
Citation: Liu, B.; Zhang, W. Research

Progress of Topological Quantum

Materials: From First-Order to

Higher-Order. Symmetry 2023, 15,

1651. https://doi.org/10.3390/

sym15091651

Academic Editors: Tomohiro Inagaki

and Tianjun Li

Received: 15 May 2023

Revised: 3 August 2023

Accepted: 21 August 2023

Published: 26 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Review

Research Progress of Topological Quantum Materials: From
First-Order to Higher-Order
Bing Liu * and Wenjun Zhang

School of Physics and Electronic Information, Weifang University, Weifang 261061, China; w.zhang@wfu.edu.cn
* Correspondence: liubing@wfu.edu.cn

Abstract: The exploration of topologically nontrivial states in condensed matter systems, along with
their novel transport properties, has garnered significant research interest. This review aims to provide
a comprehensive overview of representative topological phases, starting from the initial proposal of
the quantum Hall insulator. We begin with a concise introduction, followed by a detailed examination
of first-order topological quantum phases, including gapped and gapless systems, encompassing
relevant materials and associated phenomena in experiment. Subsequently, we delve into the realm
of exotic higher-order topological quantum phases, examining both theoretical propositions and
experimental findings. Moreover, we discuss the mechanisms underlying the emergence of higher-
order topology, as well as the challenges involved in experimentally verifying materials exhibiting
such properties. Finally, we outline future research directions. This review not only systematically
surveys various types of topological quantum states, spanning from first-order to higher-order, but
also proposes potential approaches for realizing higher-order topological phases, thereby offering
guidance for the detection of related quantum phenomena in experiments.

Keywords: quantum Hall effect; topological insulator; topological semimetal; higher-order topological
insulator; higher-order topological semimetal; boundary state

1. Introduction

Topological materials have garnered substantial attention in the field of condensed
matter physics over the past decade [1–4]. This is due to their remarkable properties in
boundary behavior, such as unidirectional and non-dissipative energy transport, which is
protected against backscattering. These unique characteristics have significant applications
in spintronics and quantum information sciences. Moreover, in recent years, the study of
topological materials has expanded significantly into diverse fields, including optics [5],
acoustics [6–11], and mechanics [12,13]. This expansion has opened up new opportunities
for controlling and designing the propagation of classical waves.

Topology is a mathematical concept that captures the invariant properties of geometric
objects under continuous transformations. Objects belonging to the same topological class
can be continuously deformed into one another. This shared characteristic is expressed
through topological invariants. Initially, topological properties were applied to describe
the distribution states of materials in real space. Afterwards, the concept of topology
was extended to momentum space. In this context, if the quantum mechanical wave
function of a system can undergo an adiabatic deformation to transform into another wave
function, they are considered topologically equivalent. For systems consisting of multiple
particles, the simple combination of atomic wave functions yields a topologically trivial
result. Therefore, if the wave function of a condensed matter system can be adiabatically
transformed into the atomic limit, it is deemed the atomic insulator which is topologically
trivial; otherwise, it is regarded as topologically nontrivial.

Numerous reviews on topological materials have been published to date, but most of
them primarily concentrate on early-stage first-order topological phases within the realms
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of electronic or electromagnetic fields [1–4]. However, these reviews overlook the emerging
field of higher-order topological phases. In light of this, the objective of this article is to
present a comprehensive examination of topological phases, including both first-order
and higher-order phases. The discussion will encompass realistic materials, underlying
mechanisms, challenges, and future research directions. It is important to acknowledge
that the content of this article is constrained by the authors’ interests, expertise, and the
article’s length, resulting in the regrettable omission of many outstanding works.

2. First-Order Topological Quantum Phase

The quantum Hall system stands out as a pioneering example of a topologically
nontrivial condensed matter system, marking the inception of research on topological
quantum states. Building upon the quantum Hall effect, subsequent discoveries such as
the quantum spin Hall effect, quantum anomalous Hall effect, topological insulators, and
topological semimetals have unveiled a plethora of novel physical phenomena.

2.1. Quantum Hall Effect

In the 1980s, von Klitzing et al. [14] conducted a groundbreaking experiment where
they measured the boundary conductivity of two-dimensional electronic materials sub-
jected to an external magnetic field. Their discovery revealed that the conductivity σ was
an integer multiple of a fundamental quantity, e2/h, denoted as σ = nHe2/h. Moreover,
they observed a remarkable step-like change in conductance as the magnetic field strength
increased, demonstrating a precise quantization unaffected by parameters such as bound-
ary defects. This phenomenon, known as the “integer quantum Hall effect” [15], earned
von Klitzing the Nobel Prize in Physics in 1985.

To elucidate the underlying physical mechanism of the integer quantum Hall effect,
researchers have approached its explanation from various perspectives [16–19]. It is evident
that a profound connection exists between the integer quantum Hall effect and the topology.
Notably, Thouless et al. [17] provided a theoretical insight into the relationship between
conductivity and the bulk state of the system. They derived a mathematical formula for
calculating conductivity:

σH = nH
e2

h
, nH =

1
2π ∑

i

x

FBZ

dk2
x

i(
∂ui(k, r)

∂k1

∂ui(k, r)
∂k2

− ∂ui(k, r)
∂k1

∂ui(k, r)
∂k2

)dr2, (1)

where the index i represents the band index, ui(k, r) represents the Bloch state at wave vector
k for the i-th energy band, and ui(k, r) denotes the complex conjugate of the Bloch state.
The index i spans all energy bands below the Fermi energy level. It has been mathematically
proven that nH is an exact integer known as the TKNN number [17], serving as a topological
invariant characterizing the quantum Hall effect. Equation (1) is closely associated with
the first Chern class in topology [20], introduced by Shiing-Shen Chern. Consequently, the
TKNN numbers are often referred to as Chern numbers [19]. An insulator with a Chern
number of zero is classified as a trivial insulator, while a non-zero Chern number designates
a Chern insulator. The integral term in Equation (1) corresponds to the Berry curvature, a
quantity that describes the intrinsic property of Bloch states within the first Brillouin zone.

It is important to note that the aforementioned topological numbers solely rely on
the properties of the bulk states, while the quantum Hall effect manifests as a boundary
characteristic of a material. This unique feature is a defining aspect of topological materials,
where the bulk properties dictate the conductive behavior at the boundary—a phenomenon
known as the bulk-edge correspondence [2,3]. At the interface between two insulators
with different Chern numbers, topological boundary states emerge and their number is
equal to the difference between the two Chern numbers (Figure 1a). These boundary states
enable the unimpeded propagation of electronic waves without interference from defects or
impurities. Consequently, a dispersion curve appears within the band gap (Figure 1b). This
topological property can be understood in terms of the breaking of time reversal symmetry
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by the magnetic field. Electrons can only transport in a single direction and are immune to
backward scattering, even in the presence of defects or impurities, and the direction of the
topological state reverses only when the direction of the magnetic field is reversed.

Symmetry 2023, 15, 1651 3 of 31 
 

 

with different Chern numbers, topological boundary states emerge and their number is 
equal to the difference between the two Chern numbers (Figure 1a). These boundary states 
enable the unimpeded propagation of electronic waves without interference from defects 
or impurities. Consequently, a dispersion curve appears within the band gap (Figure 1b). 
This topological property can be understood in terms of the breaking of time reversal 
symmetry by the magnetic field. Electrons can only transport in a single direction and are 
immune to backward scattering, even in the presence of defects or impurities, and the 
direction of the topological state reverses only when the direction of the magnetic field is 
reversed. 

 
 

(a) (b) 

Figure 1. The integer quantum Hall edge state in two-dimensional electronic systems under a strong 
magnetic field. (a) Spatial image. (b) Energy band image. 

