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Abstract: In this paper, we elaborate on the new understanding of the cosmological constant and
the gauge hierarchy problems in the context of string theory in its metastring formulation, based
on the concepts of modular spacetime and Born geometry. The interplay of phase space (and Born
geometry), the Bekenstein bound, the mixing between ultraviolet (UV) and infrared (IR) physics and
modular invariance in string theory is emphasized. This new viewpoint is fundamentally rooted in
quantum contextuality and not in statistical observer bias (anthropic principle). We also discuss the
extension of this point of view to the problem of masses of quarks and leptons and their respective
mixing matrices.

Keywords: string theory; cosmological constant; elementary particle masses

1. Introduction

As emphasized by Steven Weinberg, physics indeed strives on crisis [1], and the by
now proverbial 10120-size “cosmological constant problem” of Quantum Field Theory
(QFT) has been (together with the gauge hierarchy problem) such a vexing conundrum
for so long, that it prompted (then) novel and (more recently) very influential ideas, such
as the anthropic reasoning [2] and the string landscape [3]. Another vexing issue in
fundamental physics is the intricate pattern of fermion masses in the Standard Model [4]. In
this contribution to the special issue devoted to Steve Weinberg we would like to elaborate
on and extend the discussion of a new approach that offers a unified understanding to the
cosmological constant (“cc”) and the gauge hierarchy (Higgs mass) problems following
our recent work [5,6]. We would then like to extend this approach to some intriguing
observations regarding the problem of fermion masses [7]. (This article is based on the
recent talk given at the CERN conference on the exotic approaches to the hierarchy problems,
as well as the talk given at BASIC 2023 [7] and the lecture on the “Challenges of Quantum
Gravity” sponsored by the International Society for Quantum Gravity.)

The central issue of our article is the ultraviolet (UV)/infrared (IR) mixing (a feature
that goes beyond effective field theory (EFT)) and quantum contextuality (as opposed
to anthropic reasoning) in the vacuum energy problem. We also stress the role of phase-
space and modular polarization (endowed with Born geometry [8]—a kind of generalized
mirror symmetry [9]) and the Bekenstein [10], or holographic [11–13] bound, combined
with stringy modular invariance [14,15] and a stringy formula for the Higgs mass [16].
Furthermore, we emphasize the overall relevance of these concepts for addressing the
problem of masses and mixing matrices of quarks and leptons in the context of string the-
ory/quantum gravity connecting to the recent work on Bjorken [17,18]. In this last instance,
we make some tantalizing observations that call for more definitive future calculations.
Finally, we emphasize that these issues are all realized in the framework of string theory,
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a consistent theory of quantum gravity and Standard Model-like matter, justifying the title
of the present paper.

The remainder of this paper is organized as follows. Section 2 discusses various facets
of the cosmological constant (cc) problem, reviewing it first (Section 2.1) in point-particle
QFT, and then also in string theory. Section 2.2 then presents the recent resolution of this
problem [5] (see also [6]) combining the properties of a quantized phase space with the
Bekenstein (holographic) bound in a gravitational setting [11], followed by its realization
in QFT (Section 2.3), and also in string theory (Section 2.4). In Section 3, we discuss the
recently derived seesaw formula for the Higgs mass, and address the fermion mass and
mixing structure in Section 4: We introduce a cascade of analogous seesaw formulae also
for Standard Model fermions (Section 4.1), resulting in a realistic pattern of their masses
(Section 4.2) and mixing (Section 4.3). All these results should be understood as bounds on
the cosmological constant, the Higgs mass as well as the masses and mixing of quarks and
leptons. Our closing comments are collected in Section 5.

2. The Cosmological Constant
2.1. The Problem

We start our presentation with a discussion of the canonical calculations of the cosmo-
logical constant in quantum field theory and in string theory. In particular, we emphasize
the remarkable similarities (as well as crucial differences) between these two approaches.

2.1.1. Quantum Field Theory

Let us start with the QFT vacuum partition function (of a free scalar in D spacetime
dimensions, even though our discussion can be generalized for other fields)

Zvac =
∫

Dφ e−
∫ 1

2 φ(−∂2+m2)φ ∝
1√

det(−∂2 + m2)
, (1)

which we can rewrite as
Zvac = e−

1
2 Tr log(−∂2+m2). (2)

In momentum space, −∂2 = k2, and also

−1
2

log(k2 + m2) =
∫ dτ

2τ
e−(k

2+m2)τ/2, (3)

where the Schwinger parameter τ is a worldline affine parameter (world-line time) associ-
ated with a particle (quantum of the field φ). After taking the trace, we have

∫ dDk
(2π)D log(k2 + m2) =

∫ dD−1k
(2π)D−1

ωk
2

, (4)

since ∫ dτ

2τ

∫ dk0

2π
e−(k

2+m2)τ/2 =
ωk
2

, (5)

where ω2
k = k2 + m2 with ωk equivalent to k0 on-shell. Thus, the vacuum energy density in

D spacetime dimensions becomes

ρ0 =
∫ dD−1k

(2π)D−1
ωk
2
∼ ΛD, (6)

with ΛD the volume of energy–momentum space. This is a divergent expression that
leads to the cosmological constant problem; see also [19]. (Using Einstein’s equations the
cosmological constant in D = 4 dimensions is Λcc ∼ ρ0GN ∼ ρ0l2

P.) Notice that the vacuum
partition function is also

Zvac = 〈0|e−iHt|0〉 = e−iρ0VD , (7)
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where VD is the volume of D-dimensional spacetime, and ρ0 is the vacuum energy density.
Furthermore, Zvac = exp{ZS1} where ZS1 is the partition function on S1 in the world-line
formulation

ZS1 = VD

∫ dDk
(2π)D

∫ dτ

2τ
e−(k

2+m2) τ
2

def
=
∫ dτ

2τ
ZS1(τ). (8)

Thus, the vacuum energy density is given by (scaling as before)

ρ0 =
iZS1

VD
∼ ΛD. (9)

This is an important expression that we will use repeatedly in what follows.

2.1.2. String Theory

For the case of a bosonic string, instead of one particle we have an infinite tower of
particles with a stringy mass spectrum, as emphasized by Polchinski in [14,20]

m2 =
2
α′
(h + h̄− 2). (10)

Thus, summing over the physical string states (“phys. st.”) we obtain

∑
phys. st.

ZS1 = ∑
h,h̄

VD

∫ dr(2πr)−D/2

2r

∫ dθ

2π
ei(h−h̄)θe−

2
α′ (h+h̄−2) r

2 , (11)

where we have imposed the level matching h = h̄ (or δh,h̄), after integrating over k. By

defining τ = θ + i r
α′

def
= τ1 + iτ2, as usual, the partition function of a bosonic string on T2 is

ZT2 = VD

∫ dτdτ̄

2τ2
(4π2α′τ2)

−D/2 ∑
h

qh−1q̄h̄−1, (12)

where q def
= e2πiτ . This can be derived directly from the Polyakov path integral. Using

r def
= α′τ2, we may rewrite:

(4π2α′τ2)
−D/2 =

∫ dDk
(2π)D e−k2 r

2 . (13)

Thereby, just as in QFT,

ZT2
def
= VD

∫ dDk
(2π)D f (k2)

def
=
∫ dτdτ̄

2τ2
ZT2(τ) ∼ VD ΛD, (14a)

with

ΛD
def
=
∫ dDk

(2π)D and f (k2)
def
=
∫

F

d2τ

2τ2
e−k2α′τ2/2 ∑

h
qh−1q̄h̄−1, (14b)

where F is the fundamental domain. Note that f (k2) is dimensionless, so it does not
contribute to the scaling of ZT2 and the vacuum energy ρ0 ∼ ZT2 /VD. The only (crucial)
difference is that the QFT region of integration is

|τ1| < 1
2 , τ2 > 0, (15)

whereas modular invariance of string theory reduces this to

|τ1| < 1
2 , |τ| > 1. (16)
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Thereby, the cosmological constant becomes UV-finite in string theory, but is still
related to ρ0 ∼ ZT2 /VD ∼ ΛD, so that the “cosmological constant problem” persists in a
manner very similar to what we have already encountered for particles/quantum fields.
Note that supersymmetry (SuSy) does not help with this fundamental problem. It is well
known that unbroken SuSy implies flat/Minkowski or anti de Sitter (ΛD < 0) spacetime,
due to the cancellation of the bosonic and fermionic contributions, without changing the
offensive phase space term in the above expression for the vacuum energy. Broken SuSy
does allow for a positive cosmological constant, but the relationship ρ0 ∼ ΛD continues
to hold. In particular, SuSy (whether unbroken or broken) does not affect the crucial
spacetime and momentum space volumes which are the ultimate cause of the cosmological
constant problem.

2.2. Resolving the Problem

Given these insights regarding the vacuum energy and volumes of spacetime and
momentum space we now present a way to deal with the cosmological constant problem.
Following [5] (see also [6,21]) we return to ZS1 as given in (8), and for simplicity we set
m = 0 and with p denoting the momentum, even though our discussion is valid for m 6= 0.
(Also our discussion is valid for other, and not only scalar, fields, as well as the one-loop
string partition function ZT2 .) So

ZS1 = VD

∫ dτ

2τ

∫ dD p
(2π)D e−

p2τ
2 , (17)

where the spacetime volume is VD =
∫

dDq. This naturally leads to the phase space
expression

ZS1 =
∫ dτ

2τ
Z(τ), Z(τ) =

∫ dDq
(2π)D

∫
dD p e−

p2τ
2

def
= Tr e−

p2τ
2 , (18)

where Tr is now defined over the phase space, and we postpone the τ-integration until the
very last step.

2.2.1. Phase Space

In D = 4 we can regularize the above phase space expression as follows

Z(τ) =
4

∏
i=1

1
2π

∫ ∞

−∞
dqi

∫ ∞

−∞
dpi e−

p2
i τ

2 , (19)

which by discretizing phase space may be written as

Z(τ) =

λ ε

2π ∑
k,k̃∈Z

∫ 1

0
dx dx̃ e−

(k+x̃)2ε2τ
2

4

, (20)

where we have redefined p → ε x̃, q → λ x, with the two scales related by λ ε = h̄. (As
usual, we omit writing explicit factors of h̄. They are indicated here explicitly to emphasize
that ε and λ are a momentum- and length-scales, respectively.) While the expression (20) is
still divergent, restricting the sum to finite range leads to the modular regularization [22,23]:

Z(τ) =

(
λ ε

2π

Nq−1

∑
k=0

Np−1

∑
k̃=0

∫ 1

0
dx dx̃ e−

(k+x̃)2ε2τ
2

)4

. (21)

Here, Nq, Np count the number of unit cells in the spacetime and momentum space
dimensions, respectively. (From the point of view of modular polarization [24] this counts
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unit cells of vacua, rather than on-shell states or particles.) In turn, this expression prompts
the definitions:

l def
= Nqλ, and MΛ

def
= Npε, with N = (NpNq)

4 ∈ Z, (22)

so that l4 def
= V4 is the size (4-volume) of spacetime, M4

Λ is the size (4-volume) of energy–
momentum space. Thus,

l4M4
Λ = N h̄4, or M4

Λ =
N h̄4

l4 , (23)

but there is actually an upper bound on ρ0 ∼ M4
Λ ≤

N
l4 in D = 4 owing to the fact that

exp{−p2τ/2} ≤ 1 in (19). The same bound also holds in string theory, following our earlier
calculation of the partition function of the bosonic string on T2 in D = 4:

ρ0 ≤
N
l4 . (24)

This reasoning can be extended for quantum fields and effective potentials in QFT,
including the cosmological phase transitions (electroweak and QCD), without changing the
outcome for this bound on the vacuum energy, as we will explain in the following section.

