Cauchy problem has a
solution.

In order to set the strong necessary conditions, we perform the gauge transformation
of (20) using the following topological invariant density G(x) dx

dt , where G(x) is an arbitrary
function and G(x) ∈ C1. The reason for this is that according to the preliminaries given in
Section 3, we can see more about the homotopy group π1(S1), and the topological charge
(topological invariant) has the form:

Qtopol =
∫ ∞

−∞

dx
dt

dt. (21)

If we consider its generalization, then this has the form:

Qtopol =
∫ ∞

−∞

dF
dt

dt =
∫ ∞

−∞

∂F
∂x

dx
dt

dt =
∫ ∞

−∞
F,xx,tdt. (22)

It is appropriate for computational purposes to put F,x = G there, where now (as we have
mentioned in the previous section) the function G is this function, which is to be determined
later. Then:

L̃ =
m
2

((
dx
dt

)2

−ω2x2
)
+ G(x)

dx
dt

. (23)

Let us note thatL depends on the two functions: L = L(x, dx
dt ). According to the strong

necessary conditions, we have to optimize the action functional by regarding both
x and dx

dt :
∂L̃
∂x

= 0,
∂L̃

∂( dx
dt )

= 0. (24)

Equation (24) reads:

−mω2x + Gx
dx
dt

= 0, (25)

G + m
dx
dt

= 0. (26)

We eliminate dx
dt from this system and we get the equation, which has to be satisfied by the

function G:
GG,x + m2ω2x = 0. (27)
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Hence:
1
2
(G2),x + m2ω2x = 0. (28)

The solution of this equation has the form:

G = ±
√

c1 −m2ω2x2. (29)

Then, we formulate the Cauchy problem:

−mω2x + Gx
dx
dt

= 0, (30)

G + m
dx
dt

= 0, (31)

x(0) = c3. (32)

Solving (30) and (31), using (29), where we take into account the “plus” sign, we get:

x(t) =
√

c1 tan (ω(c2 − t))

mω
√
(tan2 (ω(c2 − t)) + 1)

, (33)

where c2 is the integration constant. Now, we take into account (32); hence:

c2 =
1
ω

arctan
mωc3√

c1 − c2
3m2ω2

. (34)

To our best knowledge, nobody has found earlier the Bogomolny decomposition for the
harmonic oscillator, given by (25), (26) and (29), or the solution given by (33) and (34),
cf. [70]. Notice that the solution (33) depends not only on ω, but also on the mass m.

If we take into account the Euler–Lagrange equations for this problem:

m
d2x(t)

dt2 + mω2x(t) = 0, (35)

then its solution is very well-known, for e.g., cf. [67,68,70]:

x(t) = A sin (ωt) + B cos (ωt), (36)

where A = const, B = const, and this does not satisfy the Bogomolny Equations (25)
and (26), where G is given by (29). Obviously, the solution of Bogomolny equations given
by (33), with and without providing that (34) holds, satisfies (35).

5. The Case of Partial Differential Equations

5.1. Field Equations and the Cauchy Problem Associated with π2(S2) Homotopy Group

As an example, we consider the continuous Heisenberg model represented by the
following Hamiltonian, ref. [60]:

H =
∫

E2
Hdxdy =

∫
E2

(
∇w · ∇w∗

(1 + w · w∗)2

)
dxdy, (37)

where the complex field variable w consists of classical spin components:

w =
(Sx + iSy)

(1 + Sz)
, (38)

where Sx, Sy, Sz are the components of the classical spin. In this case, we have the homotopy
group π2(S2), refs. [64,71]. The Bogomolny equations for this model were derived by
applying classical completing to square in [60] (one can also find this in [71]).
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Here, we apply the SCNM for the Hamiltonian:

H̃ =
∫

E2
H̃dxdy =

∫
E2

(
∇w · ∇w∗

(1 + w · w∗)2 + I1 + I2 + I3

)
dxdy, (39)

where, as mentioned above, I1 is density of the topological invariant, being the so-called
winding number and Pontryagin index, ref. [64] (c.f. for e.g., refs. [61,62]):

