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Abstract: Explicit and spontaneous breaking of spacetime symmetry under diffeomorphisms, local
translations, and local Lorentz transformations due to the presence of fixed background fields is
examined in Einstein–Cartan theory. In particular, the roles of torsion and violation of local translation
invariance are highlighted. The nature of the types of background fields that can arise and how they
cause spacetime symmetry breaking is discussed. With explicit breaking, potential no-go results are
known to exist, which if not evaded lead to inconsistencies between the Bianchi identities, Noether
identities, and the equations of motion. These are examined in detail, and the effects of nondynamical
backgrounds and explicit breaking on the energy–momentum tensor when torsion is present are
discussed as well. Examples illustrating various features of both explicit and spontaneous breaking
of local translations are presented and compared to the case of diffeomorphism breaking.
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1. Introduction

Local spacetime symmetries are fundamental features of current theories of gravity,
including Einstein’s General Relativity (GR). In GR, the underlying geometry is Riemann,
which is characterized by the Riemann curvature tensor. In the Einstein equations, the
energy–momentum density of the matter fields acts as the source of the curvature.

An extension of GR, which is useful in describing fields with spin, is Einstein–Cartan
(EC) theory [1–11]. In this case, the underlying geometry is Riemann–Cartan, which
is characterized by both a curvature and a torsion tensor. Using a vierbein formalism,
the independent fields are the vierbein and the spin connection. The pure-gravity term
in the action has an Einstein–Hilbert form, but in this case a spin density due to the
presence of spin fields acts as the source of torsion while the Einstein equations couple
energy–momentum and curvature. The torsion in EC theory is fixed by the spin density
and is zero in regions of spacetime where the spin density vanishes. Since torsion couples
to spin density only very weakly, no experiments have detected it [12,13]. Despite the lack
of evidence for torsion, EC theory can be viewed as a viable alternative to GR that has the
advantage of incorporating spin in a straightforward manner.

In one approach to EC theory, it is common to consider invariance under diffeomor-
phisms (Diffs) in a spacetime frame as well as invariance under local Lorentz transforma-
tions (LLTs) in a local Lorentz basis as fundamental spacetime symmetries. In GR, the spin
connection is completely determined by the vierbein, while in EC theory, the vierbein and
spin connection are independent of each other when the torsion is nonzero. However, the
spin connection does not propagate as independent degrees of freedom in EC theory. There
are also generalizations that go beyond EC theory, which contain additional terms in the
pure-gravity action that allow the spin connection to propagate. However, in such exten-
sions, questions concerning unphysical ghost modes, negative energies, or discrepancies
with observations must be resolved, and the differences with GR are greater.

In many respects, local spacetime symmetries are similar to local gauge symmetries,
where the latter are fundamental in the Standard Model (SM) in particle physics. This has
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led to considerable interest in EC theory formulated as a gauge theory, where Poincare
symmetry is treated as a local gauge symmetry [3–11]. In this context, the fundamental
spacetime symmetries consist of LLTs and local translations (LTs), and the vierbein becomes
the gauge field for the LTs while the spin connection is the gauge field for the LLTs. At the
same time, a theory of gravity must be covariant, which implies invariance under Diffs, as
long as the theory contains only physical dynamical fields. In the end, it is largely a matter
of choice whether to consider Diffs and LLTs as fundamental versus considering LTs and
LLTs in this way.

In parallel with constructing EC theory and its generalizations as gauge theories
with local Poincare invariance, much effort has also been devoted to understanding how
gravity can be quantized and how the effects of this might be discovered. One idea that
has been investigated widely is that in a quantum theory of gravity, small violations of
spacetime symmetry can occur. Mechanisms for how this might occur can be found, for
example, in string theory [14–16]. A phenomenological framework known as the Standard-
Model Extension (SME) has been developed, which is useful in exploring the possibility
of spacetime symmetry breaking [17–24]. It is based on the general idea that no matter
how such breakings might occur, the effects of these violations should be describable
in the context of an effective field theory that contains both the SM and EC theories at
low energies.

The SME is constructed by adding to the action any possible interaction terms that
involve couplings with SM or gravitational fields that break spacetime symmetry while
maintaining observer independence. Such interactions introduce fixed background fields,
usually referred to as SME coefficients, which couple with the SM and gravitational fields.
Using the SME framework, many experimental searches for spacetime symmetry breaking
have been conducted with extremely high sensitivities over the past several decades [25].

When the gravitational sector of the SME was first investigated, it was found that there
are fundamental differences depending on whether spacetime symmetry breaking occurs
spontaneously or explicitly [20]. Due to the nondynamical nature of the backgrounds with
explicit breaking, inconsistencies between the Bianchi identities and equations of motion
can occur, which in a Riemann geometry create conflicts with covariant energy–momentum
conservation. However, these results, known as no-go results, do not occur with spontaneous
breaking. For this reason, it was typically assumed when using the gravity sector of the
SME that spacetime symmetry breaking occurs spontaneously [26–28]. Specifically, it was
spontaneous breaking of Diffs and LLTs that was most widely investigated, and questions
concerning Nambu–Goldstone (NG) bosons, massive Higgs-like fields, and the possibility
of a gravitational Higgs mechanism were examined [29,30]. In addition, a linkage between
spontaneous breaking of Diffs and LLTs was found, in that when vacuum values exist that
spontaneously break Diffs, vacuum values also exist that spontaneously break LLTs, and
vice versa. Vector models known as Bumblebee models were studied as examples that
illustrate these and other results of spontaneous breaking of Diffs and LLTs [16,20,29–31].

In some subsequent works, explicit breaking of Diffs and LLTs, due to the presence
of fixed backgrounds, was examined in more detail, and it was found that in some cases
the no-go results can be evaded [32–35]. Noether identities that must hold as a result of
observer independence were shown to provide a useful tool for determining whether a
particular model must be ruled out or not. It was also found that in some cases a hybrid
form of spacetime symmetry breaking can occur, involving both explicit and spontaneous
breaking. The question of whether the SME can accommodate explicit spacetime symmetry
breaking was reexamined, and it was shown that in some cases the potential no-go results
can be evaded and the SME can be used with explicit breaking [36,37]. For simplicity, effects
of torsion were largely ignored in much of these works, and LTs were not considered.

However, in [38–42], the roles of torsion and LTs were considered in more detail in
gravity theories with explicit-breaking SME coefficients, and some interesting properties
were found. For example, it was shown that when a nondynamical background field is
present in EC theory, the torsion can be nonzero in regions where there is no spin density
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associated with matter. Linkages between explicit breaking of LTs and explicit breaking of
Diffs and LLTs were explored as well.

All of this led to a complete generalization of the SME being developed, which includes
nondynamical backgrounds that can explicitly break Diffs and LLTs [43]. However, for
simplicity, many of the effects of torsion were again largely ignored and LTs were not
directly considered. Nonetheless, possible linkages between explicit breaking of Diffs and
LLTs, spontaneous breaking of these symmetries, or hybrid combinations of both types of
breakings were catalogued and investigated. Applications where this new approach can be
used and some examples of tests and their sensitivities are described in [44].

