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Abstract: Boron-doped organic compounds display unique properties as a result of the presence of
an empty p orbital on boron and the ability to switch between a trigonal planar and a tetrahedral
geometry. In recent years, they have found several applications not only as synthetic reagents, e.g., in
the Suzuki–Miyaura reaction, but also as pharmaceuticals and as specialized materials due to their
optical and electronic properties. Some boron compounds may exist as atropisomers, and these
rotamers may have different properties according to their sense of rotation. Synthetic strategies to
separate them and, more recently, to obtain them in an asymmetric manner are becoming popular. In
this review, we survey the literature on this emerging field of research.

Keywords: boron; atropisomer; rotamer; stereoisomer; chiral; borazine; azaborine; azaborinine;
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1. Introduction

Organoboron compounds have many applications, including pharmaceuticals, ad-
vanced materials, and even reagents for synthesis [1–7]. The same can be said of the
azaborines, boron, and nitrogen-containing heterocyclic analogs of benzene and other
aromatic hydrocarbons [8–11]. The versatility of boron lies in its chemical properties,
namely its electron deficiency and its coordination behavior, that allow a change from a
three-coordinate trigonal planar geometry to a four-coordinate tetrahedral geometry upon
coordination to a suitable heteroatom.

The hydrolytic and oxidative sensitivity of many boron reagents were initially an
obstacle [4], but this has now been surpassed by the development of stable reagents and
robust reactions, such as the palladium-catalyzed borylation or the Suzuki–Miyaura cross-
coupling reaction [6,7]. Boron compounds displaying central chirality are well-known,
although still few in number [12], with the first example of asymmetric synthesis, that
of a highly fluorescent chiral boron dipyrrole (a BODIPY), dating back to 2021 [13]. The
reason for this slow progress is the fact that the synthesis of compounds containing a boron
stereocenter is quite challenging since ligands attached to a tetracoordinate boron atom are
labile, which makes it configurationally unstable [12,14,15].

Axial chirality is even rarer [16], and the first example of an atropselective synthe-
sis, described in Section 3 of this review, was only reported in 2020 [17]. Axial chiral-
ity has emerged as an important field of research in recent years, since the successes
attained in asymmetric synthesis by C2-symmetric chiral ligands such as BINOL (1,1′-bi-
2-naphthol) [18], BINAP (2,2′-bis(diphenylphosphino)-1,1′-binaphyl) [19–21] or BINAM
(1,1′-binaphyl-2,2′-diamine) [22] and C2-symmetric organocatalysts like the BINOL-derived
chiral phosphoric acids [23,24] or the even more acidic chiral binaphthyl-based disulfon-
imides [25,26]. Other aspects that brought to light atropisomerism was the increased
awareness of the importance of rotational isomers in drug development [27–32], as well
as in materials science [33,34] since atropisomers can vary drastically in their biological
activities and functions.
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Atropisomerism is chirality in the absence of chiral centers, as shown in Figure 1a. Due
to a restriction of rotation around a single bond, the axis of rotation, different conformations
can be identified. A stable atropisomer has a very long lifetime due to the presence of a
very high energy barrier to rotation and, hence, racemization. An energy barrier of 24 kcal
mol−1 is sufficient to allow for the isolation of atropisomers at +25 ◦C [33,35], but if the
temperature is only raised by 20 ◦C, racemization can occur. Atropisomers can be divided
into groups according to their stabilities based on their half-life of racemization at 37 ◦C:
class 1 (t1/2 > 60 s), class 2 (t1/2 = 60 s to 4.5 years), and class 3 (t1/2 > 4.5 years) [36]. Class 3
atropisomers are those generally considered to be stable enough for drug development [33].
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Figure 1. (a) Atropisomers A and A′; (b) Typical bond lengths in known atropisomers.

The boron-carbon bond is, on average, longer than a carbon–carbon bond [Csp2–B
bond: 1.58 Å, Csp2–Csp2 bond: 1.46 Å (biaryl compounds)], which can partially explain
the low rotational barrier that exists in boron-containing compounds and this is probably
one of the reasons for the slow development of this field of research (Figure 1b)) [37]. Other
factors that have been suggested to account for the scarcity of examples of axially chiral
boron compounds are the limited structural variability of known B-aryl-1,2-azaborine
scaffolds and the lack of established chirality induction modes to obtain this class of
compounds [27]. Figure 2 shows examples of very well-known atropisomers and some
boron-containing analogs.

In this review, we survey the literature on the synthesis of atropisomers, specifically
those in which boron is one of the atoms in the axis of rotation. Included are both racemic
methods that produce atropisomers that could be clearly identified even if only partial
separation was achieved, as well as the more recent examples involving atropselective
synthesis catalyzed by a metal complexed to a chiral ligand or by an organocatalyst.
Atropisomers are classified in this review using the Cahn–Ingold–Prelog rules, i.e., as R (or
Ra) and S (or Sa), or by the rules of nomenclature applied for helicity, viz., as P (positive
helix) and as M (negative helix).