2.2. Quantum Spin Hall Effect 
The quantum Hall effect is a result of the presence of topologically protected bound-

ary states under an external magnetic field. However, an intriguing question arises: do 
these non-dissipative boundary states also exist in the absence of an external magnetic 
field? In 1988, Haldane made a significant breakthrough by recognizing that the key to 
realizing the quantum Hall effect lies in the breaking of time reversal symmetry. He de-
veloped a tight-binding model based on a two-dimensional hexagonal lattice, where each 
unit cell features a properly positioned magnetic flux [18,21]. Through this model, he de-
rived the corresponding energy band and wave function, leading to the prediction that 
the quantum Hall conductivity can also be obtained in the absence of a magnetic field. 
This phenomenon is known as the quantum anomalous Hall effect and is associated with 
a time-reversal-symmetry breaking topological insulator, also known as the Chern insu-
lator [18,21]. 

Subsequently, the theoretical conjecture of the quantum Hall effect was further ex-
tended to systems with time reversal invariance, wherein the presence of both clockwise 
and anticlockwise boundary states is expected. Notably, these systems require the inclu-
sion of heavy elements with a significant spin-orbit interaction. The spin-orbit coupling 
(SOC) plays a crucial role by linking the current direction of the boundary state to the spin 
direction of the electron. In other words, the spin orientation and orbital motion are 
locked, giving rise to the phenomenon known as the quantum spin Hall effect. 

In a two-dimensional insulator with strong SOC, the SOC acts as an effective spin-
dependent magnetic field, giving rise to stable conductive edge states at the material’s 
boundary. Notably, these edge states exhibit a spin-dependent behavior where spin-up 
electrons travel in one direction while spin-down electrons travel in the opposite direction. 
This spin-dependent motion leads to the formation of two dispersion curves within the 

Figure 1. The integer quantum Hall edge state in two-dimensional electronic systems under a strong
magnetic field. (a) Spatial image. (b) Energy band image.

2.2. Quantum Spin Hall Effect

The quantum Hall effect is a result of the presence of topologically protected boundary
states under an external magnetic field. However, an intriguing question arises: do these
non-dissipative boundary states also exist in the absence of an external magnetic field? In
1988, Haldane made a significant breakthrough by recognizing that the key to realizing
the quantum Hall effect lies in the breaking of time reversal symmetry. He developed a
tight-binding model based on a two-dimensional hexagonal lattice, where each unit cell
features a properly positioned magnetic flux [18,21]. Through this model, he derived the
corresponding energy band and wave function, leading to the prediction that the quantum
Hall conductivity can also be obtained in the absence of a magnetic field. This phenomenon
is known as the quantum anomalous Hall effect and is associated with a time-reversal-
symmetry breaking topological insulator, also known as the Chern insulator [18,21].

Subsequently, the theoretical conjecture of the quantum Hall effect was further ex-
tended to systems with time reversal invariance, wherein the presence of both clockwise
and anticlockwise boundary states is expected. Notably, these systems require the inclu-
sion of heavy elements with a significant spin-orbit interaction. The spin-orbit coupling
(SOC) plays a crucial role by linking the current direction of the boundary state to the spin
direction of the electron. In other words, the spin orientation and orbital motion are locked,
giving rise to the phenomenon known as the quantum spin Hall effect.

In a two-dimensional insulator with strong SOC, the SOC acts as an effective spin-
dependent magnetic field, giving rise to stable conductive edge states at the material’s
boundary. Notably, these edge states exhibit a spin-dependent behavior where spin-up
electrons travel in one direction while spin-down electrons travel in the opposite direction.
This spin-dependent motion leads to the formation of two dispersion curves within the
band gap, as depicted in Figure 2. Consequently, there is a net spin transport occurring in
the forward and backward directions along the upper and lower boundaries, respectively,
equivalent to segregating electrons in the quantum Hall state based on their spins. This
remarkable behavior is a characteristic of the quantum spin Hall effect. As long as the time
reversal invariance of the system remains unaltered by the absence of a magnetic field or
magnetic impurity scatterings, the influence of SOC will continue to dominate the behavior
of the topological edge states.
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Figure 2. The quantum spin Hall edge states in two-dimensional electronic systems. (a) Spatial image.
(b) Energy band image.

A notable example in this context is the extension of the Haldane model to realistic
materials. Kane and Mele [22] employed the tight-binding Hamiltonian for the hexagonal
lattice to investigate the electronic properties of graphene:

H = −t ∑
<ij>σ

c+iσcjσ + iλSO ∑
<<ij>>σσ

c+iσνijsσσ·ücjσ + iλR ∑
<ij>σσ′

c+iσ(sσσ′ × dij)·ücjσ′ + λν∑
iσ

ξic+iσciσ, (2)

where c+iσ and cjσ are the creation and annihilation operators acting on lattice sites i and j,
respectively. The terms <ij> and <<ij>> represent the summation over nearest neighbors
and next nearest neighbors, respectively. The first term accounts for the overlapping
of nearest neighbors with an overlapping integral represented by t. The second term
incorporates the intrinsic SOC with a strength of λSO. The third term introduces Rashba
SOC, characterized by a strength of λR, which breaks the mirror symmetry about the
z-axis. The fourth term introduces a staggered sublattice potential that breaks the twofold
rotational symmetry within the plane. The strength of the potential on the A (B) sublattice
is denoted by λν, with ξi = +1(−1) representing the onsite energy difference of the A (B)
sublattice. Moreover, νij = (2/

√
3)(dil × dl j)z = ±1 and dij represents the lattice vector

pointing from lattice site j to i, and s is the spin Pauli operator. σ and σ’ represent the spin
index, and σ = −σ. This is the Kane-Mele model capturing the quantum phase transition
between a quantum spin Hall insulator (a first-order topological insulator) and an ordinary
insulator in graphene.

Furthermore, theoretical analyses revealed that the presence of SOC in graphene
induced a small gap in the energy spectrum, resulting in an insulating bulk state and spin-
dependent conductive states at the material’s boundary [22]. Figure 3a displays the energy
spectrum of the quantum spin Hall phase observed in zigzag-type graphene nanoribbons,
whereas Figure 3b represents the energy spectrum of the trivial phase.
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In the quantum spin Hall effect, the edge states with spin-up and spin-down exhibit
reversed currents due to time reversal symmetry. As a result, there is no net charge flow,
resulting in a Hall conductance of zero. Consequently, the integration of Berry curvature
over the Brillouin zone yields a value of zero, making it impossible to characterize the
topological properties using the first Chern number. However, upon closer inspection of
the two spin subsystems individually, their corresponding Chern numbers are found to be
(1, −1), indicating a spin Chern number of 1. Building on this analysis, Kane and Mele [22]
introduced a novel Z2 topological index to describe this spin edge state, distinguishing
it from trivial insulating states. Therefore, all two-dimensional insulators that preserve
time reversal symmetry can be categorized into two classes based on their Z2 index: trivial
insulators with Z2 = 0 and topological insulators with Z2 = 1.