2.2.2. Holography

Given the above positive cosmological constant, consider now the Bekenstein bound
in a four-dimensional space with a cosmological horizon, in other words, the fact that we
have a de Sitter spacetime. In static coordinates, de Sitter spacetime metric is

ds2
dS = −

(
1− r2

r2
CH

)
dt2 +

dr2(
1− r2

r2
CH

) + r2dω2
S2 , (25)

where l def
= rCH , the cosmological horizon, is the size of the observed spacetime. By

identifying the above microscopic counting of ground states with the gravitational entropy,
following the discussion in [5,21], the Bekenstein bound (Sgrav = l−2

P Area) then becomes [10]

N ≤ l2

l2
P

. (26)

Combining this bound with the bound (24) on ρ0 produces

ρ0 ≤
1

l2 l2
P

, (27)

which reveals a mixing of the UV (lP) and the IR (l) scales. This mixing in turn produces a
bound for the cosmological constant in D = 4 dimensions, Λcc = ρ0 l2

P:

Λcc ≤
1
l2 . (28)

The natural energy scale, εcc, associated with the vacuum energy density, is then

ρ0 = ε4
cc ∼

1
l2 l2

P
, (29)

with a corresponding natural length scale, lcc ' 1/εcc, given by the the seesaw formula

lcc '
√

l lP, i.e., MΛ '
√

M MP, (30)
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where M ∼ 10−34 eV is the Hubble mass-scale and MP ∼ 1019 GeV, is the Planck scale.
Finally, note that the integration over the world-line or the world-sheet parameters does
not change this final result. These integrations should be done at the end, and they only
provide an overall renormalization of the Newton constant.

The above results have the following noteworthy properties:

• With l ∼ 1027–28 m and lP ∼ 10−35 m, the seesaw relation (30) yields lcc ' 10−4 m or
εcc ' 10−3 eV, in agreement with observations and identifiable as εcc = MΛ from (22).

• The relation (27) naturally gives ρ0 → 0 when l → ∞, and l is the IR length-scale.
• The relation (30) is radiatively stable since there is no UV dependence.
• Thus, essentially, the cosmological constant is small because the universe is filled with

a large number of degrees of freedom: N ∼ 10124.
• In turn, N is large because fluctuations scale as 1√

N
and are small, indicating the

stability of the universe.
• This estimates Ni (where i is t, x, y, z) as N1/4 ∼ 1031, which is not so unreasonable in

comparison with Avogadro’s number, 1023, for matter degrees of freedom.

We emphasize furthermore the quantum contextuality of the above calculation: The
measurement of a quantum observable depends on which commuting set of observables
are within the same measurement set of observables, i.e., quantum measurements depend
on the context of measurement.

• First, ε is not a cut-off, since ε and λ can be arbitrary, albeit related by λ ε = h̄.
• Second, ε4 is effectively eliminated in favor of N, which is the new quantum number,

and the size of spacetime, l = rCH , the cosmological horizon, i.e., the size of the
observed classical spacetime.

• N is determined by the Bekenstein bound, (26) and is thereby related to l and lP (the
ultimate IR and UV scales, respectively), which is where gravity enters, via GN ∼ l2

P.

By contrast, effective field theory cannot “see” N, and in particular does not “know”
about the Bekenstein bound or the UV/IR mixing. For example, vacuum energy routinely
cancels in the computation of EFT correlation functions. Also, EFT is defined in classical
spacetime [25,26]. (The above seesaw relation lcc '

√
l lP does appear in [27], where l and

lP are, respectively, the ultimate IR and UV length-scales in EFT, and are related by the
physics of black holes/holographic bound. However, there one does not have the crucial
aspects of our derivation: modular representation, the number of phase space cells N,
the explicit UV/IR mixing and contextuality. We will comment on the connection with EFT
at the end of Section 2.3.) Thus, the above calculation calls for a fundamental quantum
formulation that relies on the modular polarization [24]. Precisely this is provided by the
metastring formulation of string theory [22], which we will duly discuss in Section 2.4.

2.3. The Cosmological Constant in QFT and Phase Space

Having summarized our recent work, we now turn to discuss the textbook QFT
computation of the vacuum energy and illustrate how the reasoning in the previous sections
applies in that context. In particular, we show that the above argument is robust even
in light of realistic cosmological phase transitions. Essentially, the phase space argument
combined with the Bekenstein bound that leads to the above bound for the cosmological
constant (30) is globally valid and is insensitive to any EFT redefinition of the QFT vacuum
due to possible phase transitions.

Let us consider a scalar field theory [28,29], knowing that the following computation
can be generalized for fermions and other fields (and it could be used in string theory as
well). The relevant Lagrangian is

L =
1
2
(∂φ)2 − 1

2
m2φ2 − 1

24
gφ4 def

=
1
2
(∂φ)2 −V(φ). (31)
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The partition function is defined as

Z(J) def
= eiW(J) =

∫
Dφ ei[S(φ)+Jφ], (32)

where W(J) is the generating functional of vacuum correlation functions, and it represents
a direct analogue of the partition function for a particle on a circle, or a string on a torus
from the previous section. Given W(J), we can define it’s Legendre transform to obtain
Γ(φ), the effective action, as

Γ(φ) def
= W(J)−

∫
d4x J(x)φ(x). (33)

The leading term in the expansion of Γ(φ) is the effective potential,

Γ(φ) def
=
∫

d4x[−Veff(φ) + . . . ], (34)

the minimum of which defines the vacuum energy in QFT. (The proper normalization of the
path integral that is responsible for the vacuum energy is here absorbed in the expression
for the effective potential Veff.)

To determine the h̄-expansion of this expression (which is the source of problems with
vacuum energy in QFT), one expands the original action S around its classical minimum
and looks at the leading quadratic fluctuations. Upon evaluation of the relevant Gaussian
integral one obtains the generating functional W(J) or alternatively, its Legendre transform,
the effective action,

Γ(φ) = S(φ) +
ih̄
2

Tr log
[
∂2 + V′′(φ)

]
,+O(h̄2). (35)

Thus, the effective potential V reads as follows

Veff(φ) = V(φ)− ih̄
2

∫ d4k
(2π)4 log[k2 −V′′(φ)] + O(h̄2). (36)

An explicit evaluation of this momentum integral gives the famous Coleman–Weinberg
potential [30]. Using the Schwinger parametrization of the logarithm

−1
2

log
[
U(k2, φ)

]
=
∫ dr

r
e−U(k2,φ) r/2, (37)

leads to the following crucial observation: The quantum corrections to the effective action
Γ are given by an integral over phase space (as in the computation summarized in the
previous section)

Γ(φ) ∼
∫

d4x
∫ d4k

(2π)4

∫ dr
r

e−U(k2,φ) r/2, (38)

where the exponent in the above integral is bounded by 1. This is completely analogous
to the expression for the partition function of a particle on a circle (8), or a string on a
torus. Thus, after using modular regularization, we are led to the same bound on the
vacuum energy evaluated from the effective action, when the QFT is coupled to gravity
and subjected to the Bekenstein bound. (In this reasoning the integration of the Schwinger
parameter is done at the end, and its effect is absorbed in the renormalization of the Newton
constant.)

The canonical reasoning tells us that Γ(φ), evaluated at the minimum of the effective
potential, does give a divergent expression for the vacuum energy, which upon coupling
of this simple field theory to gravity leads to the cosmological constant problem. Such a
cosmological constant is very sensitive to radiative corrections, to the existence of phase
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transitions as captured by the effective potential, etc. In particular, at finite temperature T,
the Landau–Ginsburg effective Lagrangian may be written as

L =
1
2
(∂φ)2 − 1

2
a(T − Tc)φ

2 − 1
24

gφ4 def
=

1
2
(∂φ)2 −V(φ, T), (39)

where Tc is the critical temperature, and a > 0 and g > 0. Above Tc this has a global
minimum, and below the critical temperature this describes symmetry breaking with
an unstable (tachyonic) local maximum and a new global minimum determined by the
expectation value of the order parameter, φ,—the Higgs field, upon the inclusion of the
gauge field in this description. However, we can repeat the above calculation of the effective
action at finite temperature T and deduce that the quantum part of the effective action
again scales as

Γ(φ, T) ∼
∫

d4x
∫ d4k

(2π)4

∫ dr
r

e−U(k2,φ,T) r/2, (40)

where the exponent is yet again bounded by 1, given the generic positive definite nature of
U(k2, φ, T). Therefore, the already established bound for the vacuum energy (determined
by the minimum of this finite temperature effective potential) is valid. This, when combined
with modular regularization and the Bekenstein bound, gives the same seesaw formula (30).

Even more explicitly, at finite temperature T (with β
def
= 1/T), we have

∫
( · · · ) d4k

(2π)4 → T ∑
k0=2πinT

∫
( · · · ) d3k

(2π)3 , (41)

by the usual rules of QFT at finite temperature. Therefore, the finite temperature addition
to the effective potential reads as follows

Veff(T) ∼
T
2 ∑

n

∫ d3k
(2π)3 log[4π2n2T2 +~k2 + V′′(φ)], (42)

or by using the Schwinger parametrization

Γ(φ, T) ∼ T ∑
n

∫
d4x

∫ d3k
(2π)3

∫ dr
r

e−[ 4π2n2T2+U(~k2,φ,T) ] r/2. (43)

Note that Γ(φ, T) is still bounded by the volume of phase space; since T measures the
size of the “imaginary time/energy” direction and the indicated summation stems from
having discretized that direction in (41). Finally, returning to the continuum then recovers
the expected ∑n

∫
d3k→

∫
d4k.

In all of these calculations, the integration of the Schwinger parameter r is done at
the end of the calculation, where it contributes only to the renormalization of the Newton
constant, without any influence on the bound on the vacuum energy. The effective action
(before the r integration) is bounded by the phase space volume, which when combined
with modular regularization and the Bekenstein bound, gives the already derived bound
on the cosmological constant.

Therefore, the above expressions for the effective action and the evident appearance of
the volume of phase space justifies applying our argument from the previous section, which
together with modular regularization and the Bekenstein bound leads to the same bound
on the cosmological constant in the context of a QFT coupled to gravity and reproduces
the seesaw formula (30) for the vacuum energy in QFT. Given the nature of the bound
and the ensuing seesaw relation for the cosmological constant, this bound is radiatively
stable and it holds true even after the cosmological phase transitions (electroweak, QCD)
happen. The reason for this is simply that the bound stems from the mixing (27) of the UV
(gravitational, Planck, scale) and the IR scale (the size of the observed universe, the Hubble
scale). Such global (non-local) features associated with modular regularization of phase
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space are inherently absent in local QFT, as well as any EFT, which by construction “sees”
neither this UV/IR mixing nor the ensuing resolution of the vacuum energy problem.