Symmetry 2024, 16, 11 3 of 17Symmetry 2024, 16, x FOR PEER REVIEW 3 of 18 
 

 

Ar

Ar Ar

N B N

Ar

Ar

R B

Ar

NH N

Ar

B
N

B

NN

N

Ar

(Hetero)biaryl atropisomers

Non-biaryl atropisomers

C-C C-N N-N C-B

C-C C-B C-N B-N C-B  
Figure 2. Examples of well-known atropisomers and rarer boron-containing analogs. The aryl sub-
stituents represented in blue may be identical or different. 

In this review, we survey the literature on the synthesis of atropisomers, specifically 
those in which boron is one of the atoms in the axis of rotation. Included are both racemic 
methods that produce atropisomers that could be clearly identified even if only partial 
separation was achieved, as well as the more recent examples involving atropselective 
synthesis catalyzed by a metal complexed to a chiral ligand or by an organocatalyst. At-
ropisomers are classified in this review using the Cahn–Ingold–Prelog rules, i.e., as R (or 
Ra) and S (or Sa), or by the rules of nomenclature applied for helicity, viz., as P (positive 
helix) and as M (negative helix). 

2. Synthesis of Atropisomeric Racemates with Atropisomer Resolution 
The fact that the empty p-orbital of a tricoordinate boron atom can overlap with an 

adjacent organic π-system (e.g., aryl, vinyl, and alkynyl) or heteroatom (e.g., O, N) has led 
to the development of many compounds with interesting properties [3,8–11]. This overlap 
leads to a strong π-acceptor effect and extension of π-conjugation, which have been 
demonstrated using 11B NMR, photophysical and electrochemical studies, and theoretical 
calculations. As a consequence, aromatic compounds doped with boron can have very 
desirable electronic and photophysical characteristics such as strong photoluminescence, 
electroluminescence, nonlinear optical properties, n-type semi-conductivity, etc. Other 
applications have been the development of sensory materials for anions, neutral nucleo-
philes such as toxic amines, or biologically relevant species such as saccharides or dopa-
mine. Even further, boron-doped polymers containing chromophores have found appli-
cations as luminescent materials for biomedical imaging and organic light-emitting de-
vices (OLEDs). 

A C–C bond and a B–N bond also have an isoelectronic relationship [8], a fact that 
has been known since the studies of Dewar and coworkers in the 1950s [38]. Hence, when 
a B–N unit is incorporated into an aromatic system, retention of the aromatic character is 
expected to occur, although this is still a subject of debate [8,39]. The B–N fragment is 
dipolar, but the B and N atoms are not significantly polarized due to the opposing σ- and 
π-electron polarizations, even though there is a net negative charge at nitrogen. Since the 
polarization is not significant, there is electron delocalization. The quintessential BN hy-
drocarbon analog is borazine (B3N3H6), commonly known as “inorganic benzene,” in 
which all C–C bonds have been substituted by B–N units. Some N-aryl and B-aryl substi-
tuted borazines, in which there is enough steric hindrance to prevent free rotation, have 
been known to exist as mixtures of atropisomers as far back as 1974 when B-tri-o-tolyl-N-

Figure 2. Examples of well-known atropisomers and rarer boron-containing analogs. The aryl
substituents represented in blue may be identical or different.

2. Synthesis of Atropisomeric Racemates with Atropisomer Resolution

The fact that the empty p-orbital of a tricoordinate boron atom can overlap with an
adjacent organic π-system (e.g., aryl, vinyl, and alkynyl) or heteroatom (e.g., O, N) has led
to the development of many compounds with interesting properties [3,8–11]. This over-
lap leads to a strong π-acceptor effect and extension of π-conjugation, which have been
demonstrated using 11B NMR, photophysical and electrochemical studies, and theoretical
calculations. As a consequence, aromatic compounds doped with boron can have very
desirable electronic and photophysical characteristics such as strong photoluminescence,
electroluminescence, nonlinear optical properties, n-type semi-conductivity, etc. Other ap-
plications have been the development of sensory materials for anions, neutral nucleophiles
such as toxic amines, or biologically relevant species such as saccharides or dopamine.
Even further, boron-doped polymers containing chromophores have found applications as
luminescent materials for biomedical imaging and organic light-emitting devices (OLEDs).