In order to determine the topological index Z2, Kane and Mele [22] introduced a
matrix, denoted as m(k), with matrix elements that are given by the expression:

mij =
〈
ui(k)

∣∣T∣∣uj(k)
〉
, (3)

where
∣∣uj(k)

〉
is the periodic part of the Bloch wave, and i and j range from 1 to N,

representing the occupied energy band number. T = iσyK represents the time reversal
operator, in which σy is the Pauli matrix and K denotes the complex conjugate. It can be
readily shown that mT(k) = −m(k) and m(k) is an antisymmetric matrix. In the case of an
antisymmetric matrix, we can compute its Pfaffian (Pf) [22]:

P(k) = Pf
[〈

ui(k)
∣∣T∣∣uj(k)

〉]
. (4)

On the one hand, if the zeros of P(k) within the Brillouin zone are discrete, the
topological index Z2 is determined by the parity of the number of zeros in half of the
Brillouin zone, denoted as B+. On the other hand, if the zeros of P(k) are continuous, Z2 is
determined by the parity of half the number of sign changes of P(k) along the boundary of
B+. These two cases can be expressed in a unified manner as follows:

Z2 =
1

2πi

∮
∂B+

dk·∇k log[P(k + iδ)]mod2. (5)

Kane and Mele’s theoretical research brought significant innovation to the field. How-
ever, the practical realization of the quantum spin Hall effect faced challenges due to the
weak SOC in carbon, resulting in a small band gap that is susceptible to thermal fluctua-
tions. To overcome this obstacle, Bernevig et al. devised a groundbreaking approach to
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investigating topological insulators and the quantum spin Hall effect [23]. They identified
HgTe as a material with strong SOC and proposed a semiconductor quantum well struc-
ture consisting of a thin layer of HgTe sandwiched between layers of CdTe. Theoretical
predictions demonstrated that when the thickness of the HgTe layer exceeds a critical value,
a robust quantum spin Hall effect emerges in this two-dimensional system. Subsequently,
this effect was experimentally observed in HgTe quantum wells [24]. Notably, the presence
of edge states offers a direct means to distinguish a quantum spin Hall insulator from a
trivial insulator, as these states manifest as two one-dimensional conducting channels, each
contributing a quantized conductivity of e2/h.

By the way, it is worth noting that the stability of quantum spin Hall insulators relies
on the presence of time reversal symmetry. However, in real materials, this symmetry can
be easily disrupted by perturbations, which raises concerns about the stability of quantum
spin Hall states in real-world environments.

2.3. Quantum Anomalous Hall Effect

The discovery of the quantum spin Hall effect has significantly advanced the explo-
ration of the quantum anomalous Hall effect. By introducing ferromagnetism and breaking
the time reversal symmetry, one spin channel in the quantum spin Hall system is sup-
pressed, thereby giving rise to the quantum anomalous Hall effect, as depicted in Figure 4.
The quantum anomalous Hall effect offers an alternative avenue to harness the principles
of the quantum Hall effect in the absence of an external magnetic field.
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The initial breakthrough in the realization of the quantum anomalous Hall effect came
from first-principles calculations, which suggested that by thinning and magnetically dop-
ing the three-dimensional topological insulator Bi2Se3, it could be possible to achieve this
phenomenon [25]. Given the experimental availability of Bi2Se3 materials, the introduction
of dopants such as Cr or Fe ions in the Bi2Se3 thin films was considered. Through the
ferromagnetic exchange mechanism between these dopants, the thin films could attain
a stable ferromagnetic insulating state with well-defined band gaps and quantized edge
states. This makes the doped Bi2Se3 system the most promising candidate for realizing the
quantum anomalous Hall effect.

Although theoretical predictions suggest the possibility of material realization, prac-
tical implementation of the quantum anomalous Hall effect faces challenges due to the
presence of electron impurities caused by Se vacancy defects in Bi2Se3. These impurities
prevent the strict requirements for achieving the quantum anomalous Hall effect from being
met. After years of hard working, Xue’s group observed the quantum anomalous Hall



Symmetry 2023, 15, 1651 7 of 31

effect experimentally for the first time without the need for an external magnetic field in the
magnetically doped thin film of Cr0.15(Bi0.1Sb0.9)1.85Te3 [26]. The Hall conductance exhibits
quantization in the region where the longitudinal conductance is zero, as illustrated in
Figure 5.
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The quantum anomalous Hall effect, quantum Hall effect, and quantum spin Hall
effect collectively form a comprehensive trio known as the quantum Hall family [27].
In these three quantized Hall effects, electrons exhibit non-dissipative motion along the
material’s boundary, while the interior remains insulating. However, there are distinct
differences among them. In the quantum Hall effect, electrons of different spins move
in a single direction. In the quantum spin Hall effect, electrons of different spins move
in opposite directions. In the quantum anomalous Hall effect, only electrons with a spin
opposite to the bulk magnetic moment move in a specific direction. The locking mechanism
between the spin and the moving direction, as well as the number of edge channels is
intrinsic to the material itself.

In the quantum anomalous Hall insulator, the interplay between spontaneous magnetic
moment and SOC gives rise to a topologically nontrivial electronic structure, resulting
in the emergence of the quantum Hall effect in the absence of an external magnetic field.
This unique two-dimensional insulator, also referred to as a Chen insulator, distinguishes
itself from ordinary insulators and topological insulators. Its non-zero topological index is
determined by the distribution of the Berry curvature of the energy bands in the Brillouin
zone [28], similar to the quantum Hall insulator. Additionally, due to the involvement of
only one spin channel in conductivity, the non-dissipative conductivity of the quantum
anomalous Hall system is less prone to interference compared to the quantum spin Hall
system. This characteristic opens up potential applications in low-loss electronic and
spintronic devices.

2.4. Three-Dimensional Topological Insulator

Starting from the two-dimensional quantum spin Hall insulator, researchers have
explored the generalization of this concept to three-dimensional topological insulators with
conductive surface states. The theoretical predictions have been successfully confirmed in
practical experiments [29–31]. The surface states of three-dimensional topological insulators
exhibit similar characteristics to the Dirac electronic structures observed in graphene,
displaying a relativistic linear energy-momentum relationship [29–31]. However, unlike
graphene, three-dimensional topological insulators possess only one Dirac cone without
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spin degeneracy. To achieve a three-dimensional topological insulator, a strong SOC is
required to significantly influence the electronic structure. Therefore, semiconductors
containing heavy elements and small band gaps are promising candidates, as the SOC
effect is prominent in heavy elements. It is crucial for the band gap to be smaller than the
energy scale of SOC to ensure that the transition to a topological insulator occurs.

The first discovered three-dimensional topological insulator is the BixSb1−x alloy [29–31].
Subsequently, the Bi2Se3 family, including Bi2Te3 and Sb2Te3, with space group D5

3d (R3m)
was also discovered [32–35]. Compared to the BixSb1−x alloy, the Bi2Se3 samples [32,33]
are relatively easier to prepare and exhibit topological insulator behavior even at high
temperatures, with a band gap larger than 0.1 eV. Notably, the band gap of Bi2Se3 is
approximately 0.3 eV (equivalent to 3600 K), which greatly exceeds the room temperature
energy scale, making it a potential candidate for low-loss spintronic devices at room
temperature. First-principles calculations [36] have revealed that the introduction of SOC
results in a band inversion at the Γ point, predicting the topological insulator properties
of Bi2Se3, Bi2Te3, and Sb2Te3. However, Sb2Se3 is considered a trivial insulator due to the
weak SOC provided by Sb atoms.

Here, the presence of strong SOC once again plays an important role in the correlation
of all the spins of electrons. As illustrated in Figure 6a, at the Fermi level there is only
a single spin state along each momentum on the surface, and the spin direction rotates
as the momentum moves around the Fermi plane. When disorders or impurities are
introduced onto the surface, scattering can occur among the surface states. However, the
remarkable feature of topological insulators is that the bulk topological property ensures the
persistence of the metallic surface states even in the presence of scattering. In other words,
the existence of metallic surface states and their robustness to disorder are fundamental
characteristics of three-dimensional topological insulators. Experimental evidence of the
Dirac cone for the (111) surface state of Bi2Se3 is shown in Figure 6b. It is worth noting that
the surfaces of three-dimensional topological insulators do not exhibit complete resistance
to backscattering, unlike their two-dimensional counterparts. Even in the absence of
magnetic impurities, electrons with the same helical chirality in edge states can still undergo
scattering. However, their topological nature guarantees that the metallic behavior does
not easily disappear in these systems.