Let us emphasize that in the context of EFT the vacuum energy is associated with
the normalization of the path integral, and thus it cancels in the usual EFT calculations
(without gravity). In our recent review [6], we highlight how the canonical EFT results
emerge in a double scaling limit in which the new quantum number N → ∞, as well as

l → ∞ with the constant ratio N/l4 def
= 1/l4

Λ = finite, while lP → 0. The seesaw nature
of the formula for lΛ is however preserved in this doubled scaling limit, leading to the
observation of [27] (where l is interpreted as the EFT’s IR cut-off, and lP as its UV cut-off).
However, EFT is defined in classical (and not quantum) spacetime, and it is fundamentally
insensitive to the UV/IR mixing, whereas quantum gravity crucially depends on quantum
spacetime degrees of freedom and the mixing between the UV and IR physics.

2.4. Realization in String Theory

As already emphasized in Section 2.2, the above phase space/modular formulation
is naturally realized in terms of a chiral, phase-space-like and T-duality covariant refor-
mulation of the bosonic string, the metastring [8,22,23] (which may also be turned into a
non-perturbative proposal [6,9,31]):

Sch
str =

∫
dτ dσ

[
∂τXa(ηab(X) + ωab(X)

)
− ∂σXaHab(X)

]
∂σXb. (44)

Here, Xa def
= (Xa/`s, X̃a/`s)T are coordinates on phase-space like (doubled) target

spacetime and the fields η, H, ω are all dynamical (i.e., generally X-dependent) target
spacetime fields. In terms of the left- and right-moving 0-modes of the bosonic string,
one defines

xa def
= xa

L + xa
R, x̃a def

= x̃a
L − x̃a

R. (45)

In the context of a flat metastring, the coefficients ηab, Hab and ωab (setting ωab = 0
directly connects Sch

str to double field theory) are constant:

ηab =

(
0 δ

δT 0

)
, Hab =

(
h 0
0 h−1

)
, ωab =

(
0 δ

−δT 0

)
, (46)

where h denotes the flat (1, d−1)-dimensional metric and δ is the Kronecker symbol. The
standard Polyakov action is then obtained by setting ωab = 0 and integrating out the x̃a,

SP =
∫

dτ dσ γαβ ∂αXa ∂βXb hab + . . . (47)

The triplet (ω, η, H) defines Born geometry [8,22] (which is ultimately dynamic, sug-
gesting a “gravitization of quantum theory” [32–34]) so that the metastring propagates
in a (dynamical) modular spacetime, a phase-space-like structure that naturally arises in
any quantum theory [24]. One of the key consequences of this is that the metastring is
intrinsically non-commutative and also that its low-energy QFT-like description in modular
spacetime is intrinsically non-commutative. Thus, every Standard Model field φ(x) is dou-
bled as φ(x, x̃) and φ̃(x, x̃), with doubled and non-commutative arguments [xa, x̃b] = i`2

s δa
b.

The quanta of such modular fields are the zero modes of the metastring—the metaparticles—
whose dynamics are given by a world-line action involving a doubling of the usual phase
space coordinates. The metaparticle (“mp”) action is of the form [35–38]

Smp
def
=
∫ 1

0
dτ
[

p · ẋ + p̃ · ˙̃x + α′ p · ˙̃p− N
2

(
p2 + p̃2 +m2

)
+ Ñ(p · p̃− µ)

]
, (48)
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where the dot-product denotes contraction with signature (−,+, . . . ,+). The new feature
here is the presence of a non-trivial symplectic form on the metaparticle phase space,
the non-zero Poisson brackets being

{pµ, xν} = δν
µ, { p̃µ, x̃ν} = δν

µ, {x̃µ, xν} = πα′ δν
µ, α′ ∼ `2

s . (49)

with µ, ν = 0, 1, . . . , d− 1. Because of its interpretation as a particle model on Born geometry,
associated with the modular representation of quantum theory, the space-time on which
the metaparticle propagates is ambiguous, with different choices related by what in string
theory we would call T-duality. The attractive features of this model include world-
line causality and unitarity, as well as an explicit mixing of widely separated energy–
momentum scales.

In the generic modular polarization of quantum theory, instead of considering the
standard commutation relations between the position and momentum operators, one
considers the generators of translations in phase space

Ûa = e
i
h̄ p̂ a, V̂2πh̄

a
= e

i
h̄ q̂ 2πh̄

a =⇒ [Ûa, V̂2πh̄
a
] = 0. (50)

In terms of modular variables introduced by Aharonov and collaborators [39],

[q̂]a
def
= q̂ mod a [ p̂] 2πh̄

a

def
= p̂ mod

2πh̄
a

=⇒
[
[q̂]a, [ p̂] 2πh̄

a

]
= 0. (51)

The space of commuting subalgebras of the Heisenberg algebra, [q̂, p̂] = ih̄, which
in the covariant (self-dual lattice) phase space formulation becomes the modular
spacetime [22–24] is the target space of the metastring [22] and the
metaparticles [35–37]. Vertex operators in metastring theory are representations of this
Heisenberg algebra. This description (intrinsically non-commutative, since [x, x̃] = 2πi`2

s )
however avoids all of the co-cycles that turn up in standard descriptions of the vertex
operator algebra in string theory [14,15].

A more elementary (and familiar) argument for the existence of modular spacetime
may be presented as follows: In quantum theory, short (UV) distances are associated with
high energy, as implied by the indeterminacy relation, δq ∼ 1/δp (in h̄ = 1 units). On the
other hand, in classical (as well as semiclassical) gravity, the Schwarzschild radius RS of
a mass M is given by RS ∼ GM ∼ l2

P M, where G ∼ l2
P is the gravitational constant in

4-dimensional spacetime, with lP the Planck length. In quantum gravity, quite generally,
one therefore expects that higher energy leads to larger (IR) distances δq ∼ l2

P δp. These
diametrically contrasting behaviors (associated with UV and IR) may be reconciled by
relating the UV and IR physics: Recall that, given a fundamental lattice length, quantum
states are described in terms of quantum numbers associated with both a lattice and its
dual [24]. In our present case, this involves momenta p and their duals p̃, provided that
these commute [p, p̃] = 0. The indeterminacies δp and δ p̃ thereby being interchangeable
provides the first substitution in the chain: l2

P δp ∼ δq → l2
P δ p̃ ∼ δq → l2

P(δq̃)−1 ∼ δq ⇒
δq δq̃ ∼ l2

P, where the second replacement used the canonical δ p̃ δq̃ ∼ 1 indeterminacy
relation. This implies a new fundamental non-commutativity between spacetime and
dual spacetime coordinates [q, q̃] ∼ il2

P. The commutative nature of modular variables in
quantum theory insures that this can be completely covariantized [24]. Thus, combining the
fundamental quantum and gravitational relations between spatial distances and momenta
leads to:

• the concept of dual spacetime,
• the fundamental non-commutativity between spacetime and dual spacetime,
• the Heisenberg algebras: [q, q̃] = il2

P, [q, p] = i, [q̃, p̃] = i, [p, p̃] = 0.

Precisely this algebraic structure is realized in metastring theory [8,22,23], merely with
“softening” the indeterminacy by replacing, lP → `s, the length-scale in (49). The central
point here is that the metastring formulation explicitly realizes modular spacetime and the
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modular polarization needed in the argument for the bound of the cosmological constant,
and, as a theory of quantum gravity, also realizes the Bekenstein bound. Thus, a natural
realization of the resolution of the cosmological constant problem is found in the metastring
formulation of string theory. Moreover, string theory is a quantum theory of gravity and
Standard Model-like matter. Therefore, other vexing problems beside the cosmological
constant problem should be possible to address in the same context, to wit, the gauge
hierarchy problem and the problem of fermion masses.

3. The Cosmological Constant and the Higgs Mass

In order to address a stringy bound on the Higgs mass and the gauge hierarchy
problem, we concentrate on the new feature in the metastring formulation of the bosonic
string captured by the [x, x̃] = 2πi`2

s non-commutativity, implying a new Heisenberg
algebra [35,36]

[Xa,Xb] = iωab `2
s =⇒ [Xa, X̃b] = iδab`2

s (52)

in addition to the standard ones, with Πb, Π̃b, the respective conjugate momenta to Xa, X̃a,

[Xa, IΠb] = ih̄δa
b =⇒ [Xa, Πb] = iδa

b h̄, [X̃a, Π̃b] = iδa
b h̄. (53)

We note that, if the Kalb–Ramond Bab (the source of the axion in four spacetime dimen-
sion) is constant and non-zero, dual coordinates do not commute. In general, for dynamical
backgrounds, one has to deal with intrinsic non-associativity [36]. Note that the zero modes
of the metastring— metaparticles [37,40] (which look like little rigid strings, or correlated
pairs of particles and their duals), inherit these generic properties of the metastring (in what
follows, we concentrate on the 4 spacetime dimensional `s, being aware of different effective
values for `s in 4 as opposed to 10 or any other spacetime dimension); each Standard Model
particle has a correlated “dual,” a candidate dark matter companion [31,41].

3.1. Cosmological Scale

We now repeat the above argument for the vacuum energy based on the modular
regularization of the phase space volume, combined with the Bekenstein bound [10],
but for the modular space of the Heisenberg algebra (52) in the context of the metastring
formulation of string theory. We claim that this leads to a bound on the Higgs mass,
analogous to the above bound on the cosmological constant. The most important point here
is that the relevant IR scale is provided by the cosmological constant mass scale,—since the
Higgs field determines the vacuum.

In D = 4-dimensional spacetime and with NΛ fluxes in the modular space of Xa, X̃a,
the length scales of the Xa and X̃a are lΛ, associated with the vacuum energy, and l̃,
respectively. Therefore,

l4
Λ l̃4 = NΛ (`2

s )
4, (54)

analogously to the relation (23), for the first of the Heisenberg algebras in (53). The
holographic bound [11,12] for the effective spacetime associated with the vacuum energy is
NΛ = l2

Λ/l2
P, which with (54) produces

lΛ l̃ = `2
s

(
l2
Λ
l2
P

)1/4

= `2
s

(
lΛ
lP

)1/2
. (55)

The string length `s and the Planck length lP are related via the string coupling gs

gs `s = lP, i.e., Ms = gs MP, (56)
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where MP is the Planck (energy) scale and Ms the string (energy) scale. The dual spacetime
scale is thereby determined:

l̃ =
`2

s√
lΛ lP

=
lP

g2
s

( lP
lΛ

)1/2
. (57)

We also demand that the extent of the dual spacetime is lP, i.e., we require that l̃ def
= lP,

which is consistent with the assumption that the size of the “dual phase space” (defined by
the dual spacetime and dual momenta) is Planckian. This implies that

gs =
( lP

lΛ

)1/4 def
=
(MΛ

MP

)1/4
→ g2

s =
(MΛ

MP

)1/2
� 1, (58)

where MΛ is the energy scale associated with the vacuum energy. Since gs � 1, the one-loop
computation of the (metastring) partition function is indeed a good approximation.