Ultimately, any theory with explicit breaking that does not evade the no-go results
must be ruled out in Riemann geometry or in Riemann–Cartan geometry if torsion is
included. An idea that has been widely explored is that these theories might instead
be consistent in a Finsler geometry or some other beyond-Riemann geometry [45–55].
Based on this, the interpretation when working with the generalization of the SME that
includes explicit breaking is that any detection of spacetime symmetry breaking involving
interactions that do not evade the no-go results would indicate the existence of a beyond-
Riemann geometry, such as Finsler geometry [43,44].

The primary goals of this paper are to revisit EC theory when background fields that
explicitly or spontaneously break spacetime symmetries are present and to elaborate on and
fill in certain features or possibilities that have largely or partially been ignored. A general
formalism containing a variety of different types of backgrounds is used. In particular,
breaking of all three spacetime symmetries, Diffs, LTs, and LLTs, and the linkages between
them, are examined for both explicit and spontaneous breaking with torsion included. In
each case, the question of whether no-go results can appear is addressed, and implications
concerning covariant conservation of the energy–momentum tensor with torsion present
are examined. Specific examples of how LTs are broken either explicitly or spontaneously
when torsion is present are provided.

The organization of this paper is as follows: Section 2 gives background on EC Theory
for the usual case of when Diffs, LTs, and LLTs are not broken. Readers already familiar
with EC theory may want to skip ahead and start with Section 3, which then looks at
how these symmetries are broken either spontaneously or explicitly when background
fields are present. Section 4 looks at explicit breaking in detail, including the no-go results
and Noether identities that follow from observer independence. Spontaneous breaking is
examined in Section 5, and examples of Bumblebee theories with spontaneous breaking
of LTs with torsion included are presented. Section 6 provides some discussion and
conclusions. The notation and conventions used here follow those in [20].

2. EC Theory

In EC theory, there is both curvature and torsion, and it is assumed that the nonmetric-
ity vanishes so that Dλgµν = 0. A vierbein formalism can be used, where e a

µ is the vierbein

and ω
ab

µ is the spin connection. In this notation, Greek letters denote components with
respect to the spacetime frame, while Latin letters denote components with respect to the
local Lorentz basis. The metric is given in terms of the vierbein as gµν = e a

µ e b
ν ηab, where

ηab is the local Minkowski metric. The connection is the Cartan connection Γλ
µν, which has

an antisymmetric part that defines the torsion tensor:

Tλ
µν = Γλ

µν − Γλ
νµ . (1)

Using a tilde to denote the symmetric Levi-Civita connection in GR, which has components
given by the Christoffel symbol,

Γ̃λ
νµ =

{
λ

µν

}
, (2)
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and defining the contorsion tensor as

Kλµν =
1
2
(Tλµν − Tµνλ − Tνµλ) , (3)

the Cartan connection can be written as

Γλ
µν = Γ̃λ

νµ + Kλ
νµ . (4)

Assuming that the covariant derivative of the vierbein vanishes gives a relation involving
the spin connection ω

ab
µ as

Dµe a
ν = ∂µe a

ν − Γλ
µνe a

λ + ω
a

µ be b
ν = 0 . (5)

With this, the connection and torsion can be found in terms of the vierbein and spin
connection:

Γλ
µν = eλa(∂µeνa − ω

b
µ aeνb) , (6)

Tλµν = e a
λ [(∂µeνa + ωµab e b

ν )− (µ ↔ ν)] . (7)

The curvature tensor is defined as

Rκ
λµν = ∂µΓκ

νλ − Γκ
µσΓσ

νλ − (µ ↔ ν) , (8)

and its contractions,
Rµν = Rκ

µκν , R = gµνRµν , (9)

give, respectively, the Ricci tensor and the curvature scalar. Note that in EC theory, the
Ricci tensor is not symmetric and neither is the Einstein tensor, Gµν = Rµν − 1

2 gµνR. The
curvature can also be given in terms of the vierbein and spin connection as

Rκ
λµν = eκ

ae b
λ [(∂µω a

ν b + ω
a

µ cω c
ν b)− (µ ↔ ν)] . (10)

Bianchi identities for the curvature and torsion in EC theory are off-shell geometric
identities, which are given as:

∑
(λµν)

[DνRα
βλµ + Tσ

λµRα
βσν] = 0 , (11)

∑
(λµν)

[DνTα
λµ + Tσ

λµTα
σν − Rα

νλµ] = 0 , (12)

where the sum in each case is over the cyclic permutations of (λµν). Two useful off-shell
identities can be derived from these by contracting and manipulating terms [20]. The
results are

(Dµ − Tλ
λµ)G

µν + T ν
λµ Gµλ − 1

2 RαβµνT̂µαβ = 0 , (13)

Gµν − Gνµ = −(Dσ − Tλ
λσ)T̂

σµν . (14)

2.1. EC Action

The generic form of the action can be written in terms of the vierbein, spin connection,
and matter fields as

S = Sg + Sg,m =
1

2κ

∫
d4xe R(e a

µ , ω
ab

µ ) +
∫

d4xeLm(e
a

µ , ω
ab

µ , f ψ) . (15)

Here, Sg is the Einstein–Hilbert term, with the curvature scalar expressed as a function of
the vierbein and the spin connection. The matter term Sg,m depends on the vierbein, spin
connection, and matter fields, where the latter are denoted generically as f ψ. The specific



Symmetry 2024, 16, 25 5 of 32

forms and suitable indices for f ψ depend on the types of fields that are included, which
can consist of tensor and spin fields. The coupling κ = 8πG (with c = 1), and e is the
determinant of the vierbein.

Note that a cosmological constant term could also be added to the action, and as an
alternative to EC theory, kinetic terms for the torsion would be added as well. This would
permit inclusion of teleparallel gravity when the curvature vanishes [56,57]. However,
these considerations go beyond the scope of this work, which for simplicity considers only
flat spacetime background in vacuum.

Variation of the action term Sg,m with respect to e a
µ , ω

ab
µ , and f ψ has the form:

δSg,m =
∫

d4xe
[

Tµν
e eνa δe a

µ + 1
2 S µ

ω ab δω
ab

µ +
δSg,m

δ f ψ δ f ψ

]
, (16)

which defines Tµν
e as the energy–momentum tensor and S µ

ω ab as the spin density. Varying

the matter fields gives the Euler–Lagrange expression for f ψ.
When the full action is varied with respect to the dynamical fields, the result is:

δS =
∫

d4xe
[
(− 1

κ
Gµν + Tµν

e )eνa δe a
µ + (

1
2κ

T̂λµνeµaeνb +
1
2 S µ

ω ab) δω
ab

µ +
δSg,m

δ f ψ δ f ψ

]
, (17)

where
T̂λµν = Tλµν + Tα µ

α gλν − Tα ν
α gλµ (18)

is the trace-corrected torsion tensor. Setting δS = 0 gives the equations of motion for the
vierbein, spin connection, and matter fields, respectively, as

Gµν = κTµν
e , (19)

T̂λµν = −κS λµν
ω , (20)

δSg,m

δ f ψ = 0 . (21)

2.2. Spacetime Symmetries in EC Theory

The local spacetime symmetries, diffeomorphisms (Diffs), local Lorentz transforma-
tions (LLTs), and local translations (LTs), act on e a

µ , ω
ab

µ , and f ψ leaving the action invariant.
Under Diffs, the transformation rules are given as Lie derivatives, which can be rewritten
using the full covariant derivative Dµ that corrects with both the Cartan connection Γλ

µν

and the spin connection, depending on what types of fields it acts on. However, the Poincare
algebra that includes LLTs and LTs uses a Lorentz covariant derivative, D(ω)

a = eµ
aD(ω)

µ ,

where D(ω)
µ corrects with only the spin connection [5]. For example,

D(ω)
µ e a

ν = ∂µe a
ν + ω

a
µ be b

ν , (22)

which does not vanish, since the term with the Cartan connection in (5) is not included.
Notice that when acting on a tensor with only local indices, for example, Ab, it can also be
written as

D(ω)
µ Ab = e b

ν Dµ Aν , (23)

where Ab = e b
ν Aν.