A C–C bond and a B–N bond also have an isoelectronic relationship [8], a fact that
has been known since the studies of Dewar and coworkers in the 1950s [38]. Hence, when
a B–N unit is incorporated into an aromatic system, retention of the aromatic character
is expected to occur, although this is still a subject of debate [8,39]. The B–N fragment
is dipolar, but the B and N atoms are not significantly polarized due to the opposing
σ- and π-electron polarizations, even though there is a net negative charge at nitrogen.
Since the polarization is not significant, there is electron delocalization. The quintessential
BN hydrocarbon analog is borazine (B3N3H6), commonly known as “inorganic benzene”,
in which all C–C bonds have been substituted by B–N units. Some N-aryl and B-aryl
substituted borazines, in which there is enough steric hindrance to prevent free rotation,
have been known to exist as mixtures of atropisomers as far back as 1974 when B-tri-o-
tolyl-N-triethylborazine trans-1 was described by Johnson and Mellon [40]. The rotational
isomerism was shown either with variable temperature NMR studies or multinuclear NMR.
Figure 3 shows borazine 1 as well as other examples of related compounds reported to exist
as atropisomeric mixtures [41–43].
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In 2012, Wagner and coworkers described the synthesis and characterization of boron-
doped tri(9,10-anthrylene)s which, when substituted at boron by tert-butyl groups, showed
atropisomerism due to restricted rotation about the exocyclic B–C bonds [44] (Figure 4). X-
ray crystallography suggested that the overall interactions between facing tert-butyl groups
in compound 8 are attractive and not repulsive. The atropisomers 8 and 8′ were stable
toward air and moisture for several hours, even in solution (Figure 4). The two rotamers of
the 9,10-dianthryl-9,10-dihydro-9,10-diboraanthracenes 8 could only be partially separated,
although not on a preparative scale, and hence their configurations could not be determined.
One of them (8′) could be obtained as single crystals. In the solid state, 8′ has Cs symmetry,
with the two symmetry-related 9-anthryl moieties nearly coplanar to each other (dihedral
angle = 2.3(1)◦).

The UV/Vis absorption spectra have broad charge-transfer bands in the range
λmax = 510–556 nm; the corresponding fluorescence bands show strong positive solva-
tochromism. This information suggests that the electronic spectra are dominated by twisted
intramolecular charge transfer (TICT) emissive properties due to interactions between the
anthryl donors and the DBA acceptor. The bright fluorescence obtained with solid samples
suggests they may be interesting for solid-state applications. Other related compounds
were prepared in this study, although the others did not show atropisomerism.

Diboron-doped analogs of alkenes, alkynes, and (hetero)aromatic molecules are par-
ticularly well suited to the activation of small molecules (e.g., H2, CO, CO2, O2, etc.) owing
to the cooperation of the two empty p orbitals at the boron atoms [45–47]. The reduction
of elemental chalcogens by low-valent diboron compounds allows for the atom-efficient
synthesis of boron-chalcogen heterocycles. Braunschweig and coworkers recently reported
the synthesis of bicyclic chalcogen-bridged compounds using this approach [48]. Thus,
the reaction of oxygen, elemental sulfur, and selenium with the doubly NHC-stabilised
9,10-diboraanthracene 11 yielded the endoperoxo-bridged 12 or S/Se-bridged bicyclic
compounds 13 or 14 of which atropisomers could be distinguished (Figure 5).
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Figure 5. The reactions of open-shell singlet biradical 9,10-diboraanthracene with O2, sulfur, or
selenium [48].

They are produced as a result of hindered rotation of the cyclic alkyl(amino)carbene
(CAAC) ligands about the B–C bonds caused by the edge-to-face CH/π interaction of two
ortho protons of the diboraanthracene core with the aromatic CAAC ligands (Figure 6).
Proof for this came from the strong magnetic shielding observed for these ortho protons,
which appear in the 4.45 to 4.70 ppm region of the 1H NMR spectrum, as well as by
the solid-state structures of the rac-13 or rac-14 derivatives. Variable temperature NMR
provided further information. An experiment on rac/meso-14-Se suggested that there
is a very high energetic barrier to the interconversion of the two atropisomers with a
coalescence temperature above 110 ◦C. In the case of the dioxygen derivatives, 1H NMR
spectroscopy revealed the presence of a 71:21:6:2 mixture of four different atropisomers,
which were identified through comparison with the NMR data of rac/meso-13/14-S/Se, as