I1 = G1(w, w∗)(w,xw∗,y − w,yw∗,x), (40)

where (as we mentioned in Section 3) G1(w, w∗) ∈ C1 is the function to be determined later.
I2, I3 are the so-called divergent invariants: I2 = dG2

dx , I3 = dG3
dy , and Gk = Gk(w, w∗) ∈

C1, (k = 2, 3) are the functions to be determined later, during the further computations.
We apply strong necessary conditions to (39) and we obtain the system of dual equa-

tions, which can also be obtained as a two-dimensional version of the system of the dual
equations derived in [40]:

−2w∗∇w∇w∗

(1 + ww∗)3 + G1,w(w,xw∗,y − w,yw∗,x) + DxG1,w(w, w∗) + DyG2,w(w, w∗) = 0, (41)

c.c., (42)
w∗,x

(1 + ww∗)2 + G1w∗,y + G2,w = 0, (43)

w∗,y
(1 + ww∗)2 − G1w∗,x + G3,w = 0, (44)

c.c. (45)

We make this system self-consistent by choosing Gk = const (k = 2, 3) and (similar to [40])
by choosing G1 = i

(1+ww∗)2 . Next, expressing the complex fields w and w∗ by real fields:

w = U(x, y) + iV(x, y), w∗ = U(x, y)− iV(x, y), (46)

we derive from (43)–(45) the pair of equations governing real fields V(x, y) and U(x, y):

∂U(x, y)
∂x

+
∂V(x, y)

∂y
= 0, (47)

∂U(x, y)
∂y

− ∂V(x, y)
∂x

= 0. (48)

An exact solution (in terms ω, ω∗) for this model was published in [60] (however,
the Bogomolny equations were derived there using a classical Bogomolny trick, i.e., com-
pleting to a square). As we have indicated, we see this issue from the point of view of the
Cauchy problem. Then, solving (47) and (48), we get:

U(x, y) = F1(x− iy) + F2(x + iy), (49)

V(x, y) = −iF1(x− iy) + iF2(x + iy) + C1, (50)

where F1(·) and F2(·) are some functions. After taking into account the formula (46), we
see that F1, F2 are connected with w, w∗ by the formulas:

F1 =
1
2
(w− iC1), (51)

F2 =
1
2
(w∗ + iC1) (52)
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and C1 is an arbitrary real constant. Based on the general solutions (49) and (50) of (47)
and (48), we present the Cauchy problem for partial differential equations of the first
order created by the strong necessary conditions. The considered example consists of two
independent variables, x and y, and two functions. Therefore, it is possible to formulate
the following constraints for the general solutions:

U(x, 0) = f1(x), V(x, 0) = f2(x), (53)

where f1(x) and f2(x) are given functions. It is possible for the considered Heisenberg
model to derive analogous relations to U(0, y) and V(0, y), which relate integration con-
stants to initial or boundary conditions. Constraining (49) and (50) to (53) and substituting
y = 0, we obtain:

f1(x) = F1(x) + F2(x), (54)

f2(x) = −iF1(x) + iF2(x) + C1. (55)

Since f1(x) and f2(x) are given, F1 and F2 cannot be arbitrary:

F1(x) =
1
2
( f1(x) + i f2(x)− iC1), (56)

F2(x) =
i
2
( f1(x)− i f2(x) + iC1). (57)

As such, F1 = F∗2 . Then, the only freedom for F1 and F2 is gauge transformation
regarding the C1 constant.

5.2. Field Equations and the Cauchy Problem for the Restricted Baby Skyrme Model

The baby Skyrme model is a planar version of the Skyrme model in three-dimensional
space (introduced and described in [72,73]; and a good description of the low-energy
physics of strong interactions is provided in [74]). The target space in the case of the baby
Skyrme model is S2. In both of these models, Skyrme and baby Skyrme, one can classify
topologically the static field configurations by their winding numbers. The baby Skyrme
model includes analogical terms to the terms of the Skyrme model: the O(3) nonlinear
sigma term and the quartic term. One can apply this model to describe the quantum Hall
effect, refs. [75,76].