The transformation rules for the the vierbein and spin connection are then defined as
follows: Under Diffs with parameters ξµ,

δDiff e a
µ = Lξ e a

µ = (∂µξα)e a
α + ξα∂αe a

µ

= (Dµξα)e a
α − Tα

µβξβe a
α − ξαω ab

α eµb , (24)
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δDiff ω
ab

µ = Lξ ω
ab

µ = (∂µξα)ω ab
α + ξα∂aω

ab
µ , (25)

where Lξ denotes a Lie derivative along ξµ. Under LTs with parameters ϵa:

δLT e a
µ = D(ω)

µ ϵa + ϵbTa
bµ , (26)

δLT ω
ab

µ = ϵcRab
cµ . (27)

Under LLTs with parameters ϵ b
a = −ϵb

a:

δLLT e a
µ = −ϵa

be b
µ , (28)

δLLT ω
ab

µ = D(ω)
µ ϵab

= ∂µϵab + ω
a

µ c ϵcb + ω
b

µ c ϵac .
(29)

Note that these transformations are not independent, since it can be shown with
ξµ = ϵµ = eµ

aϵa and ϵab = ϵµω
ab

µ that they are related by [5,7,38]:

δDiff(ξ
µ) = δLT(ϵ

a) + δLLT(ϵ
ab) . (30)

As a result, symmetry under Diffs and LLTs implies symmetry under LTs and LLTs, and
vice versa.

Dynamical tensors in EC theory can have components given with respect to either
the spacetime frame or a local basis frame. For example, a vector field can have space-
time components Aµ or local components Ab, where these are related by the vierbein:

Aµ = e b
µ Ab. Under Diffs, LLTs, and LTs, the local frame components, Ab, transform,

respectively, as
δDiff Ab = ξν∂ν Ab ,
δLLT Ab = −ϵ c

b Ac ,
δLT Ab = ϵceµ

cD(ω)
µ Ab .

(31)

Making the substitutions ξµ = ϵµ = eµ
cϵc and ϵbc = ϵµω

bc
µ , it follows that Equation (30)

holds for these transformations. These symmetry transformations can also be performed on
the components Aµ defined with respect to the spacetime frame. The fact that Ab and the
vierbein transform results in transformations of Aµ as well, which are given under Diffs,
LLTs, and LTs, respectively, as

δDiff Aµ = (∂µξν)Aν + ξν∂ν Aµ ,
δLLT Aµ = 0 ,
δLT Aµ = (D(ω)

µ ϵb)eν
b Aν + ϵbeν

bD ν Aµ + ϵbTν
bµ Aν .

(32)

Notice that in this case with ξν = ϵν = eν
cϵc, it follows that δDiff Aµ = δLT Aµ, as expected

from Equation (30), given that δLLT Aµ = 0.

2.3. Noether Identities in EC Theory

There are two Noether theorems that are important in theoretical physics [58–60]. The
first states that global symmetries give rise to conserved currents, while the second shows
that local symmetries give rise to off-shell identities that must hold. It is the second theorem
that is used here, and it can be applied to the whole action or individually to any term in
the action that is invariant under a local symmetry.

For example, the Einstein–Hilbert term Sg is invariant under Diffs, LLTs, and LTs. With
δSg = 0 under LTs as given in Equations (26) and (27), the Noether identity that follows
from this directly matches the contracted form of the first Bianchi identity in (13). The
Noether identity that follows from LLTs using (28) and (29) directly matches the contracted



Symmetry 2024, 16, 25 7 of 32

form of the second Bianchi identity in (14). Under Diffs, using (24) and (25), the identity
that follows has the form:

(Dµ − Tλ
λµ)G

µν + T ν
λµ Gµλ − 1

2 RαβµνT̂µαβ

− 1
2 ωνabeαa eβb

[
Gαβ − Gβα + (Dσ − Tλ

λσ)T̂
σαβ

]
= 0 ,

(33)

where this is identically satisfied off-shell by virtue of the identities from LTs and LLTs, or
equivalently by virtue of the two Bianchi identities. This gives an illustration of how the
three identities under LTs, LLTs, and Diffs are linked as indicated by Equation (30).

Similarly, the matter term Sg,m is invariant under LTs, LLTs, and Diffs when the

matter fields f ψ are dynamical and the Lagrangian Lm(e
a

µ , ω
ab

µ , f ψ) is a scalar under each
transformation. For simplicity, the matter fields can be put on-shell so that Equation (21)
holds. In this case, the three identities that follow, respectively, from LTs, LLTs, and Diffs are:

(Dµ − Tλ
λµ)T

µν
e + T ν

λµ T µλ
e + 1

2 RαβµνSω µαβ = 0 , (34)

T µν
e − T νµ

e = (Dσ − Tλ
λσ)S

σµν
ω , (35)

(Dµ − Tλ
λµ)T

µν
e + T ν

λµ T µλ
e + 1

2 RαβµνSω µαβ

− 1
2 ωνabeαa eβb

[
T αβ

e − T βα
e − (Dσ − Tλ

λσ)S
σαβ

ω

]
= 0 .

(36)

In this case, there are no geometric Bianchi identities that enforce these identities as was
the case with the Einstein–Hilbert term. Instead, these identities are the result of the local
symmetries, with the matter fields put on-shell. Note that the gravitational fields are still
off-shell in these identities, and only the matter fields have been put on-shell. The fact
that the spin connection appears in the identity stemming from Diffs in Equation (36)
appears problematic, since it is not a covariant tensor. However, the identity for Diffs is a
combination of the identities for LTs and LLTs, as expected from Equation (30). Thus, the
identity for Diffs is automatically satisfied as a result of the identities for LTs and LLTs.

2.4. Theoretical Consistency and Energy–Momentum Conservation

In GR, in the absence of spin and torsion, the Einstein equations reduce to G̃µν = κT µν
e ,

where the tilde denotes that the connection used to define the curvature and Einstein tensor
is the Levi-Civita connection Γ̃λ

µν. The Einstein tensor in Riemann space is symmetric,
obeying G̃µν = G̃νµ, and the relevant contracted Bianchi identity is D̃µG̃µν = 0, where the
covariant derivative, D̃µ, uses Γ̃λ

µν. The identities due to LTs and LLTs in Equations (34) and (35)

with zero torsion and putting the matter fields on-shell reduce, respectively, to D̃µT µν
e = 0

and T µν
e = T νµ

e . These two results automatically satisfy the identity for Diffs in Equation (36)
with the torsion set to zero. Thus, in GR, there is complete consistency between the Bianchi
identities, the Einstein equations, and the equations of motion for the matter fields. As a
result of these, the energy–momentum tensor is both symmetric and covariantly conserved.