Symmetry 2024, 16, 11 6 of 17

well as through other 1D and 2D NMR experiments and also from the solid-state crystal
structure of syn-12. However, unlike 13-S and 14-Se, 12-O2 was not stable in solution, but
decomposed slowly at room temperature into a mixture of unidentifiable compounds.
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Azaborines, substances partially substituted with boron and nitrogen, are aromatic
due to the isoelectronic relationship between the B-N and the C=C bonds. They have
attracted a great deal of attention in recent years due to their usefulness for potential use in
biomedical and materials science applications [8–11,33]. The usefulness of these compounds
stems from the fact that because the B–N bond is partially ionic, they possess at least local
dipole moments. These properties can alter both molecular and solid-state electronic
and optical properties since they modify the character of the frontier molecular orbitals
and intermolecular interactions in the solid phases. In 2016, Mancinelli and coworkers
reported the synthesis of azaborines containing a thermally stable boron-carbon chiral
axis [37]. Although single crystals of azaborines have seldom been reported up to this
date, they could be obtained for compound 17. Its X-ray structure revealed that the 2,1-
borazaronaphthalene ring is planar and the B–N bond length is 1.427 Å, shorter than the
C4–C5 bond length, which supports the existence of a double bond between nitrogen and
boron due to the presence of the nitrogen lone pair. A B–C3 bond length of 1.515 Å is
more consistent with a B–C single bond, and the C3–C4 length is typical of an isolated
C=C double bond. The structure adopts a twisted conformation, with the m-tolyl group
displaced from the azaborine plane, and the p-nitrophenyl group is almost perpendicular
to the same plane. Since the m-tolyl ring cannot develop conjugation with boron, a B–Cq
bond length of 1.581 Å is observed. The rotational barrier was calculated to be lower
than that of a classical aryl–aryl compound, i.e., 19.0 kcal mol−1 vs. 25.2 kcal mol−1 in
the C–C isostere. However, when the more highly hindered compound 23, containing a
2-methylnaphthyl substituent, was prepared, the two atropisomers could be effectively
resolved by CSP-HPLC (Figure 7). Using semi-preparative HPLC, good amounts of the
two atropisomers could be obtained. The absolute configuration was determined using
the Time-Dependent DFT (TD-DFT) simulation of the Electronic Circular Dichroism (ECD)
spectra. The B–aryl rotational barrier was determined to be 33.0 kcal mol−1 by monitoring
the racemization of an enantiopure sample at +130 ◦C and +140 ◦C in C2D2Cl4. The results
obtained in this study showed that the presence of the longer C-B bond has a large influence
on the thermal stability of C–B atropisomers since this energy barrier is about 12–13 kcal
mol−1 lower than in the corresponding C–C analogs of type 24 [37].
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Figure 7. Synthesis of atropisomeric azaborines: (a) 17 and (b) 23. CPME = cyclopentyl methyl
ether [37]. Compound 23 was obtained as a racemic mixture from racemic 22 or from either pure
(R,P)-22a or (S,P)-22b (prepared by chromatographic separation), but in every case it could be
obtained as enantiomerically pure (P)-23 after chromatographic chiral resolution.

In pursuit of new materials with unique functions, the Mancinelli group studied more
extended conjugated π-systems doped with boron. The replacement of one or more of
the carbon atoms in polycyclic aromatic hydrocarbons with boron decreases the HOMO–
LUMO gap, and molecules with chemiluminescent properties may be obtained or potential
semiconductors due to the unbalanced electron distribution. Azaborines have been shown
to be effective organic light-emitting diodes (OLEDs) and organic field-effect transistors
(OFETs) [49,50]. Moreover, 6-aryl-5,6-dihydrodibenzo[c,e][1,2]azaborinines, substances
which are analogs of 9-arylphenanthrene and 1-arylnaphthalenes but contain the B-N
moiety with a reverse geometry in relation to the azaborines described above, e.g., those in
Figure 7, were studied next [51]. When these compounds contain an unsymmetrically ortho-
substituted aryl ring attached to boron, this ring is also skewed out of the plane because
of the steric hindrance between the ortho substituent and the NH and CH in positions 5
and 7, and two enantiomeric conformations are possible. Four of these compounds were
prepared from 2,4,6-triphenylaniline 25 and 26 through a Friedel–Crafts reaction using
BCl3 and AlCl3, followed by a Grignard reaction to introduce the different aryl groups
(Figure 8). In the case of 27d, with the largest steric hindrance to rotation, thermally stable
atropisomers could be isolated by semi-preparative chiral HPLC. The racemization barrier
was determined to be 26.0 ± 0.2 kcal·mol−1 from the rate constants determined at the two
different temperatures and the Eyring equation, which corresponds to a half-life time of
30 days at +25 ◦C. DFT calculations supported this value; 25.3 kcal·mol−1 was obtained. A
∆∆G
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rac > 38 kcal·mol−1). This energy difference was attributed by the authors
to the presence of the longer C-B bond in comparison with C-C. The absolute configuration
of the two atropisomers of 27d was assigned using the simulation of the ECD spectrum
based on time-dependent density functional theory (TD-DFT).
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N-Heterocyclic carbene boranes (NHC-boranes) are another class of compounds that
have gained interest in recent years due to their chemical stability and interesting reactivity
profile. They are analogous to other Lewis acid/Lewis base complexes with boranes (ethers,
sulfides, amines, etc.), although they are much more stable [52]. They are also different
from their closest relatives, such as the amine and phosphineboranes. They are tetravalent,
neutral complexes with a rich chemistry. They were rare before 2008 [52].