3.2. Higgs Mass

We now apply these results to the recent stringy relation between the Higgs mass and
the cosmological constant derived by Abel and Dienes [16],

m2
H =

ξM4
Λ

M2
P
− g2

s M2
s

8π2 〈X 〉, (59)

where X is a suitably normalized insertion in the second moment of the partition function
and ξ a modular completion to the terms in X . Even though this formula was obtained
in the bosonic string theory by paying attention to stringy modular invariance, the same
formula could be obtained in the metastring reformulation of the bosonic string. In fact,
with Ms = gs MP and gs = (MΛ/MP)

1/4, the Abel–Dienes formula becomes (as the
insertion vev turns out to be negative, 〈X 〉 < 0, we will use |〈X 〉|)

m2
H = ξ

M4
Λ

M2
P
+
|〈X 〉|
8π2 g4

s M2
P = ξ

M4
Λ

M2
P
+
|〈X 〉|
8π2 MΛ MP, (60)

a linear combination of the ∼ (M2
Λ/MP)

2 (“seesaw-light”) and the ∼(
√

MΛ MP)
2 (geomet-

ric mean) terms, each reflecting a seesaw relation of two scales, MΛ and MP. The first term
(∼ 10−34 eV) is negligible compared to the second one, so that

mH ∼ gs Ms

√
|〈X 〉|
8π2 = g2

s MP

√
|〈X 〉|
8π2 ∼

√
MΛ MP

√
|〈X 〉|
8π2 , (61)

recovers the seesaw formula for the Higgs mass in string theory [6], where MΛ (∼10−3 eV) is
energy scale associated with the vacuum energy, and MP (∼1019 GeV) is the Planck energy.
The geometric mean of these two energy scales is a TeV-scale, and thus the observed
Higgs mass can be obtained if |〈X 〉| ∼ 10−1—which is consistent with Abel and Dienes’
results [16]. We emphasize that the above formula, (61), should be understood as a bound
on the Higgs mass, in analogy with the result (30) for the cosmological constant.

3.3. Summary

Analogously to our foregoing arguments for cosmological constant (30), we have
shown that (1) examining the modular spacetime and metastring formulation of string
theory, (2) combining the [x, x̃] 6= 0 non-commutativity and holography in x-space, and
(3) assuming that x̃ is of the Planck length size, leads in string theory to a seesaw formula
also for the Higgs mass (61). Like the one for the vacuum energy, this formula represents
a bound provided by the size of the phase space and the Bekenstein bound in which the
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effective length scale is associated with vacuum energy lΛ. In this calculation, the two
Heisenberg algebras in the metastring formulation ([x, p] and [x, x̃]) are mutually consistent.

Having applied this logic to the formula for the Higgs mass à la Abel and Dienes [16]
(derived in canonical bosonic string theory with manifest stringy modular invariance,
but also compatible with its metastring formulation), we have not only arrived at a stringy
bound for the Higgs mass, but also at a completely stringy view of the hierarchy problem.
This directly ties the hierarchy problem to the vacuum energy problem, whereby the reso-
lution of both lies in the fundamental (modular) phase-space approach combined with a
Bekenstein bound on the number of relevant degrees of freedom. This new and unified un-
derstanding of these two central hierarchy problems naturally points to metastring theory,
and (as we outline in the next section) it can also address the problem of fermion masses.

However, let us conclude this section by addressing the naturalness of the above
values for N, relevant for both hierarchy problems: the cosmological constant and the Higgs
mass. Both in statistical physics and in QFT, it is well known how to sum over contributions
of closed diagrams: Simple combinatorics ensures that this is an exponent of the partition
function associated with a closed loop (handle, for strings). As pointed out in Section 2.1,
the QFT vacuum partition function is Zvac = exp(ZS1), with S1 the circle of a vacuum
loop traced by a particle; in string theory, one just replaces S1 → T2 [5]. For the case
of dynamical Born geometry [32] (a generic feature of quantum gravity in the metastring
formulation), the usual path integral measure eiS should be effectively replaced by eeiS

after
summing over handles of a dynamical quantum geometry, where in the approximation
of a dilute gas of handles we have taken that the effective partition function is just the
canonical one. Summing over handles in the foamy quantum space [42], from the point
of view of the canonical complex geometry of quantum theory, thereby yields an effective
action which is essentially eiS. In the Euclidean formulation, this implies that the effective
action at some scale sensitive to gravity can be exponentially removed from the natural scale
of Planck gravity, indicating that the Higgs scale may well be where effects of quantum
gravity could be seen. (Indeed, see the large class of widely usable toy models [31,41,43,44].)
Essentially, we claim the naturalness of the hierarchy of scales between the Higgs and the
Planck scale ultimately to be a quantum gravity effect, associated with “gravitizing the
quantum” [32–34]. Thus, the effective value of N (per spacetime direction) that features in
both hierarchy problems, the cosmological constant problem and the problem of the Higgs
mass, is indeed naturally expected to be of the order of the familiar Avogadro number,
and it is only genuine in the context of quantum gravity (or gravitized quantum theory)
and quantized spacetime.

4. On the Masses and Mixing of Quarks and Leptons
4.1. General Comments

The above cosmological constant computation relies on the computation of the one-
loop partition function for a particle or a string, or equivalently, the effective action for
the effective field theory under consideration. In each of these cases, we have shown that
the relevant expression for the partition function and thus the cosmological constant is
bounded by the phase space volume, in its modular regularization. The Bekenstein bound
for the number of the phase space cells then explicitly leads to a seesaw (geometric mean)
formula for the cosmological constant. Next, we have extended this computation to the
evaluation of the Higgs mass. In that case, we have relied on the expression (60) obtained
by Abel and Dienes for the Higgs mass [16] (derived also from a stringy partition function)
that relates this quantity to the cosmological constant in string theory (definitely not an
EFT feature), in the weak string coupling regime.

Thus, at least for weak string coupling, the same computational strategy applies to
both the Higgs mass and the cosmological constant, and leads to the (geometric mean)
seesaw formula. They differ only in the contextual UV and IR scales in the respective
computations. The UV scale is MP for both, while the IR scale is the relevant Hubble mass
scale M for the cosmological constant scale, MΛ (30), which then serves as the IR scale



Symmetry 2023, 15, 1660 14 of 25

for mH in (61). This relation follows both from the Abel–Dienes formula (60), as well as
because of the physical meaning of the Higgs field—it determines the vacuum of the matter
sector and is responsible for the masses of all elementary particles, except neutrinos.

It is then only reasonable to ask: Should and does this reasoning extend also to the
Standard Model fermions, and induce similar formulae for their masses?

4.1.1. Criticality

The first motivation is provided by the criticality of the Standard Model, whereby the
top-quark mass may be related to the Higgs mass, as proposed by Froggatt and Nielsen [45].
This, in turn, implies, via (60), that the mass of the top also could be related to the cos-
mological constant—because the Higgs mass is. Again by dimensional analysis, as in (60)
and (61), the analogous fermionic formulae are expected to be of the form mψ ∼ gs Ms, up
to the multiplicative coefficients implied by stringy modular invariance. This suggests a
seesaw formula akin to the one for the Higgs mass (61), however with appropriate UV and
IR scales. (This indeed follows Weinberg’s general idea, “in some leading approximation
the only quarks and leptons with nonzero mass are those of the third generation, the tau,
top, and bottom, with the other lepton and quark masses arising from some sort of radiative
correction” [4], except that the lower fermion masses are here generated by variants of
the T-duality seesaw mechanism from a stringy non-perturbative effect; see Section 2.4.)
The claim here is that such seesaw formulae relate seemingly independent fermionic masses
(in different generations) in the Standard Model. In essence, this reasoning provides for the
origin of different generations, starting from the heaviest fermions, and predicts that there
can exist no heavier generations of Standard Model fermions.

However, what UV and IR scales are appropriate in such fermionic seesaw formulae?
To this end, recall that the masses of the charged fermions (mt, mb and mτ) are related via
the RG equations for the heaviest fermions in explicitly computable stringy models [46],
and thus are natural candidates for the UV scales. As to an appropriate IR scale, we present
below an entropy argument that leads to a scale typically related to the standard QCD
scale, but is smaller by an order magnitude; we call this the Bjorken–Zeldovich scale,
MBZ ' 7 MeV. We then find (as observed by Bjorken in a completely different context [17])
that this MBZ can, with the masses of the heaviest charged fermions as the UV scale,
parametrize the masses of the remaining charged fermions.

This observation can be properly justified only by a computation of the bound of
the partition function of the Standard Model in the modular polarization, which by the
already explicit computation of the cosmological constant is given by the volume of phase
space. Relating then the number of phase space cells, in modular regularization, to the
Bekenstein-like bound with the UV scale given by the masses of the heaviest quarks and
the heaviest lepton then reproduces Bjorken’s expressions [17,18].

4.1.2. Seesaw Structure

The foregoing discussion, including the stringy result (60), involves two types of
formulae: The geometric mean: m < (m′∼

√
mM) < M, is here implied by the non-

commutative, symplectic structure of Born geometry, ωab in (46). The “seesaw-light,”
m′′ ∼ (m2/M) < m < M, is familiar from neutrino physics and is here of the T-duality
type, implied by the bi-orthogonal structure of Born geometry, ηab in (46). The presence of
the double metric, Hab in (46), is what allows the doubling of the heaviest mass in the first
place. This provides for three distinct masses and is, essentially, our key observation here.

This dovetails with the fact that there are three generations, and meshes nicely with
the present experimental constraints on other generations of quarks and leptons. In what
follows, the bounds on the charged fermion masses take the form of these seesaw relations
(as used for the cosmological constant and also for the Higgs mass): with MUV identified
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with the heaviest mass, the lighter copies are MIR-multiples of numerical factors that are
solely the square-root of ratios of the UV and IR scales, or the other way around :

MIR

√
MUV
MIR

=
√

MIR MUV , for the middle, and (62)

MIR

√
MIR
MUV

=

√( M2
IR

MUV

)
MIR, for the lightest. (63)

With the UV and IR scales as reasoned above, one expects the numerical factors
in (62)–(63) to be square-roots of their ratios. Analogously, the dominant X -term in (60)
gives mH ∼ g2

s MP =
√

MΛ/MP MP = MΛ
√

MP/MΛ. Higher powers of these square-root
factors then correspond to higher powers of g2

s , and are expected as (string-perturbative)
corrections to (60). (Also, the evident gs → g−1

s map between (62) and (63) would seem
to indicate that S-duality must be involved in an underlying stringy derivation of such
formulae.) By the same token, higher powers of the square-root factors in (62)–(63) are
expected as corrections of these formulae. For example, the standard seesaw-formula from
the original, neutrino physics,

M2
IR

MUV
= MIR

( MIR
MUV

)
= MIR

(√ MIR
MUV

)2
, (64)

features the square of the numerical factor in (63), and is expected to corresponds to an
additive correction to (63).

Also, assume that a fermionic version of the stringy result (59) can be derived, with a
corresponding insertion vev,

〈
Xψ

〉
, proportional to the gauge charges of the fermion ψ as

indeed is the case for the Higgs field [16]. Then: (1) for charged leptons, Xψ 6= 0, the second
term in a (59)-like formula dominates, and formula (62) follows. (2) For chargeless neutrinos,
Xψ = 0, only the first term in a (59)-like formula remains, and (64) follows.