According to the energy band theory of solids, materials can be classified into in-
sulators (including semiconductors) and metals based on their conductivity properties.
However, categorization can also be achieved based on the topology of electronic states.
Topological insulators, in particular, represent a novel quantum state of matter that is
fundamentally distinct from ordinary insulators and metals. In a topological insulator, the
bulk exhibits an insulating state with an energy gap, while the surface possesses metallic
states without a gap. Unlike typical surface states that arise from unsaturated bonds or
surface reconstructions, these metallic surface states are not determined by the specific
surface structure but rather by the unique topological characteristics of the bulk wave
functions. Importantly, these conductive surface states remain stable based on the premise
that certain symmetries (such as time reversal symmetry) are present, and they are resistant
to the effects of impurities and disorders. Remarkably, electrons with different spins in a
topological insulator move in opposite directions, offering the potential for transmitting
information through spin rather than charge.

The three-dimensional strong topological insulator materials Bi2Se3, Bi2Te3, and Sb2Te3
are highly desirable for research and experimental investigations due to their ease of growth
and handling. These materials serve as ideal platforms for studying and verifying various
properties of surface states, including ideal transport without backscattering [37], weak
anti-localization effect [38], and more. Furthermore, magnetically doped films of these
materials have been utilized to experimentally demonstrate the quantum anomalous Hall
effect [39].
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2.5. Topological Semimetal

A topological semimetal is a unique class of material characterized by topologically
protected band-crossings near the Fermi level. These band-crossings can occur in different
dimensions (point, line, plane) and exhibit various degeneracies (double, quadruple, etc.),
resulting in the classification of different types of topological semimetals. Examples include
Dirac semimetals [40,41], Weyl semimetals [42–45], double Dirac semimetals [46], nodal line
semimetals [47–51], and semimetals with multiple degenerate points [52,53]. Importantly,
these topological semimetals exhibit a rich variety of low-energy quasi-particle excitations,
providing a platform for studying both solid-state quasi-particles and elemental particles
in high-energy physics [53]. Due to their unique bulk and surface properties, topological
semimetals display intriguing quantum transport phenomena, such as high mobility and
giant magnetoresistance in Dirac semimetals [54,55], negative magnetic resistance and chiral
anomalies in Weyl semimetals [56,57]. Furthermore, topological semimetals hold potential
applications in diverse fields including chemical catalysis [58,59], quantum computing [60],
and spintronics [61].

2.5.1. Dirac Semimetal

In 2004, Novoselov et al. achieved a significant breakthrough by successfully obtaining
monolayer graphene through mechanical exfoliation [62]. Graphene, as a prominent
example of a Dirac semimetal, exhibits Dirac fermions at the K and K’ points in its Brillouin
zone, leading to the observation of the quantum Hall effect in experimental studies [63].
More recently, graphene has regained attention due to its exceptional physical properties,
including superlattice structures and superconductivity in magic angle graphene [64,65].
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Na3Bi is a notable example of a three-dimensional topological Dirac semimetal, ini-
tially predicted by theory [41] and subsequently confirmed by experimental studies [66–69].
It possesses time reversal and threefold rotational symmetry, with two Dirac points along
the Γ–A direction. Experimental observations, using techniques such as ARPES [66,67],
have revealed the presence of Dirac cones and Fermi arcs connecting the bulk Dirac points,
as depicted in Figure 7. Furthermore, transport measurements have demonstrated intrigu-
ing phenomena, including negative magnetoresistance attributed to chiral anomalies [68]
and quantum oscillation [69]. However, Na3Bi’s instability and sensitivity to air have
posed challenges for further investigations. Another prominent three-dimensional Dirac
semimetal, Cd3As2 [70], is protected by time reversal and fourfold rotational symmetry,
with Dirac points located along the Γ–A direction. This has been confirmed by ARPES
experiments [71–73]. In addition, other intriguing phenomena have also been observed
in Cd3As2, such as quantum oscillation [74] and negative magnetoresistance arising from
chiral anomalies [75,76]. Notably, in 2017, the observation of a three-dimensional quantum
Hall effect in Cd3As2 nanosheets [77,78] provided a significant breakthrough, expanding
the study of the quantum Hall effect beyond two-dimensional systems.
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from [67]. Copyright 2015 American Association for the Advancement of Science.

2.5.2. Weyl Semimetal

When either time reversal or spatial inversion symmetry is broken, Dirac semimetals
undergo a transition to Weyl semimetals characterized by twofold-degenerate crossings.
A key feature of Weyl semimetals is the existence of pairs of chiral fermions, which can
be viewed as magnetic monopoles in momentum space. The Weyl fermions with positive
and negative chirality, corresponding to Chern numbers of ±1, represent the “source” and
“leakage” of magnetic monopoles, respectively. Weyl semimetals can be further classified
into two categories: the first kind, which obeys Lorentz invariance and exhibits conical
Dirac cones near the Fermi energy resembling an “upright” hourglass, exemplified by ma-
terials like the TaAs family [43,44,56,57,79–86]; and the second kind, which breaks Lorentz
invariance and exhibits tilted Dirac cones, as observed in materials such as WTe2 [87],
MoTe2 [88–92], MoP2 [93], and TaIrTe4 [94]. Fermi arcs and chiral anomalies are considered
essential characteristics of Weyl semimetals, and their existence can be verified through
ARPES and transport experiments.

TaAs family materials represent the first experimentally confirmed Weyl semimet-
als [44,80–86]. These materials exhibit twelve pairs of opposite chiral fermions in momen-
tum space and their (001) surfaces have been observed to possess linear dispersion and
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Fermi arcs using ARPES techniques [44,80–86], as depicted in Figure 8. Additionally, the
transport measurements have revealed the presence of negative magnetoresistance caused
by chiral anomalies [56,57,87]. WTe2, on the other hand, has garnered significant atten-
tion as the first predicted type-II Weyl semimetal. ARPES experiments have successfully
captured the Fermi arc in WTe2 [95], while transport studies have demonstrated unsat-
urated giant magnetoresistance and anisotropic negative magnetoresistance effects [96].
Subsequent experiments have further unveiled intriguing phenomena, including quantum
oscillation [97] and the emergence of superconducting states under high pressure [98].
These remarkable characteristics establish WTe2 as an excellent platform for exploring
diverse quantum phenomena.
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2.5.3. Nodal Line Semimetal

In 2011, Burkov et al. [99] introduced the concept of nodal line semimetals, emphasiz-
ing the additional protection provided by crystal symmetry. Unlike independent points in
reciprocal space, band-crossings in nodal line semimetals manifest as continuous lines or
rings on the Fermi surface. These crossings can take the form of Dirac points or Weyl points,
thereby classifying nodal line semimetals into Dirac nodal line semimetals (e.g., ZrSiS
family [100–104]) or Weyl nodal line semimetals (e.g., PbTaSe2 [105]). Notably, nodal line
semimetals exhibit distinctive nontrivial topological surface states known as drumhead-
type states, contrasting the Fermi arc surface states observed in Dirac and Weyl semimetals.
Furthermore, nodal line semimetals serve as a bridge for the transformation between dif-
ferent topological states. Figure 9 illustrates the relationship between the symmetries and
electronic structures of different topological states. By introducing SOC and breaking crys-
tal symmetries, various topological semimetals and topological insulators can be realized
based on a spinless Dirac nodal line semimetal [106]. For instance, a spinless Dirac nodal
line semimetal can be transformed into a Dirac semimetal by combining time reversal,
inversion symmetry, and n-fold rotational symmetry. However, it is important to note that
the realization of Dirac semimetals and other topological states is not limited to the method
shown in Figure 9.
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3. Higher-Order Topological Quantum Phase

The discovery of the quantum Hall insulator marked the beginning of the quest for
topologically nontrivial phases in quantum materials. Since then, there has been a growing
desire to uncover additional quantum phases exhibiting intriguing topological behaviors
and associated fundamental physical properties. As the understanding of topological
states advanced, it was discovered that crystal spatial symmetry can provide protection to
topological states, giving rise to topological crystalline insulators.