In 2015, Curran and coworkers prepared some B,B-disubstituted 1,3-dimethylimidazol-
2-ylidene boranes and studied their properties using dynamic NMR spectroscopy,
e.g., 29–31 (Figure 9) [53]. Compounds with one primary and either one secondary or
one tertiary substituent on the boron atom were found to have substantial rotational barri-
ers due to slow rotation around the exocyclic N–B bond. They range from 56 kJ mol−1 with
a secondary boron substituent up to 75–86 kJ mol−1 when a tertiary boron substituent is
present. The highest was present when there were bonds to boron atoms bearing a thexyl
(1,1,2-trimethylpropyl) group. Stable atropisomers were formed.
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Most of the compounds prepared by Curran and coworkers had stereocenters at
boron, but because of the presence of a local plane of symmetry in the NHC ring, the
two rotamers were identical. If the symmetry of the NHC ring is broken, i.e., if the two
substituents, the imidazolyl nitrogen or the carbon substituents, are different, then the
slow rotation should produce diastereomers. Based on the results obtained for 29 and 30,
with the highest rotational barriers at 82 and 86 kJ mol−1 just below the level at which
chromatographic separation of atropisomers is possible at room temperature, a new, more
hindered borane was prepared, 31, in the hope of producing the desired atropisomers.
Moreover, 31 was obtained using 1-isopropyl-1-methylimadozol-2-ylidene borane as a
starting material through a two-step sequence of borenium-catalyzed hydroboration of
tetramethylethylene and Rh-catalyzed B–H insertion with ethyl diazoacetate. However,
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although 1H and 13C NMR analysis showed that this borane consisted of a rotamer 70/30
mixture, resolution at rt was not possible. Partial separation could be observed by HPLC,
with the atropisomers equilibrating partially during the time scale of the experiment. These
were the first measurements of rotation barriers for bonds between N-heterocyclic carbenes
and boron.

Non-biaryl atropisomers containing a C–B bond about which there is restricted rotation
were described by Chabaud and Pucheault in 2020 [54]. Produced by a reaction between
Grignards prepared from 1-bromo-2-alkylnaphthalenes 32 and an appropriate borane 33
(Figure 10), aminoarylboranes 34 may be seen as isosteres of vinyl styrene derivatives since
electron delocalization about the C-B bond is possible as in 34a and 34a′. The synthesis and
separation of this type of atropisomers had never been previously reported. The presence
of bulky substituents at both the dialkylaminoborane moiety and the aromatic ring was
necessary to restrict the rotation around the C–B bond. A variable temperature NMR
spectroscopic analysis of 34a in [D6]DMSO showed no coalescence even at 105 ◦C, which
indicated that the enantiomers could be separated, and this was indeed accomplished by
performing the chromatography at 0 ◦C. The kinetics for racemization were subsequently
determined using circular dichroism spectroscopy, following the decay at λmax of its chi-
roptical signal in hexane at 10 ◦C. A half-life for racemization of 5 min was calculated, with
a barrier of ∆Grac = 83.4 kJ mol−1. Other aminoboranes could be prepared in good to high
yields and those bearing bulky substituents, i.e., Bn, i-Pr, and Et, next to the aminoborane
moiety, displayed atropisomerism. In contrast, when a methoxy group was present, rapid
interconversion took place, with a 5 ms half-life at 10 ◦C. This observation is probably
due to the smaller size of methoxy versus methyl and/or lone pair delocalization into the
empty orbital of the boron atom, which may stabilize the transition state for atropisomer
interconversion. More crowded aminoboranes, e.g., 34c, obtained by changing DIPAB by
dicyclohexylaminoborane, showed an increased ∆Grac

‡ value up to 92.6 kJ mol−1 with a
half-life for racemization of 244 min at 10 ◦C. DFT calculations supported the experimental
results obtained.

Symmetry 2024, 16, x FOR PEER REVIEW 10 of 18 
 

 

size of methoxy versus methyl and/or lone pair delocalization into the empty orbital of 
the boron atom, which may stabilize the transition state for atropisomer interconversion. 
More crowded aminoboranes, e.g., 34c, obtained by changing DIPAB by 
dicyclohexylaminoborane, showed an increased ΔGrac‡ value up to 92.6 kJ mol−1 with a 
half-life for racemization of 244 min at 10 °C. DFT calculations supported the experimental 
results obtained. 

Br
R1

(13 examples)

up to 92% yield
32

G   = 83.4 kcal mol–1Δ ‡

+ H3B N
R3

R2

H

33

B
R1

N R3
R2

H

34

Mg (1.3 equiv.)
THF, 40 oC, 4 h

B
NH B

NH

34a 34a´

½t     5 min, 10 oC, hexane

B
NH

34a

B
NH

34b
G   = 92 kcal mol–1Δ ‡

½t     187 min, 10 oC, hexane

B
NH

34c
G   = 92.6 kcal mol–1Δ ‡

½t     244 min, 10 oC, hexane
G   = 90.2 kcal mol–1Δ ‡

½t     89 min, 10 oC, hexane

B
NH

34d

 
Figure 10. The synthesis of sterically hindered aminoarylboranes 34 and selected examples showing 
the respective energy barriers to rotation [54]. 