The remaining (T-duality type) seesaw formula (63) stems from the central property
of the zero modes of the metastring captured by the action of the metaparticle (48), and es-
pecially the constraint p· p̃ = µ. This is precisely the second, “seesaw-light” type relation,
where we identify µ = M2

BZ and the size of the dual momentum space with the relevant
charged fermion mass. Unlike the first seesaw formula (62), which essentially follows from
the phase-space-like structure and so is associated with the symplectic form, this second
seesaw formula (63) is induced by the bi-orthogonal structure of Born geometry.

Ideally, one would need a precise fermionic analogue of the Abel–Dienes formula for
the Higgs mass in string theory [16]. In the absence of such explicit formulae, we identify
key seesaw features that connect our approach to Bjorken’s observations [17,18], which we
then also extend to the CKM matrix (like Bjorken), but also to neutrinos and the PMNS
matrix (in ways different from Bjorken). We find it intriguing that the same logic used for
the computation of the cosmological constant extends, first to the Higgs mass, and then
also to the masses of all quarks and leptons.

While these seesaw features do appear to be cohesive and coherent, a firm proof would
require the formulation of an explicit treatment of the Standard Model (SM) as a modular
QFT: Every SM field φ is defined over both spacetime and the dual (momentum-like)
spacetime, φ(x, x̃), with an intrinsic non-commutativity [37,47], [x, x̃] = i`2

nc, where `nc is
in principle contextual, and not necessarily the string length or the Planck length. (Both
of these scales, `s and lP, turned up naturally in the discussion in Section 2.4, but note
that the effective, physically relevant 4-dimensional Planck scale may be removed, even
exponentially much, from the underlying fundamental scale, e.g., in the large class of
models discussed in [31,41,43,44].) By construction, such a formulation would have a
natural solution of the vacuum energy problem, and then, we conjecture, would also lead to
the formulae for the fermionic masses presented below. Such a modular SM would thereby
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imply relations between masses of different fermion generations that are invisible to the
standard QFT form of the SM. Such a modular QFT form of the SM can be also embedded
in the metastring, which suggest a completely new (and complementary) view on the
origin of the SM in string theory, as compared to the traditional one based on Calabi–Yau
compactifications in the point-field limit QFT [14]. This should indicate that there are
missing concepts (modular spacetime, modular polarization, Born geometry, modular
fields, metaparticles and metastrings) in the usual approach, and that the introduction
of these missing concepts to the canonical approach would yield the results discussed in
this paper.

Unlike the very concrete foregoing statements about the vacuum energy problem and
the problem of the Higgs mass, our present discussion of fermion masses is just a working
conjecture at the moment. We now turn to the implementation of this general set-up by
following our recent presentation [7].

4.2. Masses
4.2.1. The Bjorken–Zeldovich Scale

As pointed out by Bjorken [17], the observed masses of quarks and leptons could be all
parameterized in terms of a new, O(10 MeV)-scale. This Bjorken–Zeldovich scale is given
by the size of the universe and the Planck scale, l and lP:

l3
BZ ∼ l l2

P
(30)∼ l2

cc lP, i.e., M3
BZ ∼ M2

Λ MP, (65)

determined by the same IR and UV scales as the cosmological constant. Most importantly,
given (26), N ∼ l2/l2

P, the Bjorken–Zeldovich scale l3
BZ ∼ l l2

P ∼ l3/N and so N ∼ l3/l3
BZ, —

precisely as expected from extensive non-gravitational entropy. Therefore, given: (1) our N,
(2) the Bekenstein bound for gravitational degrees of freedom, (3) the fact that in metastring
theory the matter and spacetime degrees of freedom are “two sides of the same coin”,
(4) the extensive nature of entropy for the matter degrees of freedom

N ∼ l3/l3
BZ ∼ l2/l2

P, (66)

we are able to deduce the Bjorken–Zeldovich scale, l3
BZ ∼ l l2

P (corresponding to roughly
10 MeV, or equivalently, 10−14 m). In what follows we are careful about the numerical values
of l and lP and will use the value MBZ ' 7 MeV for the Bjorken–Zeldovich scale, as used
by Bjorken, who in turn seems to have been inspired by the work of the Oxford group [48].
(Bjorken has discussed this scale in a radically different context of the MacDowell–Mansouri
approach to gravity, and in particular, the Friedmann–Robertson–Walker cosmology in
that formulation [17]. Our derivation of the Bjorken–Zeldovich scale is, as far as we are
aware, completely new.) Thus, all three scales, the cosmological constant mass scale, MΛ,
the Higgs mass scale, mH , as well as the Bjorken–Zeldovich scale, MBZ, are all ultimately
determined in terms of the Hubble (M) and Planck mass (MP) scales.

4.2.2. Quarks

To proceed, we use the masses of the heaviest fermions (the top- and the bottom-quark,
as well as the tau-lepton) as the natural short distance scales. (For a concrete computation
of these masses in a string theory model, see [46].) These masses serve as analogs of the UV
scale in our Higgs mass formula (61), whereas the Bjorken–Zeldovich scale, MBZ ≈ 7 MeV,
acts as the natural IR scale. Note that the top mass mt is essentially tied to the Higgs scale,
which in turn is given by the (geometric mean) seesaw formula of the vacuum energy scale
and the Planck scale. (To this end, we cite the well-known argument based on criticality
of the Standard Model that relates the masses of the top quark and the Higgs boson [45]
(see also [49,50], for landscape-motivated discussions).) Thereby, the top quark mass is
ultimately also given in terms of the Hubble and Planck mass scales. Analogously to (61)
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for the Higgs mass, the (geometric mean) seesaw relation then produces the charm mass in
terms of MBZ and mt (cf. the observed value in parentheses [51]):

mc ∼
√

MBZ mt = MBZ

√
mt

MBZ
∼ 1.10 (1.27)GeV. (67)

Next, using the bottom-quark mass scale (instead of mt) and the same Bjorken–
Zeldovich scale as the characteristic vacuum energy scale of matter, the same seesaw
relation yields the mass of the strange quark

ms ∼
√

MBZ mb = MBZ

√
mb

MBZ
∼ 171 (93.4)MeV. (68)

(For example, explicit calculation in the stringy calculation [46] ties, via RG equations,
the mass of the top quark to the mass of the bottom quark and the tau lepton, and so are all
ultimately determined by the Hubble and Planck mass scales.)

Bjorken estimates the up- and down-quark masses essentially at the Bjorken–Zeldovich
scale: mu ∼ MBZ and md ∼ MBZ, but models the actual relation md > mu with ad hoc
factors [17]. Independently, the masses of the lightest quarks may be deduced from chiral
perturbation theory as mu ∼ 2 MeV, md ∼ 5 MeV. However, apart from non-commutativity
that led to (67) and (68), our seesaw structure reasoning above also involves the inherent
metastring/metaparticle T-duality, which induces the familiar “seesaw-light” relation. This
then leads to the following estimates (actual values in parentheses [51])

mu ∼ M2
BZ/mc ∼ MBZ

√
MBZ
mt
∼ 10−2MBZ ∼ 10−1 (2.16)MeV. (69)

This estimate turns out too small (by a factor of about 50), but is (importantly!) smaller
than the down quark mass estimate (also too small by a factor of about 16),

md ∼ M2
BZ/ms ∼ MBZ

√
MBZ
mb
∼ 10−1MBZ ∼ 1 (4.67)MeV. (70)

The above reasoning thus automatically reproduces the 1st generation “mass inver-
sion”: (67) > (68) but (69) < (70), which is necessary for the proton to be stable while
the neutron decays. Thus, given the heaviest, top and the bottom quark masses, the two
distinct seesaw type formulae (non-commutativity and T-duality) produce quite realistic
estimates for the masses of the middle and the lightest quark generations.

4.2.3. Charged Leptons

Turning to the charged leptons, the evident analogue of the top-quark is the tau-lepton.
From a naive stability analysis of the tau analogue of the hydrogen atom, the mass of the tau
is expected to be of the order of the mass of the nucleus, i.e., a GeV. This is supported since
the masses of the top, bottom quark and the tau lepton are all related by the RG equations,
as in the calculation of [46]. With the tau mass as given (again, from the calculation of [46],
and ultimately related to the Hubble and Planck mass scales, much as the top and bottom
quark masses are), the (geometric mean) seesaw estimate of the muon mass is (actual value
in parentheses [51]):

mµ ∼
√

MBZ mτ = MBZ

√
mτ

MBZ
∼ 112 (106)MeV. (71)
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Just as with quarks, the second (T-duality kind) seesaw relation then yields the electron
mass, given the calculated muon mass

me ∼
M2

BZ
mµ

∼ MBZ

√
MBZ
mτ

∼ 464 (511) keV. (72)

This proposal thus reproduces three generations of charged Standard Model fermions
and their masses, by the framework of the dual space, the modular spacetime Born geome-
try, and ultimately the metastring, i.e., by the intrinsic non-commutativity and covariant
T-duality of the metastring. The masses of the two lighter generations are induced from
the masses of the heaviest quarks and leptons, and are fixed by non-commutativity and
T-duality, in analogy with the reasoning that gives the Higgs mass and the cosmologi-
cal constant. All of these formulae are seesaw-like and contextual bounds. All of them
ultimately reduce to the IR size of the universe and the UV Planck length.

4.2.4. Neutrinos

Turning to neutrino masses and following Weinberg’s original dimension-5 operator
proposal in the Standard Model [52] (implying Majorana masses as well), we estimate the
heaviest (“tau”) neutrino mass to be

m3 ∼ m2
H/MSM ∼ (10−1 − 10−2) eV, (73)

where the SM scale MSM is given by a “would-be unification scale” of the SM couplings (as
indicated by RG equations), ∼ 1015−16 GeV, and mH is the Higgs scale of around 1 TeV. This
heaviest mass would once again be ultimately given in terms of the Hubble and the Planck
mass scales. The middle (“muon”) neutrino mass is then given by a (geometric mean)
seesaw formula, involving a low vacuum energy scale. Unlike all quarks and charged
leptons, the neutrinos do not get their masses from the Higgs mechanism, so the vacuum
scale cannot be MBZ (used for the charged fermions) and so must be the only other vacuum
scale: the cosmological vacuum scale associated with the cosmological constant (30):

m2 ∼
√

MΛ m3 = MΛ

√
m3

MΛ
∼ (10−2 − 10−2.5) eV. (74)

By comparison, a similar mass value has been argued [53] to be natural by examin-
ing a dimension-6 analogue of Weinberg’s operator, where a neutrino could acquires its
mass from a fermionic condensate controlled by the Bjorken–Zeldovich scale, with the

electroweak cutoff scale: m2 ∼ M3
BZ/m2

H
(65)∼
(61)

MΛ.
Finally, the lightest (“electron”) neutrino mass is then estimated by the (T-duality)

seesaw formula

m1 ∼ M2
Λ/m2 ∼ MΛ

√
MΛ

m3
∼ 10−4 eV. (75)

According to the Particle Data Group [51], the sum of neutrino masses (coming from
cosmology) is bounded by 10−1 eV, which is satisfied by the above normal hierarchy of
neutrino masses. Also, these values satisfy the constraint on the square of the differences of
masses, 10−2 eV2 − 10−5 eV2, coming from neutrino oscillation experiments.