The restricted baby Skyrme model has the following Hamiltonian density:

H = −4β
(ω,xω∗,y −ω,yω∗,x)

2

(1 + ωω∗)4 + V(ω, ω∗). (58)

As we see, this model differs from the full baby Skyrme model, where the O(3)
nonlinear sigma term is also included. Some solutions for the full baby Skyrme model were
found in [77] and the existence of the solutions (and some their properties) for this model
was proved in [78]. In [47], the Bogomolny decomposition for the restricted baby Skyrme
model was derived by using the concept of strong necessary conditions (the Bogomolny
equations for this model, but for some special forms of the potential, and by another way,
some solutions of these equations were derived in [79,80]). We have again the case of
the homotopy group π2(S2), so the corresponding generalized form of the topological
invariant (topological charge) has the form, ref. [47]:

Qtopol =
∫ ∞

−∞

∫ ∞

−∞
G1(ω, ω∗)(ω,xω∗,y −ω,yω∗,x)dxdy, (59)

where G1 is some function, which is to be determined later.
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We apply the concept of strong necessary conditions to the Hamiltonian gauged on
the invariants as follows, ref. [47]:

H̃ = −4β
(ω,xω∗,y −ω,yω∗,x)

2

(1 + ωω∗)4 + V(ω, ω∗) + G1(ω,xω∗,y −ω,yω∗,x) + DxG2 + DyG3, (60)

where Gk, (k = 1, 2, 3) are some unspecified functions of ω, ω∗ (of course, Gi ∈ C). They
were determined during the further computations, in ref. [47]. Namely, if:

G1 =
4i
√

β

(1 + ωω∗)2

√
V(ω, ω∗), Gk = const, (k = 2, 3), (61)

then we can derive the Bogomolny decomposition, which, in this case, has the following
form, ref. [47]:

ω,xω∗,y −ω,yω∗,x =
i

2
√

β

√
V(ω, ω∗)(1 + ωω∗)2. (62)

We find now an exact localized static solution (with localized density of energy)
of the Bogomolny decomposition (62) for the case of the so-called “Mexican hat” potential:
V = λ3(ωω∗ − γ2)2. We use “hedgehog ansatz”:

ω =
sin ( f (r)) cos (Nθ) + i sin ( f (r)) sin (Nθ)

1 + cos ( f (r))
, c.c., (63)

where (r, θ) are polar coordinates in the cartesian x− y plane.
After inserting this ansatz into (62), we formulate the Cauchy problem:

(cos ( f (r)) + 1)N f ′(r) sin ( f (r))
r

=

√
λ3

β

[
cos ( f (r))(γ2 + 1) + γ2 − 1

]
, (64)

f (0) = c0 = const, (65)

where, in this case, we put c0 = 2.
We are interested in obtaining a localized solution, so we also impose the conditions:

lim
r→±∞

f (r) = const, (66)

lim
r→±∞

H = const. (67)

We solve this problem and we have:

f (r) = π − arccos
(

X1

)
, (68)

where:

X1 =
1

γ2 + 1

(
γ2−

exp
(

1√
βN

(
− 4Lambert

(
1
2

exp
(

1
N
√

β
X2

))
×

N
√

β + X2

))
− 1
)

,

(69)
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and:

X2 = N ln ((γ2 + 1) cos (2) + γ2 − 1)
√

β+

N(γ2 + 1)(cos (2) + γ2 − 1)
√

β

2
−
√

λ3r2(γ2 + 1)2

4
,

(70)

and Lambert(Y) is the so-called Lambert function, which satisfies the equation
Lambert(Y) exp (Lambert(Y)) = Y. For γ = 2, N = 1, λ3 = 1, β = 1:

f (r) = arccos
{[2Lambert

(
1
2 exp

(
− 25

4 r2 + 5 cos (2)+3
2

)
(5 cos (2) + 3)

)
− 3

5

]}
.

(71)

We present a figure of this above solution in Figure 1.

Figure 1. Figure of solution (71).

If we insert the found solution of the Cauchy problem into the ungauged and gauged
Hamiltonian densities (58) and (60), correspondingly, then the ungauged Hamiltonian
density is nonzero (Figure 2).