In EC theory, there is also full consistency between the contracted Bianchi identities,
the Einstein and spin connection equations, and the equations of motion for the matter
fields. However, in this case, in the presence of spin density and torsion, Gµν is not
symmetric and DµGµν ̸= 0, and therefore, T µν

e ̸= T µν
e and DµT µν

e ̸= 0. These properties of
energy–momentum in EC theory have been examined and discussed previously [3,61–63].
(See also [5,8,10]). In particular, with spin density and torsion present and on-shell, it
has been shown that an effective Riemann geometry with a conserved and symmetric
energy–momentum tensor can be identified.

To see this, first use that the curvature tensor Rκ
λµν can be separated into a Riemann

part R̃κ
λµν and additional terms involving the contorsion:

Rκ
λµν = R̃κ

λµν + [D̃µKκ
νλ + Kκ

µσKσ
νλ − (µ ↔ ν)] . (37)
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The torsion can then be eliminated on-shell in terms of the spin density using Equation (20),
which allows the on-shell contorsion tensor to be written as

Kλµν = −κ

2
(S λµν

ω − S µνλ
ω − S νµλ

ω + gµνS λ
ω − gλµS ν

ω ) , (38)

where S µ
ω = S σ µ

ω σ . With this substituted into Equation (37), an effective theory can be
found that uses the Riemann curvature. However, there is still the caveat that minimal
couplings in the full theory depend on the Cartan connection Γλ

µν, not Γ̃λ
µν, so the full

theory remains non-Riemann. Nonetheless, with the torsion eliminated in this way on-shell,
the Einstein equation in (19) becomes

G̃µν = κTµν
eff +

κ2

4 (2S µαβ
ω S ν

ω αβ + 2S µνσ
ω Sω σ − S µαβ

ω S ν
ω αβ)

− κ2

8 gµν(S αβγ
ω Sω γαβ − S αβγ

ω Sω αβγ − Sω σS σ
ω ) ,

(39)

where an effective energy–momentum tensor is defined as

Tµν
eff = Tµν

e − 1
2 D̃σ(S

σµν
ω + S µνσ

ω + S νµσ
ω ) . (40)

Note that Tµν
eff has the form of a Belinfante–Rosenfeld energy–momentum tensor [61–63],

where in a theory with spin the extra added spin-density terms lead to a redefined
energy–momentum tensor that is symmetric. Although Equation (39) is not yet sym-
metric, the LLT Noether identity in Equation (35) rewritten in terms of D̃σ and additional
quadratic terms in the spin density can be used to eliminate the antisymmetric part of the
effective energy momentum from Equation (39). This leaves an Einstein equation that is
effectively Riemann:

G̃µν = κT(µν)
eff + κ2

2 [(S
µαβ

ω S ν
ω αβ + S ναβ

ω S µ
ω αβ ) + (S µν

ω σ + S νµ
ω σ)S σ

ω ]

− κ2

8 gµν[(S αβγ
ω Sω γαβ − S αβγ

ω Sω αβγ − Sω σS σ
ω ) ,

(41)

where T(µν)
eff = 1

2 (T
µν
eff + Tνµ

eff ). In this form, the right-hand side is symmetric and is consistent
with G̃µν = G̃νµ, and since D̃µG̃µν = 0, the combined terms on the right-hand side also
have a vanishing covariant divergence with respect to D̃µ. Thus, in this context, the spin
density acts effectively like additional contributions to the energy–momentum.

Since torsion is extremely weak, and since the coupling κ is small, the quadratic
contributions ∼ κ2S2

ω can be neglected at leading order in a perturbative treatment. In this
approximation,

Tµν
eff ≃ T(µν)

e − 1
2 D̃σ(S

µνσ
ω + S νµσ

ω ) , (42)

is symmetric, and the effective Einstein equation reduces to G̃µν ≃ κTµν
eff . From this, it

follows that D̃µTµν
eff ≃ 0, and in a flat spacetime limit with negligible torsion, ∂µTµν

eff ≃ 0.

3. Spacetime Symmetry Breaking

Many ideas have been put forward for how spacetime symmetries might be broken,
including mechanisms in string theory, above threshold cosmic rays, modified gravity,
noncommutative geometry, loop quantum gravity, spacetime foam, Chern Simons gravity,
Hořava gravity, and massive gravity. See, for examples, [14–16,64–84].

However, in EC theory working at the level of observer-independent effective field the-
ory, as in the framework of the SME, violation of spacetime symmetry occurs when a fixed
background tensor field interacts with a dynamical gravitational or matter field [20,32–37,43,44].
In general, the backgrounds can have components with respect to both spacetime frames
and local tangent spaces. The symmetry breaking occurs because the background fields
are fixed and do not transform under Diffs, LLTs, or LTs, while fully dynamical fields do
transform. The combination of an active transformation for fully dynamical fields with the
background fields being held fixed is referred to as a particle transformation. However, at
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the same time, a physical theory must be observer-independent, which requires invariance
under general coordinate transformations and passive changes of basis states in local tan-
gent spaces. These are called observer transformations, and under them the components of
fixed backgrounds transform passively, and the action S is mathematically left unchanged.
In EC theory with no fixed backgrounds, mathematical observer transformations of Diffs,
LLTs, and LTs can be written in the form of inverse transformations to the corresponding
active transformations. However, when fixed background fields are present, the particle
transformations are broken, while the mathematical observer invariances must still hold.

3.1. EC Theory with Background Fields

The generic form for the action of an EC theory with fixed background fields can be
written as

S = Sg + Sk̄X
+ Sg,k̄Y

+ Sg,m,k̄Z

= 1
2κ

∫
d4x e R(e a

µ , ω
ab

µ )− 1
2κ

∫
d4x eU (e a

µ , k̄X)

+ 1
2κ

∫
d4x eLg,k̄Y

(e a
µ , ω

ab
µ , k̄Y) +

∫
d4x eLg,m,k̄Z

(e a
µ , ω

ab
µ , f ψ, k̄Z) ,

(43)

where the total action has been divided into four terms. The first term, Sg, has the Einstein–
Hilbert form, which depends on the dynamical vierbein and spin connection. The second
term couples the vierbein directly to fixed backgrounds denoted generically as k̄X , where
the bar indicates that k̄X is a fixed field, and the indices X generically label the spacetime
and local indices carried by it. The remaining two terms contain fixed background fields,
which are denoted generically as k̄Y and k̄Z, where Y and Z generically label the spacetime
and local indices carried by each background. In the last term, f ψ generically denotes all
the dynamical matter fields. It is assumed that the three backgrounds k̄X, k̄Y, and k̄Z are
different from each other and that no covariant derivatives act directly on them. However,
if symmetry transformations or integrations by parts are performed in the action, this can
result in expressions where covariant derivatives act on the backgrounds, in which case it
is assumed that k̄X , k̄Y, or k̄Z are not covariantly constant.