All these estimates for quark lepton and Higgs masses and for the cosmological
constant mass scale are upper bounds; this bound for mu and md essentially being given
by MBZ. We thus expect an attractor mechanism (as in [54]) that would “glue” all these
values to their upper bounds. This would be consistent with the existence of a moduli-free
self-dual fixed point in metastring theory [22] that could explain the apparent criticality
of the Standard Model parameters [45]. Finally, all these bounds on the fermion masses,
much as the bounds on the cosmological constant and the Higgs mass, are determined in
terms of the Hubble and the Planck mass scales.
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4.3. Fermion Mixing

Next we comment on the CKM and PMNS mixing matrices, generally given in the
format [51]  c12 c13 s12 c13 s13 e−iδ

−s12 c23 − c12 s13 s23eiδ −c12 c23 − s12 s13 s23eiδ c13 s23
s12 s23 − c12 s13 c23 eiδ −c12 s23 − s12 s13 c23 eiδ c13 c23

, (76)

where cij
def
= cos(θij) and sij

def
= sin(θij), with 0 6 θij 6 π/2 and δ = δ13. In particular:

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

0.97373 0.2243 0.00382
0.221 0.975 0.0408

0.0086 0.0415 1.014

, (77)

with experimental errors in the last digits [51].

4.3.1. The CKM Matrix

Quark mixing can be usefully parametrized (in close analogy with Bjorken’s parametriza-
tion [17]) by taking the following three crucial entries (which are equivalent to the knowl-
edge of the above three independent angles) and by writing them in terms of the relevant
vacuum scale for the case of quark masses (the Bjorken–Zeldovich scale MBZ) and the
seesaw-like expression involving the masses of the bottom quark and the down, strange
and bottom quarks, respectively. The formulae listed below involve the product of two
seesaw factors, that is, the product of two square root factors of the ratio of two scales,
as explained in the beginning of this section. Explicitly, we have the following pattern,
with Bjorken’s values given in parentheses:

|Vcb| ∼
MBZ√
mb md

∼

√
MBZ
mb

√
MBZ
md
∼ 0.050 (0.041), ( θ23) (78)

(essentially, (MBZ/mb)
1/4) as well as

|Vtd| ∼
MBZ√
mb ms

∼

√
MBZ
mb

√
MBZ
ms
∼ 0.011 (0.008) ( θ12) (79)

(essentially, (MBZ/mb)
3/4) and finally

|Vub| ∼
MBZ√
mb mb

∼

√
MBZ
mb

√
MBZ
mb
∼ 0.002 (0.003) ( θ13) (80)

(essentially, MBZ/mb). Comparing with (76) and (77): first, θ13 is determined from (80);
with that, θ23 is determined from (78) second, and with those, θ12 is determined from (79).
As in Bjorken’s parametrization (where (78) is replaced by (MBZ/mb)

1/2), these values are
quite good when compared to experiment, except perhaps for the first value which was
dependent on the value of the down quark, that is, according to our prescription off by an
approximate factor of 10 from the observed value.

4.3.2. The PMNS Matrix

This is parametrized following exactly the same pattern as the CKM matrix, with the
following replacement: As in the discussion of the neutrino masses, MBZ is replaced by
MΛ. Otherwise, the replacement of the bottom mass by m3 and the strange mass by m2
and finally, the down mass by m1 is obvious. We also take into account that m3 is known
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up to a factor of 1/10 in the above formula for the heaviest neutrino mass (we include the
observed data in parentheses [51,55])

|Uµ3| ∼
MΛ√
m3m1

∼

√
MΛ

m3

√
MΛ

m1
∼ 0.50, (0.63) (81)

(essentially, (MΛ/m3
(73)∼ MSM/MP)

1/4) as well as

|Uτ1| ∼
MΛ√
m3m2

∼

√
MΛ

m3

√
MΛ

m2
∼ 0.13, (0.26) (82)

(essentially, (MΛ/m3 ∼ MSM/MP)
3/4) and finally

|Ue3| ∼
MΛ√
m3m3

∼

√
MΛ

m3

√
MΛ

m3
∼ 0.06, (0.14) (83)

(essentially, MΛ/m3 ∼ MSM/MP). These values, are to first order, quite good when
compared to the observed data [51]. (Bjorken has different masses for neutrinos and their
PMNS matrix is of the tri-bimaximal type [18]. In their treatment of the neutrino sector the
characteristic scale is still MBZ.)

We observe that even though the numerical values of the CKM and PMNS matrices are
quite different, the underlying pattern in both cases is the same. (However, we do not know
the precise origin of this underlying pattern. For that we would need a fermionic analog
of the Abel–Dienes stringy formula for the Higgs mass [16].) The crucial difference stems
from the appearance of MΛ for neutrinos in place of MBZ for quarks and charged leptons.
Moreover, the heaviest neutrino is determined by the Weinberg dimension 5 operator, but
the other two masses follow the patterns found in the case of quarks and charged leptons,
except for the crucial MBZ → MΛ replacement. In our approach, the CP violating phases
would come from the SM calculation and the dual SM sector as well from the intrinsic CP
violation of quantum gravity in the non-perturbative metastring theory.

In conclusion to this section, note that the Standard Model of the observed kind
(and not its SuSy extension) could be obtained by understanding the gauge groups as
general quantum phases. Recall that the E8 prediction of string theory as an overarching
gauge group could be understood from the point of view of octo-octonionic geometry,
which by dimensional reduction to real-octonionic geometry gives the geometry of the
unique octonionic quantum theory captured by the octonionic projective geometry with
the isometry group of F4/SO(9), whereas SO(9) is the general quantum phase, that upon
its compatibility with the 4 dimensional Poincare group leads to the Standard Model
gauge group [56,57]. This is different from the usual GUT logic, but it points to a possible
robustness of the Standard Model group (and its dual Standard Model of the dark sector,
coming from the other E8 in heterotic string theory). Note that this fits within the metastring
formulation, because the heterotic string is constructed from the bosonic string in 26
dimensions [58], and the metastring is just its T-dually covariant chiral (phase space-like)
formulation.

Finally, from this bottom-up point of view (our discussion has been in some sense
top-down) a modular quantization of the SM, coupled to the modular extension of general
relativity, should give the structure that is implied by the top-down quantum gravity/string
theory approach. We hope to return to such a deeper investigation of this approach in
the future.

5. Conclusions and Outlook

In this paper, we have detailed a new argument regarding the calculation of the
cosmological constant, Λcc. In particular, we have discussed the seesaw formula for the
associated length scale, lcc (30), which exhibits UV/IR mixing, and that lcc is radiatively
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stable and natural. We have also shown how the logic of this resolution of the cosmological
constant problem, with input from the Abel–Dienes stringy calculation, extends naturally
to the Higgs mass (61). Finally, we have shown that the same idea applies to the masses
and mixing of quarks and leptons. One important new ingredient in this reasoning is
quantum contextuality (instead of the standard anthropic reasoning) which stems from the
string/modular QFT vacuum being governed by Born geometry based on the modular
phase space view of quantum spacetime à la [5]. The interplay of phase space (and Born
geometry), the Bekenstein bound, the mixing between ultraviolet (UV) and infrared (IR)
physics and modular invariance in string theory (in its intrinsically non-commutative,
metastring formulation) was emphasized throughout the article.

In particular, we have repeatedly stressed the purely stringy or quantum-gravity-
related effects which are fundamentally rooted in the properties of quantum spacetime.
Such effects are not part of the usual EFT lore, largely because EFT lives in classical space-
time. This might be disturbing to some readers, given the success of EFT. Consequently, we
have argued that EFT results, dressed up with holography, can be recovered in a singular
limit of our computation of the vacuum energy. Given the fact that the usual compactifica-
tion approach to string theory, and the associated string landscape and swampland [3,6,59],
are closely tied to EFT, we conjecture that the application of holography in that context,
and a seesaw relation between what are usually considered UV and IR cut-offs in EFT [27],
could lead to a top-down realization of our computations and results, at a critical self-dual
point (without moduli) which would hide the fundamental aspects of our discussion:
modular spacetime, Born geometry and the metastring formulation. The four-dimensional
nature of our discussion may in this approach be related to the fundamental properties of
strings at high temperature in the early universe [60]. This could be then generalized to the
computations of the Higgs mass and the masses and mixing matrices of quarks and leptons,
as discussed in this paper, revealing, perhaps, an attractor mechanism in string landscape
and swampland. In conclusion, we list some further phenomenological implications of
our work.

Our calculation of the cosmological constant introduces a new quantum number (22),
N, which may be probed in gravitational waves, via gravitational wave “echoes”: In
particular, our result (26) relates the number of phase space boxes to the Bekenstein bound,
N ∼ l2/l2

P. It can therefore be used for black holes, where l → lbh is the size of the black hole
horizon, where it is naturally related [61]. In this case, the relevant quantization number,
Nbh ∼ l2

bh/l2
P, for black holes is of the order of 1080, and a possible observable feature of

this quantization, l2
bh ∼ Nl2

P, might be via the “gravitational wave echoes” [62,63]—in the
“quantum chaos” phase, given the enormous value of N.

Notably, the crucial seesaw formula, δ ∼
√

lIR lUV , (with a characteristic IR length-
scale lIR and the characteristic UV length-scale lUV) appears in other related contexts, such
as the gravitational wave interferometry probes of quantum gravity; see, for example, [64].
In that context, our vacuum energy calculation can be performed on the level of the causal
diamond of the interferometer (lIR being given by the length of the interferometer and
lUV by the Planck length), leading to the same seesaw formula, except interpreted as an
empirical probe of modular spacetime. In that case, instead of the characteristic IR length
scale of 10−4m, one would have the scale of 10−16m.

Furthermore, seesaw formulae for the SM fermion masses follow from the same rea-
soning that lead to the cosmological constant (30) and the Higgs mass (61) seesaw formulae.
In that situation, a new Bjorken–Zeldovich scale can be deduced (by analogous reason-
ing) which enters into Bjorken-like seesaw formulae for all masses of charged elementary
fermions. (In a fermionic (60)-like formula, the Xψ-insertion term must be proportional
to gauge charges, and so is absent for neutrinos. In any explicit model-dependent cal-
culation such as [46], the RG equations “tie” the heaviest charged fermion masses to the
electroweak scale, while for neutrinos the relevant RG equations extend the UV scale to
MSM ∼ 1015−16 GeV.) This approach seems to proffer a new view on the observed three
generations of quarks and leptons as well as their respective mixing matrices. Here, we



Symmetry 2023, 15, 1660 22 of 25

highlight an analogy with critical phenomena and the mean field/Landau–Ginzburg (LG)
approach which gives “square root type” formulae, or the critical index of 1/2, without any
anomalous dimensions, and which are, in turn, introduced by a more precise renormaliza-
tion group (RG) treatment of the LG-like description. In our case, the analogue of LG is
the modular field theory extension of the SM and gravity. Our formulae should therefore
be understood in the “mean field theory sense”. In the context of modular field theory
(a consistent limit of metastring theory), we also expect a double RG that is sensitive both
to UV and IR scales [47]. Also, all these formulae can ultimately be rewritten using only
the Hubble (IR) scale M and the Planck (UV) scale MP. These are the only two scales that
appear in all expressions for the cosmological constant, the Higgs mass and the masses and
mixing of quarks and leptons.