3.1. Topological Crystalline Insulator

In 2009, Kitaev utilized K-theory to derive the topological classification of systems
with three internal symmetries: time reversal symmetry, particle-hole symmetry, and
chiral symmetry, across various dimensions [107]. Subsequently, Stone, Chiu, and other
researchers organized this classification into ten distinct topological classes [108,109], com-
monly known as the “ten-fold way”, as depicted in Figure 10. However, the topological
periodic table solely takes into account the influence of three non-spatial symmetries on the
system’s topological classification. In the context of condensed matter physics, this limited
consideration of non-spatial symmetries is inadequate for materials with different crystal
symmetries. Consequently, the assessment of how crystal space symmetry impacts the
system’s topological classification emerges as an urgent issue requiring attention.

In 2011, Fu introduced the concept of topological crystalline insulators [110]. In
systems without considering spin, he explored topological crystalline insulators protected
by fourfold rotational symmetry C4 and time reversal symmetry using a tight-binding
model. He introduced a new Z2 invariant based on the C4 rotational invariants and
discovered gapless topological surface states protected by nontrivial Z2 invariants on the
(001) surface while maintaining C4 symmetry. Further research on topological crystalline
insulators revealed that among 230 space groups, there generally exist seven topological
invariants related to crystal symmetries, including translation, mirror reflection, glide
reflection, rotation, screw rotation, spatial inversion, and S4 symmetry.
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SnTe is the first topological crystalline insulator material to be theoretically predicted
and experimentally verified as protected by mirror symmetry [111]. It exhibits mirror
symmetry in the (001) and (110) directions and features an even number of Dirac cone-
like surface states without energy gaps on high-symmetry crystal surfaces, such as {001},
{110}, and {111}. Additionally, members of the same family, such as PbTe and PbSe, can
also become topological crystalline insulators when subjected to band inversion under
the influence of pressure, strain, or doping. Subsequently, ARPES experiments quickly
confirmed the existence of Dirac cone-like surface states protected by mirror symmetry in
SnTe and Pb1−x;Snx;Se [112,113].

KHgSb is the second topological crystalline insulator material that was theoretically
predicted and experimentally verified to be protected by glide symmetry [114,115]. Its sur-
face exhibits an hourglass-shaped two-dimensional topological surface state protected by
non-symmorphic symmetry. For this three-dimensional system with both glide symmetry
and time reversal symmetry, a new Z2 topological invariant can be defined, in addition to
the time-reversal Z2 invariant, to characterize the system’s topology [116–118].

In 2019, Fang and Fu made a significant discovery of an anomalous type of topology
in two-dimensional systems possessing both time reversal symmetry and Cn rotational
symmetry (n = 2, 4, and 6). Typically, any two-dimensional lattice with time reversal
and Cn symmetries should feature 2n Dirac cones. However, in this peculiar state, only n
massless Dirac fermions are protected by time reversal and Cn [119]. Subsequently, it was
discovered that Ba3Cd2As4, Ba3Zn2As4, and Ba3Cd2Sb4 represent a class of topological
crystalline insulators exhibiting a C2 rotational anomaly. These compounds showcase two
surface Dirac cones on both upper and lower surfaces perpendicular to the rotation axis.
Additionally, (d−2)-dimensional helical hinge states exist along the edges parallel to the
rotation axis, connecting the anomalous Dirac cones on the upper and lower surfaces [120].

In recent years, physicists have advanced the theory of Topological Quantum Chem-
istry by exploring the connection between band representations and symmetry indica-
tors [121]. This theory enables more precise topological classifications of materials within
all 230 space groups, consequently leading to the discovery of a wide range of topological
crystalline insulators protected by diverse crystal symmetries [122,123].

Later, researchers discovered that for certain insulators a fully opened energy gap
appears on the (d−1)-dimensional surface, while (d−2)-dimensional topological boundary
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states exist. This type of topological insulator is called a higher-order topological insulator.
It is important to note that higher-order topological insulators also rely on the safeguarding
of crystal symmetry and can be seen as an extension of topological crystalline insulators. In
the following discussion, we will delve into these types of exotic higher-order topological
phases: higher-order topological insulators and higher-order topological semimetals.

3.2. Higher-Order Topological Insulator

Topological insulators are known for their remarkable feature of topologically protected
boundary states. According to the bulk-edge correspondence [5,124], an m-dimensional topo-
logical insulator exhibits (m−1)-dimensional gapless boundary states. However, in 2017, re-
searchers [125,126] introduced a new class of topological insulators that break the bulk-edge
correspondence, known as higher-order topological insulators. These unique insulators
possess lower-dimensional boundary states. Specifically, an m-dimensional n-order topo-
logical insulator features m−1, m−2, (m−n+1)-dimensional gapped boundary states, and
(m−n)-dimensional gapless boundary states. For instance, in a three-dimensional system, a
second-order topological insulator displays hinge states, while a third-order topological
insulator exhibits corner states. In a two-dimensional system, a second-order topological
insulator will showcase zero-dimensional corner states, as illustrated in Figure 11.
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Figure 11. A schematic diagram of the boundary modes of topological matter.

To date, the existence of higher-order topological insulators has been experimen-
tally confirmed in various systems, including mechanical systems [127], microwave sys-
tems [128], electrical circuits [129], acoustic systems [130,131], photonic systems [132], and
elastic systems [133]. In the following sections, we will introduce three notable models of
higher-order topological insulators.

3.2.1. Quantized Quadrupole Topological Insulator

In 2017, Benalcazar, Bernevig, and Hughes introduced the concept of the quan-
tum multipole moment insulator [134,135]. In classical physics, the primitive dipole,
quadrupole, and octupole moments of a continuum volume charge density ρ(r) are defined
as pi =

∫
d3rρ(r)ri, qij =

∫
d3rρ(r)rirj and oijk =

∫
d3rρ(r)rirjrk, respectively [136]. In the

modern theory of polarization in crystals, the dipole moment pi corresponds to the Berry
phase of the bulk electronic states:

pi =
e

2π

∫
BZ

Tr[A], (6)
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where BZ indicates the Brillouin zone and the Berry connection A is characterized by
components [Ai(k)]

mn = −i
〈
um

k

∣∣∂ki

∣∣un
k
〉
, where

∣∣un
k
〉

represents the Bloch function of band
n, and the index n is limited to the occupied energy bands. The dipole moment pi is
essentially associated with the presence of surface charge. Benalcazar et al. [134,135]
derived the electromagnetic properties of a two-dimensional insulator with a square shape
and a three-dimensional insulator with a cubic shape, having only a nonvanishing qij or
oijk as:

pedgeα
j = nα

i qij, Qcornerα,β = nα
i nβ

j qij

q f aceα
jk = nα

i oijk

phingeα,β
k = nα

i nβ
j oijk

Qcornerα,β,γ = nα
i nβ

j nγ
k oijk

, (7)

respectively, where repeated indices are summed over. Here, pedgeα
j represents the edge

tangential polarizations per unit length on the square, phingeα,β
j represents the hinge tan-

gential polarizations per unit length on the cube, q f aceα
jk represents the surface quadrupoles

per unit area of the cube, and Qcornerα,β and Qcornerα,β,γ are the charges localized on the
corners of the square and cube. The Greek letters α, β, λ = ±x,±y,±z label the surfaces
of the square/cube, with outward pointing unit normal vectors nα