Biarylaminoboranes, or more precisely bis-mesityl carbazole boranes, that display 
atropisomerism have also been described [55]. Many of these substances have been 
reported in more recent years because they possess TICT emissive properties [15]. For 
example, in a series of highly twisted benzocarbazole boranes, it was found that the 
presence of a carbazole ring system as the heteroaromatic component provided the 
highest π-contribution to the boron–nitrogen bond (24 kcal mol−1) [51]. The twist angle 
observed in the ground state (GS) between the heteroaromatic ring and the borane branch 
was directly related to the emissive properties of the compounds. In general, strong TICT 
phenomena and noticeable solvatochromic effects were correlated to the large geometric 
differences between the GS and the relaxed excited state, where the B–N twist angle 
between the donor and acceptor is the result of a less efficient π-contribution. New 
compounds were prepared with a more extended aromatic system, aiming to modify the 
TICT rearrangement properties and the nature of the HOMO and LUMO to change the 
photophysical properties. It was also hoped that atropisomeric aminoboranes with a C–B 
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(e.g., 39, Figure 11). The synthesis was achieved with cheap reagents such as aryl bromines 
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Biarylaminoboranes, or more precisely bis-mesityl carbazole boranes, that display
atropisomerism have also been described [55]. Many of these substances have been reported
in more recent years because they possess TICT emissive properties [15]. For example,
in a series of highly twisted benzocarbazole boranes, it was found that the presence
of a carbazole ring system as the heteroaromatic component provided the highest π-
contribution to the boron–nitrogen bond (24 kcal mol−1) [51]. The twist angle observed in
the ground state (GS) between the heteroaromatic ring and the borane branch was directly
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related to the emissive properties of the compounds. In general, strong TICT phenomena
and noticeable solvatochromic effects were correlated to the large geometric differences
between the GS and the relaxed excited state, where the B–N twist angle between the
donor and acceptor is the result of a less efficient π-contribution. New compounds were
prepared with a more extended aromatic system, aiming to modify the TICT rearrangement
properties and the nature of the HOMO and LUMO to change the photophysical properties.
It was also hoped that atropisomeric aminoboranes with a C–B chiral axis could be circularly
polarized luminescence (CPL)-active. Chiral bis-aryl carbazole boranes bearing more
sterically demanding aromatic systems than those previously described, e.g., naphthyl,
2-methyl-naphthyl (1b), or anthracene (1c), in addition to the mesityl group, needed to
preserve the chemical stability, were prepared (e.g., 39, Figure 11). The synthesis was
achieved with cheap reagents such as aryl bromines and a stable and easy-to-handle
boron source, MesBF3K, an advantage over the methods previously used that relied on the
corrosive BF3OEt2 (previously recognized as the most efficient reagent [56]) and a larger
number of steps.
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Figure 11. Synthesis of CPL-active B–C atropisomeric bis-aryl carbazole borane 39 [55].

Carbazole borane 39 was found to be stable enough to be resolved into atropisomers by
CSP-HPLC. An isomerization barrier of 26.1 kcal mol−1 was measured using an enantiopure
sample in tetrachloroethane at 50 ◦C, with CSP-HPLC monitoring, and an M absolute
configuration could be assigned. A search for emissive properties of different solvents
showed solvatochromism in the emission spectra owing to the TICT process, with very
large Stokes shifts (>10,000 cm−1) for 39 and also for an analogous compound bearing a
naphthyl substituent instead of 2-methylnaphthyl. CPL spectra were acquired for the stable
atropisomers of 39, showing the maximum intensity in apolar solvents. The results show
that 39 is a new example of a CPL-active bis-aryl aminoborane with an exocyclic B–N bond.

3. Enantioselective Synthesis

The enantioselective synthesis of boron atropisomers was only developed in this
decade, and so far, very few reports have appeared [12,57,58]. After the description by
Chabaud, Pucheault, and coworkers of the first non-biaryl compounds displaying slow
rotation about the B–C bond and the partial separation of these B–C atropisomers in
2020 [54], Song and coworkers developed an atroposelective Miyaura borylation, which
gave, for the first time, direct access to axially chiral arylborons with high yields and good
ees [59]. Instead of the typical B2pin2 (bis(pinacolato)diboron) reagent normally used to
create arylboron compounds by reaction with aryl halides [9,60,61], a set of unsymmetrical
diboron reagents 41 bearing different substituents at boron were used, which were key
to the success obtained, along with the nature of the chiral ligand used in this palladium-
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catalyzed reactions (Figure 12). Various functional groups were compatible with the
reaction conditions, and R2 could be varied, but the highest yield of 42 was obtained when
R = Me, although the selectivity was not much affected.