The terms Sk̄X
, Sg,k̄Y

, and Sg,m,k̄Z
are all symmetry-breaking terms. Sk̄X

is a potential
term, which includes possible mass terms for the vierbein formed using background
fields. There is no dependence on the spin connection in Sk̄X

, since that would have
to originate from covariant derivatives acting on the backgrounds k̄X. Sg,k̄Y

is a pure-
gravity term, consisting of interactions between the vierbein, spin connection, and the
backgrounds k̄Y. To maintain covariance, it is assumed that any terms in Sg,k̄Y

consist
only of couplings between the backgrounds k̄Y with the curvature, torsion, or covariant
derivatives of the curvature or torsion. Since both Sk̄X

and Sg,k̄Y
exclude matter contributions,

they both carry the dimensional coupling, 1/2κ, as in the Einstein–Hilbert term. The last
term, Sg,m,k̄Z

, is a matter–gravity term, consisting of interactions between the vierbein,
spin connection, matter fields, and the backgrounds k̄Z. It also contains conventional
matter–gravity couplings that do not couple to the backgrounds k̄Z.

In general, there is some ambiguity between how the backgrounds k̄X , k̄Y and k̄Z are
determined, since not all of the background coefficients are independent or physical. This
is because coordinate changes and field redefinitions can be used to move sensitivity to
spacetime symmetry breaking from one sector to another, including between the potential,
pure-gravity, and matter–gravity sectors [20,28,36,85,86]. With this in mind, it should
be assumed before splitting the full action in (43) into these sectors that any unphysical
coefficients have been removed and that field redefinitions and coordinate choices have
been made that fix an observable set of backgrounds, k̄X, k̄Y, and k̄Z. Note that in some
cases, an observable set of backgrounds might consist of combinations of backgrounds with
couplings to different particle species [28].

Under particle Diffs, LLTs, and LTs, all three of the background fields remain fixed,
transforming as

k̄X → k̄X , k̄Y → k̄Y , k̄Z → k̄Z , (44)
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while under observer Diffs, LLTs, and LTs, they transform passively according to their
representations as spacetime or local tensors as indicated by the index labels X, Y, and Z.
Since the backgrounds k̄X , k̄Y, and k̄Z are assumed to be observable, the three symmetry-
breaking sectors are distinct and independent. Thus, the potential, U (e a

µ , k̄X), and the

Lagrangians, Lg,k̄Y
(e a

µ , ω
ab

µ , k̄Y) and Lg,m,k̄Z
(e a

µ , ω
ab

µ , f ψ, k̄Z) must each be a scalar under
observer spacetime transformations to maintain observer independence. However, they
are not scalars under the broken particle transformations.

3.2. Explicit versus Spontaneous Breaking

To understand the nature of the background fields k̄X, k̄Y, and k̄Z, as well as their
effects in the context of effective field theory, a distinction must be made between when the
spacetime symmetry breaking is spontaneous versus when it is explicit.

With spontaneous breaking, the symmetry is hidden. It is only the vacuum solution
that breaks the symmetry, while the full solutions, including excitations in the form of NG
modes and additional massive Higgs-like modes, are fully dynamical and transform appro-
priately under all spacetime transformations. For example, with spontaneous breaking, the
backgrounds k̄X , k̄Y, and k̄Z all equal vacuum expectation values,

k̄X = ⟨KX⟩ , k̄Y = ⟨KY⟩ , k̄Z = ⟨KZ⟩ , (45)

where KX , KY, and KZ are dynamical fields. As dynamical fields, all three sets of compo-
nents KX, KY, and KZ undergo field variations and have equations of motion. They are
very much like any other dynamical field components except that they have vacuum values
⟨KX⟩, ⟨KY⟩, and ⟨KZ⟩, which spontaneously break spacetime symmetries. In contrast, with
explicit breaking, the backgrounds k̄X, k̄Y, and k̄Z are fixed nondynamical fields that are
inserted into the Lagrangian. They have no dynamical field variations and therefore no
equations of motion.

For simplicity, consider the case of a vector background field, which has components
b̄µ with respect to the spacetime frame and components b̄a with respect to a local basis.
Since the vector is fixed under particle transformations, its components are unchanged in
either frame, obeying δb̄µ = 0 and δb̄a = 0 under particle Diffs, LLTs, and LTs.

In the case of spontaneous breaking, b̄µ and b̄a are vacuum values of a dynamical field
with components Bµ or Ba,

⟨Bµ⟩ = b̄µ , ⟨Ba⟩ = b̄a . (46)

The dynamical field components are related to each other by the vierbein as Bµ = e a
µ Ba.

With spontaneous breaking, the vierbein also has a vacuum value, ⟨e a
µ ⟩, which in a

Minkowski background in Cartesian coordinates is ⟨e a
µ ⟩ = δ

a
µ . The vierbein vacuum

value relates the two vector vacuum values as

b̄µ = ⟨e a
µ ⟩b̄a . (47)

Since the vacuum solutions, b̄µ, b̄a, and ⟨e a
µ ⟩ carry both spacetime and local indices, all

three of the symmetries Diffs, LLTs, and LTs are spontaneously broken. In particular, the
existence of a vacuum geometry with ⟨e a

µ ⟩ ̸= 0 requires that both b̄µ and b̄a be nonzero if
either of them is.

With spontaneous breaking, any action term, L = JµBµ, involving a current Jµ inter-
acting with the dynamical field Bµ, can also be written in terms of local components, since
JµBµ = JaBa. Hence, as the vector field separates into a vacuum solution and excitations,
any terms in the effective action of the form Jµ b̄µ or Ja b̄a are physically linked by the vacuum
vierbein ⟨e a

µ ⟩ and its excitations. Similarly, couplings to b̄µ, with an upper index, are linked
to b̄µ, since these are related by the vacuum solution for the metric, ⟨gµν⟩ = ⟨e a

µ ⟩⟨e b
ν ⟩ηab.

In local frames, components b̄a and b̄a = ηab b̄b are directly related by the Minkowski metric.
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With explicit breaking, there are no vacuum values of physical fields. There are only
fixed nondynamical backgrounds. A fixed nonzero background vector must have nonzero
components b̄µ in the spacetime frame and components b̄a in the local basis. However, there
is no linkage between these given by a physical or vacuum vierbein. Similarly, background
components b̄µ are not linked to b̄µ by the physical metric. However, in local frames ηab is
the metric, so components b̄a and b̄a are related using it.

Any Lagrangian terms such as Jµ b̄µ, Jµ b̄µ, and Ja b̄a are therefore all physically distinct
when the symmetry breaking is explicit. Taken separately, each of the backgrounds b̄µ, b̄µ,
or b̄a might have couplings that explicitly break one or more of the spacetime symmetries,
Diffs, LLTs, or LTs, but not necessarily any two or more of them at the same time. This
generalizes as well to tensors with more than one index, possibly including tensors that
have both spacetime and local indices. An extensive list of examples of possible distinct
tensor backgrounds, including which spacetime symmetries they explicitly break, is given
in [43], and examples of their phenomenological implications are explored in [44].