We also point out that in the visible sector, we ultimately have to work with modular
fields φ(x, x̃) [36]. This is not so in the Standard Model (SM) as it is understood at the
moment, but is implied by the modular polarization and our argument about the bounds of
fermion masses. Thus, the modular SM fields should know about the symplectic and also
the biorthogonal structures associated with x and x̃. (This suggests a kind of generalized
mirror symmetry in the visible sector.) This is what induces two distinct seesaw formulae
(one non-commutative/symplectic, and one T-dual/biorthogonal), naturally yielding three
generations in x-spacetime (a heavy fermion and its two seesaw copies). The invisible
(dark) sector is spanned by the dual fields φ̃(x, x̃), which may well be subject to a third
quantization indeterminacy because of an induced non-commutativity between visible φ
and dual (invisible/dark) φ̃ fields. Thereby, while one may be able to deduce the bounds on
the parameters of the Standard Model (SM) in string theory/quantum gravity, the ensuing
indeterminacy in the parameters of the dual Standard Model (the dark sector) should then
be reciprocal to the relatively high precision (small indeterminacy) of the SM parameters.
(This would be in the spirit of the old “third quantization” proposal [65]).

We emphasize that metaparticles [37] (zero modes of the metastring) represent a
generic prediction of metastring theory and the dark matter sector can be seen as coming
from a dual Standard Model with a dynamics that is entangled/correlated with the visible
Standard Model [31]. The dark matter degrees of freedom are thus tied to the dual particles
to the visible SM particles [6]. Furthermore, this approach shows dark energy (modeled as
the cosmological constant) to be the curvature of the dual spacetime, and naturally small [6].
The natural relation between the dark matter and dark energy sectors in our formulation,
as well as the relation between the visible and dark sectors, offers, apart from quantum
contextuality, a new view on the coincidence problem in cosmology [3].

Finally, perhaps the most dramatic prediction of dynamical Born geometry implies
“gravitizing the quantum” [32–34], and the presence of intrinsic and irreducible triple (and
higher-order) interference (à la Sorkin [66]) in the presence of gravity; see [42]. This would
be a new quantum probe of quantum spacetime and a new avenue in quantum gravity
phenomenology [67,68].

In conclusion, responding to Weinberg’s closing thoughts [4], we believe that the ideas,
arguments, calculations and results discussed in this paper will inspire the much needed
in-depth research devoted to developing all these fundamental aspects of particle physics,
quantum gravity and quantum gravity phenomenology.

Author Contributions: Validation, P.B., T.H. and D.M.; Formal analysis, P.B., T.H. and D.M.; Writing—
original draft, P.B., T.H. and D.M.; Writing—review & editing, P.B., T.H. and D.M. All authors have
read and agreed to the published version of the manuscript.

Funding: P.B. is supported in part by the Department of Energy grant DE-SC0020220. D.M. is
supported by the Julian Schwinger Foundation and the U.S. Department of Energy under contract
DE-SC0020262.

Data Availability Statement: Not applicable.



Symmetry 2023, 15, 1660 23 of 25

Acknowledgments: First and foremost, we are grateful to Prof. Steven Weinberg, our teacher, role
model and great influence, certainly well beyond our shared time in their Theory Group at UT, Austin,
as graduate students (PB and DM) and as a postdoc (TH). We should like to hope that he would be
pleased with our efforts reported here. Many thanks to L. Freidel, J. Kowalski-Glikman and R. G. Leigh
as well as A. Geraci, and D. Mattingly for insightful collaborations and illuminating discussions.
We also thank S. Abel, N. Afshordi, L. Boyle, T. Curtright, K. Dienes, P. Draper, E. Guendelman,
L. Hardy, Y. H. He, J. Heckman, T. Jacobson, T. Kephart, J. Khoury, L. Lehner, E. Livine, A. Mazumdar,
L. McAllister, H. Päs, P. Ramond, M. M. Sheikh-Jabbari, D. Stojkovic, T. Takeuchi and N. Turok for
interesting questions and comments. PB thanks the Simons Center for Geometry and Physics and the
CERN Theory Group, for their hospitality. TH is grateful to the Department of Physics, University of
Maryland, and the Physics Department of the University of Novi Sad, Serbia, for recurring hospitality
and resources. DM thanks Perimeter Institute for hospitality and support. We also thank E. Livine
and the International Society for Quantum Gravity, T. Curtright and E. Guendelman and the BASIC
conference series and S. Abel and the CERN meeting on Exotic approaches to the hierarchy problems
for providing us with exciting opportunities to present this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1–23. [CrossRef]
2. Weinberg, S. Anthropic Bound on the Cosmological Constant. Phys. Rev. Lett. 1987, 59, 2607. [CrossRef]
3. Polchinski, J. The Cosmological Constant and the String Landscape. In Proceedings of the 23rd Solvay Conference in Physics: The

Quantum Structure of Space and Time, Brussels, Belgium, 1–3 December 2006; Volume 3. [CrossRef]
4. Weinberg, S. Models of Lepton and Quark Masses. Phys. Rev. D 2020, 101, 035020. [CrossRef]
5. Freidel, L.; Kowalski-Glikman, J.; Leigh, R.G.; Minic, D. The Vacuum Energy Density and Gravitational Entropy. arXiv 2023,

submitted. arXiv:2212.00901. [CrossRef]
6. Berglund, P.; Hübsch, T.; Minic, D. On de Sitter Spacetime and String Theory. arXiv 2023, in press. arXiv:2212.06086. [CrossRef]
7. Minic, D. The Vacuum Energy Problem in Quantum Gravity and the Masses of Elementary Particles. arXiv 2023, submitted.

arXiv:2305.12593. [CrossRef]
8. Freidel, L.; Leigh, R.G.; Minic, D. Born Reciprocity in String Theory and the Nature of Spacetime. Phys. Lett. 2014, B730, 302–306.

[CrossRef]
9. Berglund, P.; Hübsch, T.; Minic, D. Mirror Symmetry, Born Geometry and String Theory. In Proceedings of the Nankai Symposium

on Mathematical Dialogues: In Celebration of S.-S. Chern’s 110th Anniversary, Singapore, 1–6 September 2022; He, Y.-H., Ge,
M.-L., Bai, C.-M., Bao, J., Hirst, E., Eds.; Springer: Singapore, 2022. [CrossRef].

10. Bekenstein, J.D. A Universal Upper Bound on the Entropy to Energy Ratio for Bounded Systems. Phys. Rev. D 1981, 23, 287.
[CrossRef]

11. ’t Hooft, G. Dimensional reduction in quantum gravity. Conf. Proc. C 1993, 930308, 284–296. [CrossRef]
12. Susskind, L. The World as a hologram. J. Math. Phys. 1995, 36, 6377–6396. [CrossRef]
13. Fischler, W.; Susskind, L. Holography and cosmology. arXiv 2023, submitted. arXiv:hep-th/9806039. [CrossRef]
14. Polchinski, J. String Theory. An Introduction to the Bosonic String; Cambridge Monographs on Mathematical Physics; Cambridge

University Press: Cambridge, UK, 2007; Volume 1. [CrossRef]
15. Polchinski, J. String Theory. An Introduction to the Bosonic String; Cambridge Monographs on Mathematical Physics; Cambridge

University Press: Cambridge, UK, 2007; Volume 2. [CrossRef]
16. Abel, S.; Dienes, K.R. Calculating the Higgs mass in string theory. Phys. Rev. D 2021, 104, 126032. [CrossRef]
17. Bjorken, J. Darkness: What comprises empty space? Ann. Phys. 2013, 525, A67–A79. [CrossRef]
18. Bjorken, J.D. Masses and Mixings of Quarks and Leptons Slides, Last Checked: November 2022. Available online: https://nebula.

wsimg.com/44afe7e009f4c9854e6dc1b8887bdbc8?AccessKeyId=D5AC63041E00FF1ED0E8&disposition=0&alloworigin=1 (ac-
cessed on 15 August 2023).

19. Donoghue, J.F. Cosmological constant and the use of cutoffs. Phys. Rev. D 2021, 104, 045005. [CrossRef]
20. Polchinski, J. Evaluation of the One Loop String Path Integral. Commun. Math. Phys. 1986, 104, 37. [CrossRef]
21. Freidel, L.; Kowalski-Glikman, J.; Leigh, R.G.; Minic, D. On the Inevitable Lightness of Vacuum. arXiv 2023, submitted.

arXiv:2303.17495. [CrossRef]
22. Freidel, L.; Leigh, R.G.; Minic, D. Metastring Theory and Modular Space-time. J. High Energy Phys. 2015, 6, 006. [CrossRef]
23. Freidel, L.; Leigh, R.G.; Minic, D. Modular spacetime. Int. J. Mod. Phys. 2015, D24, 1544028. [CrossRef]
24. Freidel, L.; Leigh, R.G.; Minic, D. Quantum Spaces are Modular. Phys. Rev. 2016, D94, 104052. [CrossRef]
25. Weinberg, S. Problems in Gauge Field Theories. In Proceedings of the 17th International Conference on High-Energy Physics,

London, UK, 1–10 July 1974; Volume III, pp. 59–65.
26. Weinberg, S. Phenomenological Lagrangians. Phys. A 1979, 96, 327–340. [CrossRef]

http://doi.org/10.1103/RevModPhys.61.1
http://dx.doi.org/10.1103/PhysRevLett.59.2607
http://arxiv.org/abs/hep-th/0603249
http://dx.doi.org/10.1103/PhysRevD.101.035020
http://arxiv.org/abs/2212.00901
http://arxiv.org/abs/2212.06086
http://arxiv.org/abs/2305.12593
http://dx.doi.org/10.1016/j.physletb.2014.01.067
http://arxiv.org/abs/2111.14205
http://dx.doi.org/10.1103/PhysRevD.23.287
http://arxiv.org/abs/gr-qc/9310026
http://dx.doi.org/10.1063/1.531249
http://arxiv.org/abs/hep-th/9806039
http://dx.doi.org/10.1017/CBO9780511816079
http://dx.doi.org/10.1017/CBO9780511618123
http://dx.doi.org/10.1103/PhysRevD.104.126032
http://dx.doi.org/10.1002/andp.201300724
https://nebula.wsimg.com/44afe7e009f4c9854e6dc1b8887bdbc8?AccessKeyId=D5AC63041E00FF1ED0E8&disposition=0&alloworigin=1
https://nebula.wsimg.com/44afe7e009f4c9854e6dc1b8887bdbc8?AccessKeyId=D5AC63041E00FF1ED0E8&disposition=0&alloworigin=1
http://dx.doi.org/10.1103/PhysRevD.104.045005
http://dx.doi.org/10.1007/BF01210791
http://arxiv.org/abs/2303.17495
http://dx.doi.org/10.1007/JHEP06(2015)006
http://dx.doi.org/10.1142/S0218271815440289
http://dx.doi.org/10.1103/PhysRevD.94.104052
http://dx.doi.org/10.1016/0378-4371(79)90223-1