i = sαδ
|α|
i where the

sign sα=± = ±1 encodes the direction. These properties are represented pictorially in
Figure 12 [134].
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However, it is important to note that the values of these moments are not arbitrary,
but rather constrained to specific quantized values. Crystal symmetries impose restrictions
on these moments [135], requiring that a moment that is odd under a particular symmetry
either vanishes or takes on a nontrivial quantized value permitted by the lattice structure.
For instance, in a two-band inversion-symmetric insulator at half-filling where there is
only one electron per unit cell, the electron center of charge must either coincide with the
atomic center (pi = 0) or be positioned halfway between centers (pi = ±e/2). Any other
position of the electron would violate the inversion symmetry, as depicted in Figure 13. As
a consequence, the correlation between the multipole moments in Equation (7) leads to the
quantization of qij and oijk as well.
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Furthermore, it is important to consider that in two-dimensional topological insulators,
one-dimensional topological edge states emerge within the bulk energy gap due to the
reduction in dimensionality. From a physical perspective, these dimension-reduction-
induced topological edge states can be understood through an alternative approach. The
quantization of the bulk dipole moment, resulting from specific symmetries, leads to the
accumulation of additional charge on the edges, giving rise to the formation of topological
edge states [135]. Within this framework, all early stage two-dimensional topological
insulators are classified as first-order topological insulators. Expanding upon the theory of
dipole moments in crystalline insulators to encompass multipole moments, a new category
of insulators, known as quantized electric quadrupole (octupole) insulators or higher-order
topological insulators, has been defined. In these systems, all lower-order moments vanish,
but the quadrupole (octupole) moment exhibits a non-zero quantized value. Consequently,
for electric quadrupole and octupole insulators, there is no longer any additional charge
accumulation on the edges or surfaces.

In particular, the realization of multipole moment topological insulators can be
achieved by incorporating positive and negative couplings into a tight-binding model.
For instance, in the case of a two-dimensional quadrupole topological insulator, its tight-
binding Hamiltonian can be described as follows:

H(k) = [γ + λ cos kx]Γ4 + λ sin kxΓ3 + [γ + λ cos ky]Γ2 + λ sin kyΓ1, (8)

where {Γα} represents the direct product of the Pauli matrix σi and κi, satisfying Γi = −σ2κi
(i = 1, 2, 3) and Γ4 = −σ1κ0. The model is depicted in Figure 14a, where spinless electrons
on a square lattice possess π-phase fluxes in both the x and y directions. Figure 14b
illustrates the spectral function of γ/λ for an open boundary system, where the red flat band
corresponds to the presence of four degenerate corner states, as shown in the right panel.

Subsequently, several research teams have successfully realized quadrupole moment
higher-order topological insulators in various experimental systems. These include mi-
crowave circuits [128], phononic systems [129], and photonic systems [137], among others.
For instance, in the case of photonic systems, Mittal et al. demonstrated the existence of
a quantized quadrupole topological phase on the silicon photon platform, which exhib-
ited zero-dimensional corner states [137]. In their experiment, depicted in Figure 15a, a
two-dimensional lattice model composed of nano-photonic silicon ring resonators was
used. The unit cell consisted of four ring resonators interconnected by resonators (shown
in red and green). By adjusting the coupling strength and symbols via the manipulation of
the band gap sizes of the lattice resonant ring and connecting resonant ring, a quantized
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bulk quadrupole moment was achieved, resulting in quantized dipole moments along
the edge and quantized charges at the corners. When the coupling strength between unit
cells exceeded that within the unit cells, the system exhibited nontrivial polarization and
supported localized corner states within the band gap, as depicted in Figure 15b. Con-
versely, when the coupling strength was reversed, the system transitioned into a trivial
insulator. Notably, these corner states were found to be more robust compared to those
observed in topological insulators with zero quadrupole moment, as they exhibited greater
resilience to disorder and avoided coupling into the bulk, as shown in Figure 15c. It is
worth mentioning that other systems, such as gyromagnetic materials [138] and dielectric
structures [139], also hold potential for realizing quadrupole insulators.
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y directions and the electron charge density distribution in the nontrivial phase. Reprinted with
permission from [134]. Copyright 2019 Nature Publishing Group.
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3.2.2. Two-Dimensional Su–Schrieffer–Heeger (SSH) Model

The two-dimensional SSH model [140] provides another approach to realizing higher-
order topological insulators. In contrast to the previous quadrupole higher-order topologi-
cal insulator model that requires positive and negative couplings, the two-dimensional SSH
model is simpler in its construction. The emergence of corner states in this higher-order
SSH model can be attributed to dipole polarization, which describes the displacement of the
average position of the Wannier center relative to the unit cell center [130]. The nontrivial
two-dimensional SSH phase can be characterized by the two-dimensional Zak phase [141]
and the bulk polarization can be defined as follows [142]:

Pi =
1
S

∫
BZ

Ai(k)d2k,i = x, y. (9)

where S is the area of the first Brillouin zone and Ai(k) = i
〈
ψm(k)

∣∣∂ki

∣∣ψn(k)
〉

is the Berry
connection. The indices m and n signify the energy bands. Taking the photonic system
as an example, Xie et al. initially simulated the presence of local corner states and one-
dimensional boundary states in a two-dimensional square lattice [143]. Subsequently, two
separate research groups experimentally observed zero-dimensional corner states in the
microwave frequency band using near-field scanning techniques. These observations were
obtained in a square lattice consisting of dielectric cylinders [144,145]. By controlling the
coupling strength both inside and outside the unit cells through adjusting the distances
between the medium, the system exhibited a nontrivial phase with a polarization of (1/2,
1/2) when the inter-unit cell coupling strength exceeded the intra-unit cell coupling strength.
Conversely, the system transitioned into a trivial phase with a polarization of (0, 0) when
the inter-unit cell coupling strength was smaller.

In addition to square lattices, higher-order topological insulators can also be realized
in Kagome lattices [142,146]. Figure 16a illustrates a second-order topological insulator
configuration in a Kagome lattice [147]. When the inter-unit cell coupling exceeds the intra-
unit cell coupling, the bulk polarization becomes (1/3, 1/3), indicating a displacement of the
Wannier center from the unit cell center and establishing a nontrivial system characterized
by edge states and corner states at the boundary. It is worth noting that in photonic
crystals, a new type of higher-order topological phase emerges when considering far-field
interactions between non-nearest-neighbor unit cells, which differs from the effects of tight-
binding interactions. Experimental measurements of the density of states reveal two types
of corner states, as shown in Figure 16b: one arising from bulk polarization (Figure 16c)
and the other resulting from far-field interactions (Figure 16d). Furthermore, El Hassan
et al. successfully demonstrated local corner states in the visible band using a Kagome
lattice constructed with coupled waveguides [148].

3.2.3. Three-Dimensional Higher-Order Topological Insulator

In 2017, Schindler et al. achieved a breakthrough in the field by introducing mass
terms that disrupt the original symmetry in first-order topological insulators, leading to the
discovery of a three-dimensional higher-order topological insulator [126]. The introduction
of these additional mass terms creates effective mass domain walls at the corners or edges
of the system, giving rise to the emergence of corner and hinge states [126].