Regardless of whether the symmetry breaking is spontaneous or explicit, the action
must be a scalar under observer Diffs, LLTs, and LTs. In this case, background vector
components, b̄µ, b̄µ, or b̄a, have conventional observer transformations appropriate for the
type of index they carry. For example, the transformations of b̄a under observer Diffs, LLTs,
and LTs, are given, respectively, as

δDiff b̄a = ξν∂ν b̄a ,
δLLT b̄a = −ϵ c

a b̄c ,
δLT b̄a = ϵceµ

cD(ω)
µ b̄a ,

(48)

while b̄µ transforms under observer Diffs, LLTs, and LTs as

δDiff b̄µ = (∂µξν)b̄ν + ξν∂ν b̄µ ,
δLLT b̄µ = 0 ,
δLT b̄µ = (D(ω)

µ ϵb)eν
b b̄ν + ϵbeν

bDν b̄µ + ϵbTν
bµ b̄ν .

(49)

Note that technically the parameters ϵa and ϵ b
a for observer transformations, as defined

here, should have the opposite signs of those used in (31) and (32); however, the param-
eters in (48) and (49) have been redefined with a minus sign so that they have the same
mathematical form as in (31) and (32).

3.3. Equations of Motion

Before writing the variations of the full action S, it is convenient to make some definitions
regarding the separate variations of the potential, pure-gravity, and matter–gravity terms.

First, the variation of the potential term Sk̄X
with respect to the vierbein can be written as

δSk̄X
=

∫
d4x e (− 1

2κ
Ūµνeνa) δe a

µ , (50)

where Ūµν is written with a bar over it to denote that it includes contributions from the
backgrounds k̄X . A coupling 1/2κ is included in Sk̄X

, since it does not include matter fields.
Next, define the variations of Sg,k̄Y

with respect to the vierbein and spin connection as:

δSg,k̄Y
=

∫
d4x e

[
−1

κ
Ḡµνeνa δe a

µ +
1

2κ
T̄ µαβeαaeβbδω

ab
µ

]
. (51)

Here, Ḡµν and T̄ µαβ are written with bars over them to indicate that they include contribu-
tions coming from the background fields k̄Y. Since Sg,k̄Y

contains a factor of 1/2κ, defining
Ḡµν and T̄ µαβ in this way indicates that these terms have similar mass dimensions as the
curvature and torsion terms arising from the Einstein–Hilbert term.
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Lastly, the variations of Sg,m,k̄Z
with respect to the vierbein, spin connection, and

matter fields are written as:

δSg,m,k̄Z
=

∫
d4x e

[
T̄µν

e eνa δe a
µ + 1

2 S̄ µαβ
ω eαaeβbδω

ab
µ +

δSg,m,k̄Z

δ f ψ δ f ψ

]
. (52)

Here, the energy–momentum tensor, T̄µν
e , and spin density tensor, S̄ µ

ω ab, are written with
bars over them to indicate they include contributions coming from both matter and the
background fields k̄Z. If the backgrounds k̄Z vanish, T̄µν

e and S̄ µ
ω ab reduce to the energy–

momentum and spin density for the matter fields alone, which can then be written without
using bars.

With these definitions, the variation of the full action with respect to the dynamical
fields, e a

µ , ω
ab

µ , and f ψ, has the form

δS =
∫

d4x e [[− 1
κ (G

µν + Ūµν + Ḡµν) + T̄µν
e ]eνaδe a

µ

+[ 1
2κ (T̂

µαβ + T̄ µαβ) + 1
2 S̄ µαβ

ω ]eαaeβb δω
ab

µ +
δSg,m,k̄Z

δ f ψ δ f ψ] . (53)

Setting δS = 0 for dynamical variations δe a
µ , δω

ab
µ , and δ f ψ gives the equations of motion

for the vierbein, spin connection, and matter fields, respectively, as

Gµν + Ūµν + Ḡµν = κT̄µν
e , (54)

T̂λµν + T̄ λµν = −κS̄ λµν
ω , (55)

δSg,m,k̄Z

δ f ψ = 0 . (56)

In these equations, the quantities Ūµν and Ḡµν can be interpreted in two different ways.
In the first, they act, respectively, as corrections to the curvature, which depend on the
backgrounds k̄X and k̄Y. Alternatively, they can be interpreted as belonging on the right-
hand side of (54), where in that case they contribute to the energy–momentum. Similarly,
the quantity T̄ λµν can be interpreted as corrections to the torsion, which depend on the
backgrounds k̄Y, or they can go on the right-hand side of (55) and act as contributing to
the spin density. However, with these quantities on the right-hand sides, the coupling κ
does not appear when k̄X and k̄Y interact with the vierbein and spin connection as it does
when matter fields and k̄Z couple to them. For this reason, it is more natural to keep the
quantities Ūµν, Ḡµν and T̄ λµν on the left-hand sides of the equations of motion.

3.4. No-Go Results and Noether Identities

The issue of whether no-go conditions apply when local spacetime symmetry breaking
occurs can be examined using Noether identities that hold as a result of observer indepen-
dence. While the background fields break particle spacetime symmetries, the mathematical
observer symmetries in the action must still hold so that observer independence is main-
tained. Thus, the observer transformations can be used to find Noether identities even
when background fields are present. Since observer Diffs, LLTs, and LTs are related, it
suffices to consider the Noether identities resulting from only LTs and LLTs. The action
terms Sg, Sk̄X , Sg,k̄Y

, and Sg,m,k̄Z
are each separately unchanged under observer LTs and

LLTs, and Noether identities can be found from each one and for each symmetry.
For the Einstein–Hilbert term, setting δSg = 0 gives

δSg =
∫

d4x e
[
−1

κ
Gµνeνaδe a

µ +
1

2κ
T̂µαβeαaeβb δω

ab
µ

]
= 0 , (57)
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where δe a
µ and δω

ab
µ are variations given in (26) and (27) for LTs and (28) and (29) for LLTs.

The Noether identities that follow from these are the same as the contracted forms of the
Bianchi identities in (13) and (14).

The action terms Sk̄X , Sg,k̄Y
, and Sg,m,k̄Z

are each unchanged as well under observer
spacetime transformations. The variations are given as

δSk̄X =
∫

d4x e
[
−1

κ
Ūµνδe a

µ +
δSk̄X

δk̄X
δk̄X

]
= 0 , (58)

δSg,k̄Y
=

∫
d4x e

[
−1

κ
Ḡµνδe a

µ +
1

2κ
T̄ µαβ δω

ab
µ +

δSg,k̄Y

δk̄Y
δk̄Y

]
= 0 , (59)

δSg,m,k̄Z
=

∫
d4x e

[
T̄µν

e eνaδe a
µ + 1

2 S̄ µαβ
ω eαaeβb δω

ab
µ +

δSg,m,k̄Z

δk̄Z
δk̄Z +

δSg,m,k̄Z

δ f ψ δ f ψ

]
= 0 , (60)

where δe a
µ , δω

ab
µ , δk̄X , δk̄Y, δk̄Z, and δ f ψ are variations of these fields under observer LTs

or observer LLTs.
Notice that variations of the background fields k̄X, k̄Y, and k̄Z are included in these

expressions because these fields transform under observer transformations. However, they
do not appear in the dynamical variations of the full action, δS, in (53). Thus, when the
Bianchi identities are combined with the results that δSk̄X = δSg,k̄Y