Symmetry 2024, 16, x FOR PEER REVIEW 12 of 18 
 

 

N N
R3 B H

O
B

O

R1
Br

OR2

+

Pd(OAc)2 (4 mol%)
L1 (6 mol%), K3PO4 (2.5 equiv)

1,4-dioxane, 30 oC, 24 h

N N
R3 B H
R1 OR2

(30 examples)

up to 99% yield, 99% ee40 41

42

P

O
Bn

t-Bu
MeO OMe

L1

N N
Et B H

OMe

42a

G   = 27.73 kcal mol–1

   80 oC, i-PrOH
Δ ‡

N N
Et B H

Me OMe

42b

G   = 29.10 kcal mol–1

   95 oC, i-PrOH
Δ ‡

Cl
Me

N N
B H

OMe

42c
MeO

G   = 25.76 kcal mol–1

   50 oC, i-PrOH
Δ ‡

Me

N N
Et B Me

OMe

42d

No racemization after 
24 h at 150 oC

 
Figure 12. Synthesis of axially chiral arylborons via atroposelective Miyaura borylation [59]. 

There was also no change in ee and efficiency when the reaction was performed on a 
10-fold scale. Racemization experiments were also performed to demonstrate the 
stereochemical stability of arylboron atropisomers 42. A larger stability was obtained for 
42b over 42a, which probably reflects the larger steric hindrance of the methyl group over 
the methide in naphthalene. Additional derivatizations of the initially obtained products 
were also performed. One of these, tetra-ortho-substituted axial chiral arylboron 3d, 
obtained with 95% ee after treatment of 42a with n-BuLi/MeI, also showed good 
configurational stability. It did not racemize even after incubation at 150 °C for 24 h. 

In 2021, the first enantioselective procedure to synthesize 1,2-azaborines with a C–B 
stereogenic axis was also described. Xiang, Zhang, Tan, and coworkers selected as starting 
materials prochiral B-aryl-1,2-azaborines 43, which, if functionalized with groups capable 
of blocking free rotation, could lead to the desired products (Figure 13) [17]. Such a 
strategy is more difficult to implement with B-aryl-1,2-azaborines than with their 
congeners with C–C or C–N stereogenic axes since the longer bond length of the Csp2–B 
bond leads to lower configurational stability. A strategy relying on electrophilic aromatic 
substitution of phenols was planned, which was implemented using a chiral phosphoric 
acid-catalyzed desymmetrization reaction with suitable electrophiles (Figure 13a). 
Although 45 and 47–48 (Figure 13b) did not afford the desired product, and 49 and 50 
reacted to give products with moderate ees, diazodicarboxamide 51 afforded excellent 
results, particularly with CPA-1. The long-range enantiocontrol obtained was excellent for 
a large range of compounds, presumably through hydrogen bond formation between the 
catalyst and both substrates. Control experiments showed that in the absence of a phenolic 
OH group on the azaborine framework, i.e., when the hydroxyl group was replaced with 
a methoxy group, no reaction occurred. This observation supports the idea that the 
phenolic hydroxyl group is directly involved in the desymmetrization reaction, 
presumably via hydrogen bond formation with the catalyst, according to the model 
shown in TS1 (Figure 13b). A gram-scale synthesis of 46a (46: R1 = Me, R2 = Ph) followed 
by N-N bond cleavage under hydrogenation conditions with Raney nickel catalysis, 
afforded carbamate 46b, which was shown by an X-ray crystal structure to have a B–Cq 
bond length of 1.592 Å, larger than was originally predicted by Mancinelli and coworkers 
for a B-C bond [33,37]. The involvement of the NH group was also confirmed since when 
the nitrogen was methylated, the reaction yield dropped considerably. The gram-scale 
synthesis of the 1,2-azaborine showed no deterioration of the results. 
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There was also no change in ee and efficiency when the reaction was performed
on a 10-fold scale. Racemization experiments were also performed to demonstrate the
stereochemical stability of arylboron atropisomers 42. A larger stability was obtained
for 42b over 42a, which probably reflects the larger steric hindrance of the methyl group
over the methide in naphthalene. Additional derivatizations of the initially obtained
products were also performed. One of these, tetra-ortho-substituted axial chiral arylboron
3d, obtained with 95% ee after treatment of 42a with n-BuLi/MeI, also showed good
configurational stability. It did not racemize even after incubation at 150 ◦C for 24 h.