As we can see from the figures, both the found solution and the density of the un-
gauged Hamiltonian, corresponding to this, are localized. Thus, we can tell this solution is
a soliton solution (or, at least, a soliton-like solution). For this solution, the gauged Hamil-
tonian density is zero (of course, the condition (61) and Bogomolny Equation (62) hold):

H̃ = 0. (72)

Thus, we can see here the degeneracy of the Hamiltonian (the problem of a degenerate
Hamiltonian, in the case of theory of gravity, was investigated in [81]; in [82], the existence
of an infinite number of Lagrangians for a given second-order ODE was proven). This
corresponds to the fact that if we consider two versions of a field-theoretical Lagrangian,
ungauged and gauged on total derivatives of any function of field variables, then the
energy-momentum tensors corresponding to each of these Lagrangians will be different,
ref. [83]. The term ∂ω

∂x does not change the Euler–Lagrange equations, but has an impact
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on the energy of the ground state of the medium, ref. [84]. Such a term can appear only in
crystals not possessing the inversion center, and this causes the spiral ordering of magnetic
moments, ref. [84] (and the references [1–4] cited there; the numbers of these references are
of the reference [84] ).

Hence, we mention the breaking of some symmetry: the Euler–Lagrange equations
are the same for both Hamiltonians, gauged and ungauged; however, on the other hand,
the density of the ungauged Hamiltonian is nonzero and the density of the gauged Hamil-
tonian is zero.

Figure 2. The figure of the ungauged Hamiltonian density for solution (71).

The effect of vanishing of energy-momentum tensor (when topological invariants
occur in an action functional), was established in [57], for some two SU(2) Yang-Mills
family models (and for certain other field-theoretical models in refs. [85–87]). However,
this had been done there for a version of BPS equations derived by using the method of
classical completing action functional to square, so the forms of the invariants used there,
had been special (in contrary to this paper, where we have used generalized forms of
the invariants). The effect of degeneracy of hamiltonian for the restricted baby Skyrme
model (and the exact localized solution for this), had not been presented elsewhere (to our
best knowledge).

6. Conclusions

The first conclusion concerns the possibility to solve the ordinary differential equations
subjected to the strong necessary conditions. In the case of linear ODE, the new solution of
the Cauchy problem associated with the Bogomolny equation for harmonic oscillator is
given by (33) and (34). This solution depends not only on ω, but also on the mass m.

The Formulas (47) and (48) establish the Cauchy–Riemann system, which is a starting
point for the theory of analytic functions. Because of the Riemann theorem, this may be a
step to the investigations of conformal maps.

Moreover, as far as the Cauchy problems for the continuous Heisenberg model and for
the restricted baby Skyrme model are concerned, after using strong necessary conditions
and deriving the Bogomolny equation for this problem, one can formulate the Cauchy
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problem and solve it. One can also consider a possibility of an extension of the obtained
solution by applying the so-called semi-strong necessary conditions concept (this concept
was presented in [41]).

We have also obtained a localized solution of the Cauchy problem of Bogomolny
equation for the restricted baby Skyrme model. An example of such a solution (soliton
solution or, at least, a soliton-like solution) is given by (71). The density of the ungauged
Hamiltonian for this solution is localized.

Moreover, we have also shown, in the example of the restricted baby Skyrme model,
that in the case of Bogomolny equations, there exists some degeneracy of the Hamiltonian,
i.e., the values of Hamiltonians, both ungauged and gauged ones, are different for the
solution of the Cauchy problem for Bogomolny equations, and both of these Hamiltonians
generate the same Euler–Lagrange equations.

One can say that some symmetry has been broken here: the Euler–Lagrange equations
are the same for both Hamiltonians, gauged and ungauged; however, on the other hand,
the density of the ungauged Hamiltonian is nonzero and the density of the gauged Hamil-
tonian is zero. It is worth mentioning here that, as was shown in [88], both Lagrangians
(those gauged on the total derivative of a function of field variables and ungauged ones)
lead to equivalent quantum field theories.
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Proceedings of First Non-Orthodox School; Cieśliński, J., Wójcik, D., Eds.; PWN: Warszawa, Poland, 1998; p. 81.
7. Conte, R. Exact solutions of nonlinear partial differential equations by singularity analysis. In Lecture Notes in Physics, Proceedings

of the Direct and Inverse Methods in Nonlinear Evolution Equations; Greco, A.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2003;
Volume 632, p. 1.

8. Debnath, L. Nonlinear Partial Differential Equations for Scientists and Engineers; Springer Science+Business Media, Birkhäuser: Basel,
Switzerland, 2012.

9. Doliwa, A. Minimal surfaces, holomorphic curves and Toda systems. In Proceedings of the Nonlinearity & Geometry, Proceedings of
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