= δSg,m,k̄Z
= 0 under

observer LTs and LLTs, consistency with the dynamical equations of motion only holds if

∫
d4x e

δSk̄X

δk̄X
δk̄X = 0 ,

∫
d4x e

δSg,k̄Y

δk̄Y
δk̄Y = 0 ,

∫
d4x e

δSg,m,k̄Z

δk̄Z
δk̄Z = 0 . (61)

When the integrals in (61) all vanish under observer LTs, and when the matter fields,
f ψ, are on-shell, obeying (56), the Noether identities that follow from LTs are

(Dµ − Tλ
λµ)Ūµν + T ν

λµ Ūµλ = 0 , (62)

(Dµ − Tλ
λµ)Ḡµν + T ν

λµ Ḡµλ + 1
2 RαβµνT̄µαβ = 0 , (63)

(Dµ − Tλ
λµ)T̄

µν
e + T ν

λµ T̄ µλ
e + 1

2 RαβµνS̄ω µαβ = 0 . (64)

Similarly, the identities that follow when observer LLTs are made, and the conditions in (61)
hold with f ψ on-shell, are

Ūµν − Ū νµ = 0 . (65)

Ḡµν − Ḡνµ = (Dσ − Tλ
λσ)T̄ σµν = 0 . (66)

T̄ µν
e − T̄ νµ

e = (Dσ − Tλ
λσ)S̄

σµν
ω = 0 . (67)

Comparing these with the contracted Bianchi identities in (13) and (14) and using the
equations of motion in (54) and (55) confirm that these are all compatible as long as the
conditions in (61) hold. However, if the integrals in (61) do not vanish, a no-go result
follows, and the theory is inconsistent [20].

4. Explicit Breaking

With explicit breaking, the backgrounds k̄X , k̄Y, and k̄Z are nondynamical and do not
satisfy Euler–Lagrange equations,

δSk̄X

δk̄X
̸= 0 ,

δSg,k̄Y

δk̄Y
̸= 0 ,

δSg,m,k̄Z

δk̄Z
̸= 0 , (68)
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which makes satisfying the conditions in (61) problematic. To examine this, it is useful to
rewrite the expression in (61) in terms of currents, defining

JX =
δSg,k̄X

δk̄X
, JY =

δSg,m,k̄Y

δk̄Y
, JZ =

δSg,k̄Z

δk̄Z
, (69)

for the potential, pure-gravity, and matter–gravity sectors, respectively. The conditions
in (61) can then be written as∫

d4x e JXδk̄X = 0 ,
∫

d4x e JYδk̄Y = 0 ,
∫

d4x e JZδk̄Z = 0 . (70)

Under LTs, the variations δk̄X, δk̄Y, and δk̄Z each consist of four local translations with
parameters ϵa, while for LLTs, they each consist of six local Lorentz transformations with
parameters ϵab. Thus, using integrations by parts and the fact that the integrands must
vanish for all ϵa and ϵab, up to ten conditions can be extracted from each of the three
conditions in (70). Thus, there are a total of up to 30 conditions that must hold if explicit
breaking occurs in all three sectors. However, this exceeds the number of available degrees
of freedom that are available.

With explicit breaking, there are at most ten additional degrees of freedom in the
vierbein and spin connection due to the loss of gauge invariance under LTs and LLTs.
These consist of four degrees of freedom that can normally be gauged away using LTs plus
another six degrees of freedom that can normally be gauged away using LLTs. When the
symmetries are explicitly broken, these degrees of freedom can no longer be gauged away,
and hence all ten can potentially become available to satisfy some of the conditions in (70).

However, with at most ten extra degrees of freedom, if explicit breaking of LTs and
LLTs occurs in all three sectors, then the three sets of conditions in (70) cannot hold, and the
theory will be inconsistent. In the case that two or more sectors with special values of k̄X ,
k̄Y, and k̄Z, break a combined total of ten or fewer of the symmetries under LTs and LLTs,
then enough degrees of freedom might be available. However, with generic values of k̄X ,
k̄Y, and k̄Z, as considered here, it is not possible to evade a no-go result.

Therefore, it is assumed in the remainder of this paper that only one of the three
types of backgrounds k̄X , k̄Y, and k̄Z can be nonzero in a theory with explicit breaking. In
this case, there are up to ten identities that must hold as well as ten additional degrees of
freedom in the vierbein, making it possible in principle to evade the no-go results.

With explicit breaking occurring in only one sector, each sector can be examined
separately, in which case only one relevant condition in (70) must hold in each case. There
are, however, a number of ways in which these conditions might still not hold even if there
are enough degrees of freedom. For example, if the extra degrees of freedom resulting from
explicit breaking do not appear in the relevant identity or equations of motion, then a no-go
result follows. Even if the extra degrees of freedom do appear in the relevant identity, they
still need to provide solutions that exist. Furthermore, if it turns out that solutions only
exist when background tensors satisfy certain constraints, then the theory is inconsistent
unless the backgrounds are defined from the start as obeying these constraints. Thus, the
only way to tell for sure if a theory is consistent is to examine whether the no-go conditions
for it can be evaded for all possible values of the background as defined by the theory.

4.1. Potential Terms

To examine theories with symmetry breaking in a potential term, the background k̄X

is assumed not to vanish while both k̄Y and k̄Z are set to zero. The equations of motion for
the vierbein and spin connection in this case are

Gµν + Ūµν = κTµν
e , (71)

T̂λµν = −κS λµν
ω . (72)
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The torsion equation is unchanged, since U is assumed not to depend on the spin connection.
If the no-go results are evaded, the Noether identities that hold for the potential term under
observer LTs and LLTs are given in (62) and (65), which have a form that is consistent
with the Bianchi identities, the identities (34) and (35), and the equations of motion in (71)
and (72).

The relevant condition that must hold to evade the no-go result is∫
d4x e JXδk̄X = 0 , (73)

where JX = − δŪ
δk̄X , and δk̄X are the variations of k̄X under observer LTs and LLTs, To evade

the no-go result, enough of the extra degrees of freedom in the vierbein must be present in
the theory so that solutions of (73) exist. These conditions have been examined in a number
of examples with specific types of backgrounds [34,36,37,43,87], and solutions have been
found that evade the no-go results. At the same time, however, other examples are known
that do not evade them.

For example, backgrounds having the form of a symmetric two-tensor, such as a
background metric, or as a background vierbein, have been widely investigated in theo-
ries of massive gravity [83,84]. These are theories that couple the metric or vierbein to a
background and construct a potential U containing a mass term in such a way that the
ghost mode that typically appears in massive gravity theories is absent. Models with a
spacetime background having the form of a fixed Minkowski tensor ηµν or with a fixed
vierbein have been explored, which evade the no-go results. Additional ansatz solutions
in cosmological or Schwarzschild spacetimes that are consistent have been found as well.
In certain cases, backgrounds with spacetime dependence can have consistent solutions
provided the metric has a specified form. However, it is not the case that the condi-
tion in (73) can be satisfied for generic backgrounds k̄X, and hence no-go results hold in
most cases.