The Hamiltonian of the original two-dimensional topological insulator is expressed as:

H(k) =

(
M + t∑

i
cos ki

)
τzσ0 + ∆1∑

i
sin kiτxσi, (10)

where i = x, y. By introducing an additional mass term, denoted as Hmass = ∆2
(
cos kx − cos ky

)
τyσ0, which breaks both time reversal symmetry (T) and fourfold rotational symmetry
(C4) while preserving the C4T symmetry, a higher-order topological insulator with chiral
one-dimensional gapless hinge states can be achieved. This is illustrated in Figure 17.
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Additionally, Langbehn et al. [149] proposed a three-dimensional second-order topological
insulator with broken time reversal symmetry.
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Figure 16. (a) Schematic diagram of the photonic crystal structure with a Kagome lattice. (b)
Experimentally measured density of states. (c) Type I corner state. (d) Type II corner state. Reprinted
with permission from [147]. Copyright 2020 Nature Publishing Group.
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materials such as bismuth [150], transition metal disulfides XTe2 (X = Mo, W) [151], and 
shaft insulators like Bi2-xSmxSe3 [152] and EuIn2As [153]. Additionally, two-dimensional 
materials like twisted bilayer graphene [154,155], graphdiyne [156–158], graphyne [159], 
monolayer FeSe [160], and covalent organic frameworks [161] have also been considered. 
Notably, in 2022, our research group made a significant discovery regarding the unique 
coexistence of topological electron and phonon behavior in graphdiyne [138]. 

Higher-order topological insulators offer a promising research platform for exploring 
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the field of photonics, the utilization of topological corner modes has shown promise in 
high-quality and low-threshold lasers [162,163], thereby enabling the development of 
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Figure 17. (a) Hinge states of the three-dimensional second-order topological insulator with broken
time reversal symmetry. The red and blue arrows indicate chiral hinge currents with inverse directions.
(b) The energy spectrum of the three-dimensional chiral higher-order topological insulator, where
red lines are the spectrum of hinge states. Reprinted with permission from [126]. Copyright 2018
American Association for the Advancement of Science.

So far, extensive calculations have identified a range of materials that are predicted
to exhibit the higher-order topological insulating phase. These include three-dimensional
materials such as bismuth [150], transition metal disulfides XTe2 (X = Mo, W) [151], and
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shaft insulators like Bi2−xSmxSe3 [152] and EuIn2As [153]. Additionally, two-dimensional
materials like twisted bilayer graphene [154,155], graphdiyne [156–158], graphyne [159],
monolayer FeSe [160], and covalent organic frameworks [161] have also been considered.
Notably, in 2022, our research group made a significant discovery regarding the unique
coexistence of topological electron and phonon behavior in graphdiyne [138].

Higher-order topological insulators offer a promising research platform for exploring
topologically protected local states with numerous potential applications. For instance,
in the field of photonics, the utilization of topological corner modes has shown promise
in high-quality and low-threshold lasers [162,163], thereby enabling the development
of compact laser devices. Additionally, the concept of surface wave photonic crystals
with wide band gaps [164] holds potential for advancements in integrated photonics.
Furthermore, in the realm of non-Hermitian systems, the coupling of cavities opens up
possibilities for realizing higher-order topological insulators that differ from those found in
condensed matter systems [165,166].

3.3. Higher-Order Topological Semimetal

Naturally, the concept of “higher-order” also applies to topological semimetals. In
contrast to early stage first-order topological semimetals, higher-order topological phases
exhibit lower-dimensional topological boundary states [142,167–171]. For instance, three-
dimensional higher-order topological semimetals can possess hinge Fermi arcs or zero-
dimensional corner states, while two-dimensional higher-order topological semimetals
may exhibit zero-dimensional corner states [167]. As an example, we consider a three-
dimensional higher-order semimetal called a quadrupole semimetal, formed by stacking
two-dimensional quantum quadrupole moment insulators. The bulk energy band of this
system features nodes, while its surface hosts one-dimensional gapless hinge Fermi arcs
that connect the projections of the bulk nodes, as illustrated in Figure 18a.
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The Hamiltonian of the three-dimensional quadrupole semimetal can be obtained by
parameterizing kz in Equation (8) [173]:

H(k) =
[
γx +

1
2 cos kz + cos kx

]
Γ4 + sin kxΓ3

+
[
γy +

1
2 cos kz + cos ky

]
Γ2 + sin kyΓ1

. (11)

The parameter γx,y represents the intra-unit cell coupling along the x and y directions.
In Figure 18b, the kz-dependent energy spectrum of the system with open boundaries in
both the x and y directions is shown. It reveals a fourfold-degenerate zero-energy flat
band that terminates at the nodes. This confirms the presence of hinge Fermi arc states
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connecting the projection of bulk Dirac points. Therefore, the system exhibits second-
order topologically nontrivial boundary states characteristic of a higher-order topological
semimetal.

In recent years, it has been discovered that some nodal line semimetals may also exhibit
higher-order topology [174–176]. In 2020, Wang et al. [176] proposed a novel second-order
nodal line semimetal phase with spacetime inversion symmetry (PT) protection. This phase
features a pair of nodal rings and is constructed by stacking two-dimensional second-order
Chern insulators with off-diagonal corner states along the kz direction. Unlike previously
known topological semimetal phases that possess protected states only at fixed-order
boundaries, this new topological phase exhibits topological states both at the surface
and at the hinge regions, as depicted in Figure 19. This unique behavior arises from the
bulk of the material being protected by two nontrivial topological charges, namely the
real Chern number υR (also called the second Stiefel-Whitney number [177,178]) and the
one-dimensional winding number ω. The definitions of these charges are provided as
follows.
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Firstly, the Z2-valued real Chern number υR is defined as a horizontal two-dimensional
plane parallel to the concerned nodal ring. It can be determined by extracting the parity
eigenvalues at time reversal invariant momentum points on this plane and then using the
following equation [179,180]:

(−1)υR = Πi(−1)[n
Γi
− /2], (12)

where [. . .] denotes the floor function and nΓi
− represents the number of occupied bands

with a negative parity eigenvalue at the time reversal invariant momentum point Γi. To
confirm the topological nature of a nodal ring, it is necessary to evaluate the real Chern
numbers for horizontal two-dimensional planes on both sides of the nodal ring. Physically,
if υR is nontrivial (υR = 1) for one plane and trivial (υR = 0) for another plane, it indicates
a switch in topology along kz, as depicted in Figure 19. This switch implies the presence
of nodal lines between the two planes. Moreover, within a specific kz region (−kR, kR)
bounded by two nodal rings, if each plane in the region exhibits a nontrivial υR = 1, i.e., a
two-dimensional real Chern insulator, they necessarily possess protected zero modes at a
pair of PT-connected corners. Collectively, the corner zero modes from all these nontrivial
planes form two hinge Fermi arcs within the three-dimensional system.
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Secondly, each nodal ring is associated with a Z2-valued topological invariant ω,
which corresponds to the quantized π Berry phase:

ω =
1
π

∮
C

TrA(k)·dk mod 2, (13)

where A represents the Berry connection for the occupied bands and C denotes a closed path
encircling the ring (as depicted by the blue cycle with an arrow in Figure 19). Physically,
a nontrivial ω (ω = 1) gives rise to a pair of drumhead surface bands confined within
the projected nodal rings. This is in contrast to early stage nodal line semimetals, which
typically exhibit a single drumhead surface band.

Overall, the two charges, υR and ω, give rise to distinct topological boundary modes
at different boundaries. The real Chern number υR manifests as a pair of hinge Fermi arcs
that connect the projected bulk nodal lines on PT-connected hinges, serving as a fingerprint
of the second-order topology. On the other hand, the topological charge ω guarantees the
existence of double drumhead surface bands.

In recent years, significant advancements have been made in the experimental realiza-
tion of higher-order nodal line semimetals. For instance, it has been proposed that materials
such as XTe2 (X = Mo, W) [151] and three-dimensional ABC-stacked graphene [157,174,177]
have the potential to exhibit higher-order nodal line semimetal behavior. However, the
experimental realization of higher-order Weyl or Dirac semimetals has, thus far, been
limited to acoustic and photonic crystals [168,170,171], with their realization in condensed
matter systems still remaining elusive.