In 2021, the first enantioselective procedure to synthesize 1,2-azaborines with a C–B
stereogenic axis was also described. Xiang, Zhang, Tan, and coworkers selected as starting
materials prochiral B-aryl-1,2-azaborines 43, which, if functionalized with groups capable
of blocking free rotation, could lead to the desired products (Figure 13) [17]. Such a strategy
is more difficult to implement with B-aryl-1,2-azaborines than with their congeners with
C–C or C–N stereogenic axes since the longer bond length of the Csp2–B bond leads to
lower configurational stability. A strategy relying on electrophilic aromatic substitution of
phenols was planned, which was implemented using a chiral phosphoric acid-catalyzed
desymmetrization reaction with suitable electrophiles (Figure 13a). Although 45 and 47–48
(Figure 13b) did not afford the desired product, and 49 and 50 reacted to give products with
moderate ees, diazodicarboxamide 51 afforded excellent results, particularly with CPA-1.
The long-range enantiocontrol obtained was excellent for a large range of compounds,
presumably through hydrogen bond formation between the catalyst and both substrates.
Control experiments showed that in the absence of a phenolic OH group on the azaborine
framework, i.e., when the hydroxyl group was replaced with a methoxy group, no reaction
occurred. This observation supports the idea that the phenolic hydroxyl group is directly
involved in the desymmetrization reaction, presumably via hydrogen bond formation with
the catalyst, according to the model shown in TS1 (Figure 13b). A gram-scale synthesis of
46a (46: R1 = Me, R2 = Ph) followed by N-N bond cleavage under hydrogenation conditions
with Raney nickel catalysis, afforded carbamate 46b, which was shown by an X-ray crystal
structure to have a B–Cq bond length of 1.592 Å, larger than was originally predicted
by Mancinelli and coworkers for a B-C bond [33,37]. The involvement of the NH group
was also confirmed since when the nitrogen was methylated, the reaction yield dropped
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considerably. The gram-scale synthesis of the 1,2-azaborine showed no deterioration of
the results.
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Figure 13. Catalytic enantioselective construction of axially chiral B-aryl-1,2-azaborines: (a) The reac-
tion conditions; (b) The electrophiles tried in method development; (c) The model of enantiocontrol
proposed [17].

The atropselective synthesis of B-aryl-2,1-azaborines was recently accomplished for
the first time. You, Song, and coworkers developed a catalytic dynamic kinetic (DyKAT)
asymmetric palladium-catalyzed cross-coupling reaction involving a tetracoordinate boron
intermediate (Figure 14a,b) [62]. Hence, racemic, configurationally stable 3-bromo-2,1-
azaborines 52 were reacted with boronic acid derivatives 53 or 54 to produce the desired
chiral compounds 55 in very high yields and drs and ees when P-chiral monophospho-
rus ligand L2 was used as catalyst. The configuration of product 55a was determined
using X-ray crystallography to be (R). The success of this method was due to the fact that
the tetracoordinate boron intermediate I1 that is formed in the reaction can reduce the
rotation barrier and facilitate rotation of the aryl group on the B atom around the C-B stere-
ogenic axis, allowing a fast equilibration between intermediate (R)-I and (S)-I. Since one
of the intermediates undergoes transmetallation faster than the other, DyKAT is achieved
(Figure 14b). This procedure could also be used to prepare atropisomers bearing adjacent
C-B and C-C diaxes with excellent drs and ees.
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(b) The probable reaction mechanism [62].

Atropisomers bearing two or more different kinds of stereogenic axes are, in gen-
eral, still rare [63]. Diaxially chiral B,N-heterocycles bearing C-B and C-N axes were
first described in 2022 [64]. He and coworkers reported an asymmetric vinylation of 2,1-
borazaronaphthalenes 56, which displayed both the C-B and C-N axis of rotation (Figure 15).
The enantioenriched allylic compounds 58 were generated; they were subjected to a stere-
ospecific isomerization to afford axially chiral molecules 59 with the two stereogenic axes.
For the allylic substitution reaction, DBU or tBuOLi did not afford the desired product,
presumably for failing to deprotonate NH, while KHMDS or LiHMDS did. If a methyl was
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used instead of an aryl B-substituent, a methyl was used, there would be no reaction. The
products were obtained with good yields and very high ees. The configuration of 59a was
determined to be S using single-crystal X-ray diffraction. The isomerization proved to be
trickier, and inorganic bases did not work. However, the transformation could be success-
fully achieved with 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD). This base promoted reaction
via a stereospecific 1,3-proton transfer process, and for the first time, no H-bond assistance
or directing groups were required, in contrast to previously reported examples of stepwise
asymmetric allylic substitution-isomerization (AASI) of axially chiral alkenes [65]. By
using ortho-substituted arenes, axially chiral B,N-heterocycles with higher configurational
stability were produced. DFT studies were also undertaken and showed that the NH–π
interactions played an important role in promoting stereospecific isomerization. With
bulkier B,N-heterocycles, a stereodivergent synthesis of diaxially chiral B,N-heterocycles
was also achieved.
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isomerization. TBD = 1,5,7-triazabicyclo[4.4.0]dec-5-ene [64].

4. Conclusions

The attractive and distinctive properties of boron compounds that make them suitable
candidates for drugs or materials science applications are well recognized. In the last
decade, the interest in producing pure boron atropisomers has been increasing, particularly
after the realization that, under suitable conditions, they may be stable after isolation
for long periods of time. Not only was the first example of a chiral at boron compound
described in the 2020s, but there are also now a few examples of atropselective synthesis of
axially chiral boron compounds. Given their potential for several applications, we reviewed
the literature available on this topic in the hope that it may stimulate further research.
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