Symmetry 2023, 15, 1660 24 of 25

27. Cohen, A.G.; Kaplan, D.B.; Nelson, A.E. Effective field theory, black holes, and the cosmological constant. Phys. Rev. Lett. 1999, 82,
4971–4974. [CrossRef]

28. Weinberg, S. The Quantum Theory of Fields—Foundations; Cambridge University Press: Cambridge, MA, USA, 1995; Volume 1.
29. Zee, A. Quantum Field Theory in a Nutshell, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2010.
30. Coleman, S.R.; Weinberg, E.J. Radiative Corrections as the Origin of Spontaneous Symmetry Breaking. Phys. Rev. D 1973, 7,

1888–1910. [CrossRef]
31. Berglund, P.; Hübsch, T.; Minic, D. String theory, the dark sector and the hierarchy problem. LHEP 2021, 2021, 186. [CrossRef]
32. Freidel, L.; Leigh, R.G.; Minic, D. Quantum Gravity, Dynamical Phase Space and String Theory. Int. J. Mod. Phys. 2014, D23,

1442006. [CrossRef]
33. Berglund, P.; Freidel, L.; Hübsch, T.; Kowalski-Glikman, J.; Leigh, R.G.; Mattingly, D.; Minic, D. Infrared Properties of Quantum

Gravity: UV/IR Mixing, Gravitizing the Quantum—Theory and Observation. In Proceedings of the 2021 US Community Study
on the Future of Particle Physics (Snowmass 2021), Seattle, WA, USA, 17–26 July 2022. [CrossRef]

34. Berglund, P.; Hübsch, T.; Mattingly, D.; Minic, D. Gravitizing the Quantum. Int. J. Mod. Phys. D 2022, 31, 2242024. [CrossRef]
35. Freidel, L.; Leigh, R.G.; Minic, D. Intrinsic non-commutativity of closed string theory. J. High Energy Phys. 2017, 09, 060. [CrossRef]
36. Freidel, L.; Leigh, R.G.; Minic, D. Noncommutativity of closed string zero modes. Phys. Rev. 2017, D96, 066003. [CrossRef]
37. Freidel, L.; Kowalski-Glikman, J.; Leigh, R.G.; Minic, D. Theory of metaparticles. Phys. Rev. D 2019, 99, 066011. [CrossRef]
38. Freidel, L.; Kowalski-Glikman, J.; Leigh, R.G.; Minic, D. Quantum Gravity Phenomenology in the Infrared. arXiv 2023, in press.

arXiv:2104.00802. [CrossRef]
39. Aharonov, Y.; Rohrlich, D. Quantum Paradoxes: Quantum Theory for the Perplexed; Wiley-VCH: Hoboken, NJ, USA, 2005.
40. Barnes, E.; Heremans, J.J.; Minic, D. Non–Fermi Liquids, Strange Metals and Quasi-metaparticles. arXiv 2023, in press.

arXiv:2111.10479. [CrossRef]
41. Berglund, P.; Hübsch, T.; Minic, D. Stringy Bubbles Solve de Sitter Troubles. Universe 2021, 7, 363. [CrossRef]
42. Berglund, P.; Geraci, A.; Hübsch, T.; Mattingly, D.; Minic, D. Triple Interference, Non-linear Talbot Effect and Gravitization of the

Quantum. arXiv 2023, accepted. arXiv:2303.15645. [CrossRef]
43. Berglund, P.; Hübsch, T.; Minic, D. Exponential hierarchy from spacetime variable string vacua. J. High Energy Phys. 2000, 9, 015.

[CrossRef]
44. Berglund, P.; Hübsch, T.; Minic, D. On Stringy de Sitter Spacetimes. J. High Energy Phys. 2019, 2019, 166. [CrossRef]
45. Froggatt, C.D.; Nielsen, H.B. Standard model criticality prediction: Top mass 173 +−5-GeV and Higgs mass 135 +−9-GeV. Phys.

Lett. B 1996, 368, 96–102. [CrossRef]
46. Faraggi, A.E. Hierarchical top–bottom mass relation in a superstring derived standard-like model. Phys. Lett. B 1992, 274, 47–52.

[CrossRef]
47. Freidel, L.; Leigh, R.G.; Minic, D. Modular Spacetime and Metastring Theory. J. Phys. Conf. Ser. 2017, 804, 012032. [CrossRef]
48. Chan, H.; Tsou, S.; Tsou, S.T. The Framed Standard Model (II)—A First Test against Experiment. Int. J. Mod. Phys. A 2015, 30,

1530060. [CrossRef]
49. Donoghue, J.F.; Dutta, K.; Ross, A. Quark and lepton masses and mixing in the landscape. Phys. Rev. D 2006, 73, 113002.

[CrossRef]
50. Khoury, J.; Wong, S.S.C. Bayesian Reasoning in Eternal Inflation: A Solution to the Measure Problem. arXiv 2023, in press.

arXiv:2205.11524. [CrossRef]
51. Workman, R.L.; Khoury, J.; Particle Data Group. Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [CrossRef]
52. Weinberg, S. Baryon and Lepton Nonconserving Processes. Phys. Rev. Lett. 1979, 43, 1566–1570. [CrossRef]
53. Aydemir, U. A scale at 10 MeV, gravitational topological vacuum, and large extra dimensions. Universe 2018, 4, 80. [CrossRef]
54. Argyriadis, J.-A.; He, Y.-H.; Jejjala, V.; Minic, D. Dynamics of genetic code evolution: The emergence of universality. arXiv 2023, in

press. arXiv:1909.10405. [CrossRef]
55. Esteban, I.; Gonzalez-Garcia, M.C.; Maltoni, M.; Schwetz, T.; Zhou, A. The fate of hints: Updated global analysis of three-flavor

neutrino oscillations. J. High Energy Phys. 2020, 2020, 178. [CrossRef]
56. Günaydin, M.; Gürsey, F. Quark Statistics and Octonions. Phys. Rev. D 1974, 9, 3387. [CrossRef]
57. Günaydin, M.; Gursey, F. Quark structure and octonions. J. Math. Phys. 1973, 14, 1651–1667. [CrossRef]
58. Casher, A.; Englert, F.; Nicolai, H.; Taormina, A. Consistent Superstrings as Solutions of the D=26 Bosonic String Theory. Phys.

Lett. B 1985, 162, 121–126. [CrossRef]
59. Agmon, N.B.; Bedroya, A.; Kang, M.J.; Vafa, C. Lectures on the string landscape and the Swampland. arXiv 2023, in press.

arXiv:2212.06187. [CrossRef]
60. Brandenberger, R.H.; Vafa, C. Superstrings in the Early Universe. Nucl. Phys. 1989, B316, 391–410. [CrossRef]
61. Bekenstein, J.D.; Mukhanov, V.F. Spectroscopy of the quantum black hole. Phys. Lett. B 1995, 360, 7–12. [CrossRef]
62. Wang, Q.; Oshita, N.; Afshordi, N. Echoes from Quantum Black Holes. Phys. Rev. D 2020, 101, 024031. [CrossRef]
63. Cardoso, V.; Foit, V.F.; Kleban, M. Gravitational wave echoes from black hole area quantization. JCAP 2019, 08, 006. [CrossRef]
64. Verlinde, E.P.; Zurek, K.M. Observational signatures of quantum gravity in interferometers. Phys. Lett. B 2021, 822, 136663.

[CrossRef]
65. Strominger, A. Third quantization. Phil. Trans. Roy. Soc. Lond. 1989, A329, 395. Available online: https://www.jstor.org/stable/38

273 (accessed on 15 August 2023).

http://dx.doi.org/10.1103/PhysRevLett.82.4971
http://dx.doi.org/10.1103/PhysRevD.7.1888
http://dx.doi.org/10.31526/LHEP.2021.186
http://dx.doi.org/10.1142/S0218271814420061
http://dx.doi.org/10.48550/arXiv.2202.06890
http://dx.doi.org/10.1142/S021827182242024X
http://dx.doi.org/10.1007/JHEP09(2017)060
http://dx.doi.org/10.1103/PhysRevD.96.066003
http://dx.doi.org/10.1103/PhysRevD.99.066011
http://arxiv.org/abs/2104.00802
http://arxiv.org/abs/2111.10479
http://dx.doi.org/10.3390/universe7100363
http://arxiv.org/abs/2303.15645
http://dx.doi.org/10.1088/1126-6708/2000/09/015
http://dx.doi.org/10.1007/JHEP12(2019)166
http://dx.doi.org/10.1016/0370-2693(95)01480-2
http://dx.doi.org/10.1016/0370-2693(92)90302-K
http://dx.doi.org/10.1088/1742-6596/804/1/012032
http://dx.doi.org/10.1142/S0217751X15300604
http://dx.doi.org/10.1103/PhysRevD.73.113002
http://arxiv.org/abs/2205.11524
http://dx.doi.org/10.1093/ptep/ptac097
http://dx.doi.org/10.1103/PhysRevLett.43.1566
http://dx.doi.org/10.3390/universe4070080
http://arxiv.org/abs/1909.10405
http://dx.doi.org/10.1007/JHEP09(2020)178
http://dx.doi.org/10.1103/PhysRevD.9.3387
http://dx.doi.org/10.1063/1.1666240
http://dx.doi.org/10.1016/0370-2693(85)91072-X
http://arxiv.org/abs/2212.06187
http://dx.doi.org/10.1016/0550-3213(89)90037-0
http://dx.doi.org/10.1016/0370-2693(95)01148-J
http://dx.doi.org/10.1103/PhysRevD.101.024031
http://dx.doi.org/10.1088/1475-7516/2019/08/006
http://dx.doi.org/10.1016/j.physletb.2021.136663
https://www.jstor.org/stable/38273
https://www.jstor.org/stable/38273


Symmetry 2023, 15, 1660 25 of 25

66. Sorkin, R.D. Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 1994, 9, 3119–3128. [CrossRef]
67. Hossenfelder, S. Minimal Length Scale Scenarios for Quantum Gravity. Living Rev. Rel. 2013, 16, 2. [CrossRef]
68. Addazi, A.; Sorkin, R.D. Quantum Gravity Phenomenol. Daw. Multi-Messenger Era—A Review. Prog. Part. Nucl. Phys. 2022, 125,

103948. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1142/S021773239400294X
http://dx.doi.org/10.12942/lrr-2013-2
http://dx.doi.org/10.1016/j.ppnp.2022.103948

	Introduction
	The Cosmological Constant
	The Problem
	Quantum Field Theory
	String Theory

	Resolving the Problem
	Phase Space
	Holography

	The Cosmological Constant in QFT and Phase Space
	Realization in String Theory

	The Cosmological Constant and the Higgs Mass
	Cosmological Scale
	Higgs Mass
	Summary

	On the Masses and Mixing of Quarks and Leptons
	General Comments
	Criticality
	Seesaw Structure

	Masses
	The Bjorken–Zeldovich Scale
	Quarks
	Charged Leptons
	Neutrinos

	Fermion Mixing
	The CKM Matrix
	The PMNS Matrix


	Conclusions and Outlook
	References