The exploration of topological materials has expanded beyond first-order topological
states to higher-order topological states, leading to significant advancements in both theo-
retical understanding and experimental realization. However, the study of higher-order
semimetals is still in its early stages, and despite the numerous intriguing phenomena
proposed in theory, the discovery of suitable real materials remains limited and challenging.

4. Summary and Discussion

Our work provides a comprehensive overview of the research progress in topological
phases. In the introduction, we introduce the concept of topology in condensed matter
physics. In Section 2, we discuss various early stage first-order topological phases in
detail, starting with the quantum Hall insulator as a pioneering example, followed by
the quantum spin Hall insulator, quantum anomalous Hall insulator, and topological
semimetal. Moving on to Section 3, we provide an exhaustive overview of two intriguing
higher-order topological phases.

At present, the hotspot of research on higher-order topological insulators lies in the
exploration of new types of topological materials to enrich the family of higher-order
topological phases. However, progress in related experimental studies has been slow due
to several reasons. Firstly, a relatively limited number of materials have been predicted.
While two-dimensional higher-order topological electronic states have been confirmed
in certain models such as the square lattice [134,135], Kagome lattice, and honeycomb
lattice [130–133], these models have stringent requirements on materials, often limited to
a few carbon-based materials, while others are mostly artificial systems. Moreover, there
have been few reports on theoretical models related to three-dimensional higher-order
topological insulators. Secondly, the growth of electronic materials and the determination
of their topological properties still pose challenges in experimental settings. Lastly, current
research on higher-order topological insulators mainly focuses on electronic materials, with
a lack of exploration in the realm of phononic materials. These unfavorable factors impede
further progress in the fundamental theory and experimental investigation of higher-order
topological insulators.

Currently, there are only four proposed mechanisms in theory for the formation of
higher-order topological insulators in electronic systems. These mechanisms are as follows:
(1) the breathing lattice mechanism. This mechanism involves modifying hopping terms
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in high-symmetry lattices to induce a “shrinking and swelling” pattern. The reduction
in symmetry leads to the lifting of degeneracy of the Dirac bands, resulting in nontrivial
higher-order topological energy gaps [142,181]. However, this mechanism has mainly been
demonstrated experimentally in artificial acoustic, optical, and elastic systems. (2) The
double-band inversion mechanism. In this mechanism, two sets of bands with opposite
parities are inverted to induce higher-order topological energy gaps [182]. Experimen-
tal confirmation of this mechanism has been observed in only a few three-dimensional
electronic materials, such as Bi [150], Td-WTe2 [183], and Bi4Br4 [184]. (3) The in-plane
Zeeman field mechanism. By applying an in-plane magnetic field to a topological insulator,
time reversal or crystal symmetries are broken, inducing the helical Dirac boundary states
or surface states to open the higher-order topological energy gaps [153,185–188]. While
some magnetic higher-order topological insulators are expected to exhibit this mechanism,
experimental confirmation is still lacking. (4) The structure bending mechanism. This mech-
anism involves bending the planar structure of a two-dimensional topological crystalline
insulator to break crystal symmetry and induce the opening of higher-order topological
energy gaps. β-Sb monolayers [189] are proposed as materials where this mechanism can
be observed, but experimental verification is still needed. Additionally, the research on
the formation mechanisms of higher-order topological insulators in phononic systems is
still largely unexplored. Therefore, it is crucial to uncover more formation mechanisms of
higher-order topological insulators and identify additional material systems to accelerate
progress in experimental detection.

In recent years, there has been significant theoretical research on topological states,
focusing on the manipulation of electrons and phonons both domestically and interna-
tionally. Notable contributions include the following: (1) Noguchi et al. proposed the use
of van der Waals stacking to achieve a transition from a trivial phase to a higher-order
topological phase. Different stacking arrangements were shown to lead to different topo-
logical states in Bi4Br4 [184]. (2) Ezawa suggested that stacking two-dimensional weak
topological insulators with varying interlayer coupling strengths can realize both strong
and weak three-dimensional higher-order topological insulator phases [190]. (3) Hughes
et al. constructed a three-dimensional higher-order topological semimetal by stacking
two-dimensional quadrupole square lattices [172]. (4) Liu et al. proposed that applying
an electric field can break the mirror symmetry along the (001) crystal direction in SnTe
thin films, resulting in a gap in the boundary states [191]. (5) Chen et al. suggested that
applying in-plane strain can amplify the influence of twist angles on the phononic struc-
ture of twisted multilayer graphene, providing an effective means of manipulating the
phononic structure [192]. (6) Jiang et al. proposed that applying biaxial strain to monolayer
hexagonal boron nitride can effectively adjust the position of the topological phonon band
gap [193]. These theoretical studies demonstrate that factors such as stress, electric field,
and stacking can effectively control the electronic and phononic structures of topological
materials. Consequently, this opens up new avenues for further research on higher-order
topological phases. By exploring the possibilities of topological phase transitions through
the application of stress, external fields, interlayer coupling, and other external factors,
it becomes possible to manipulate the original electronic and phononic structures of the
systems.

In addition, while topological physics has been extensively studied in various elec-
tronic and phononic systems, the SOC mechanism that is well-known in electronic systems
to open first-order topological energy gaps is not applicable to phononic systems due to the
absence of SOC for phonons. As a result, there have been no reports of the coexistence of
topological electrons and phonons in the same material for a long time. However, a recent
breakthrough has been made by the author’s team, who demonstrated the coexistence of
higher-order topological electrons and higher-order topological phonons in graphdiyne
with a Kekulé lattice [158], providing the first evidence of higher-order topological phononic
states in real materials. This novel topological phase, which combines both electronic and
phononic degrees of freedom, offers a promising platform for investigating the interplay
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between higher-order topological electronic and phononic states. It is worth noting that
when localized higher-order topological electronic states and phononic states overlap in
space, strong electron-phonon coupling can occur. This coupling is of particular interest in
the context of Bardeen-Cooper-Schrieffer (BCS) superconductivity theory, as strong electron-
phonon coupling is a key factor in the emergence of superconductivity. Therefore, it is
conceivable that higher-order topological insulators exhibiting the coexistence of electronic
and phononic states may hold potential for higher-order topological superconductivity.
Nevertheless, due to the early stage of research in this field, our understanding of these
materials and their formation mechanisms remains limited.

Based on the above discussions, we believe that further investigations can be con-
ducted in the following areas:

(1) Studying the models of two-dimensional higher-order topological states and exploring
suitable material systems. This entails conducting in-depth theoretical analyses and
systematic explorations of the underlying physical mechanisms based on lattice
models. It is crucial to recognize that the topological properties of electronic and
phononic material systems are influenced by distinct factors. In the case of electronic
systems, these factors encompass the lattice structure, atomic orbital types, and SOC.
Whereas, for phononic systems, the relevant factors include the lattice structure and
atomic vibration modes.

(2) Investigating the control of two-dimensional higher-order topological states through
external manipulation. Building upon existing models and discovered real materials
for two-dimensional higher-order topological states, studies should be conducted of
the influence of various external factors (such as stress, electric field, magnetic field,
and stacking) on the electronic and phononic structures. Future works should also
study potential higher-order topological phase transitions, analyze the underlying
physical mechanisms, and derive applicable rules and guidelines.

(3) Exploring the novel category of higher-order topological phases that involve the
coexistence of electrons and phonons. Studies can utilize the breathing lattice mech-
anism to explore this new type of higher-order topological phase where electrons
and phonons coexist, as well as uncovering the underlying formation mechanism,
thereby establishing a platform for investigating the interplay between electronic and
phononic higher-order topological states. Additionally, studies should be conducted
of the potential for higher-order topological superconductivity within this context.
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