4.2. Pure-Gravity Sector

This section examines explicit breaking in the pure-gravity sector due to the appear-
ance of backgrounds k̄Y (with k̄X and k̄Z set to zero). The equations of motion in this
case are

Gµν + Ḡµν = κT̄µν
e , (74)

T̂λµν + T̄ λµν = −κS̄ λµν
ω , (75)

and if the no-go results are evaded, the Noether identities for observer LTs and LLTs
are in (63) and (66), which have a form that is consistent with the Bianchi identities, the
identities (34) and (35), and the equations of motion in (74) and (75).

Note that in an approximately flat and torsionless limit, and assuming the no-go
conditions are evaded, the identities in (63) and (66) reduce, respectively, to

∂µḠµν ≃ 0 , (76)

Ḡµν ≃ Ḡνµ . (77)

However, if k̄Y has spacetime dependence, it becomes problematic for ∂µḠµν ≃ 0 to hold.
One way to avoid such problems is to assume that the backgrounds k̄Y are constant. This is
the assumption made for backgrounds in the gravity sector of the SME when they result
from spontaneous breaking. However, with explicit breaking it is harder to justify such an
assumption, since k̄Y is a pre-determined quantity. Nonetheless, it is assumed here that k̄Y
is constant. Presumably, if the no-go results cannot be evaded in this case, they will be even
more problematic in the case where k̄Y has spacetime dependence.

The relevant condition that must hold to evade the no-go result in this case is
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∫
d4x e JYδk̄Y = 0 , (78)

where δk̄Y are variations under observer LTs and LLTs. In covariant form, the pure-gravity
term Sg,k̄Y

is assumed to consist of expressions that couple the backgrounds k̄Y with
products of the curvature and torsion, as well as with covariant derivatives of the curvature
or torsion. Generic examples of possible terms are given in [20]. Since k̄Y is presumably
small, the action is assumed to be linear in k̄Y.

In [38], a specific example of a pure-gravity term with explicit breaking is given with
Lagrangian Lg,k̄Y

= eµ
aeν

b k̄ ab
cd Rcd

µν, where the background k̄Y in this case is a nondy-

namical field k̄ ab
cd that matches a term in the SME. With k̄ ab

cd included in the action, the
equations of motion for the vierbein and spin connection both include contributions from
the background. Interestingly, it is observed in [38] that the nondynamical background
k̄ ab

cd can potentially act as a source of torsion even in vacuum.
Another example of a pure-gravity term is Lg,k̄Y

= k̄λµνKλµν, where in this case k̄Y is a
background k̄λµν, and Kλµν is the contorsion tensor. Varying the action Sg,k̄Y

with respect
to ωλµν gives T̄ λµν = −k̄µλν in the equation of motion in (55). Thus, in regions of space
where the matter fields and spin density equal zero, Equation (55) reduces to

T̂λµν = −T̄ λµν = k̄muλν , (79)

showing that here too the background can act as a source of torsion even in vacuum.

Perturbation Theory

In examples such as these, with explicit breaking in the pure-gravity sector, their
theoretical consistency depends on whether the identities that follow from (78) under
observer LTs and LLTs can hold or not. At the same time, in the context of an effective field
theory that is used to analyze tests of gravity on Earth and in the solar system, it typically
suffices to use first-order perturbation theory, since gravity is weak and torsion has never
been detected. In this case, quadratic or higher-order terms in the curvature and torsion
can be neglected, and a post-Newtonian framework can be developed. Such higher-order
terms would have the added effect of potentially modifying the number of propagating
degrees of freedom in the theory, which would be a significant departure from EC theory.
For these reasons, only first-order terms in the curvature or torsion are considered here in
the pure-gravity sector.

With a perturbative approach, both the consistency and the usefulness of the theory
must be examined in the case of explicit breaking. Such an investigation was carried out in
Riemann space, with zero torsion, in [32], where it was shown that while it may be possible
to evade no-go results nonperturbatively in the pure-gravity sector, in a leading-order
perturbative treatment the no-go constraints can nonetheless render a post-Newtonian
framework useless. This is because with explicit breaking the extra degrees of freedom in
the metric or vierbein, which are normally gauge degrees of freedom, do not appear in a
way that allows the no-go results to be evaded. This is due to the fact that the linearized
curvature is gauge invariant. Hence, the needed extra degrees of freedom disappear from
it. As a result, conditions must be imposed either on the curvature tensor, which limits the
geometry, or on the background fields themselves, which invalidates the premise that they
are prescribed quantities.

A similar general argument concerning the consistency and usefulness of a perturba-
tive approach can be made in Riemann–Cartan space as well. This is because the linearized
curvature and torsion are both gauge invariant under infinitesimal Diffs, LTS, and LLTs,
when excitations (e a

µ − δa
µ) and ω

ab
µ are small. This causes the extra modes in the vierbein

and spin connection due to the gauge breaking to disappear at the linearized level.
To see this, consider a zeroth-order flat background with zero torsion, where e a

µ = δa
µ and

ω
ab

µ = 0. With such a background, when the vierbein acts on a field it converts local indices
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to spacetime indices, and hence the distinction between them can be dropped. Linearizing the
curvature in (10) and the torsion in (7) in this way gives the first-order expressions:

Rκλµν ≃ ∂µωνκλ − ∂νωµκλ , (80)

Tλµν ≃ ∂µeνλ − ∂νeµλ + ωµλν − ωνλµ , (81)

The linearized infinitesimal transformations under Diffs, LTs, and LLTs are:

δDiff eµν ≃ ∂µϵν , δDiff ωλµν ≃ 0 , (82)

δLT eµν ≃ ∂µϵν , δLT ωλµν ≃ 0 , (83)

δLLT eµν ≃ ϵµν , δLLT ωλµν ≃ ∂λϵµν , (84)

where the Diffs use ξµ = ϵµ. When excitations of this form are inserted into (80) and (81),
Rκλµν and Tλµν both vanish at first order. Since the gauge modes have the form of the ten
excitations ϵµ and ϵµν, the fact that they disappear at the linearized level means that the
consistency conditions stemming from (78) generally cannot be satisfied unless constraints
are imposed on the torsion and curvature or on the backgrounds themselves, either of
which renders the framework useless.

This argument extends as well to higher-dimensional operators in the pure-gravity
action, which are coupled to background fields. In a first-order treatment, such terms
consist of operators with one or more covariant derivatives acting on the curvature or
torsion. However, when the action is linearized, the covariant derivatives reduce to partial
derivatives at first order, for example,

DαDβRκλµν ≃ ∂α∂βRκλµν , (85)

and likewise with the linearized torsion. As a result, all the potential gauge degrees of
freedom drop out of these higher-dimensional operators as well.

The end result is that a perturbative pure-gravity approach with explicit breaking in
EC theory is generally not useful or is inconsistent. See [43] as well for additional arguments
and examples that reach the same conclusion.

Despite the breakdown of theoretical consistency at the perturbative level with explicit
breaking, experiments can still conduct tests of gravity using the version of the SME that
includes nondynamical backgrounds. Any detection of a signal due to explicit breaking in
a model that does not evade the no-go results would then have to be interpreted as giving
evidence of a geometry that goes beyond Riemann or Riemann–Cartan geometry, such
as Finsler geometry. This is the approach taken in [43], while [44] examines a number of
experimental tests involving both the pure-gravity and matter–gravity sectors.

The pure-gravity sector also includes interactions between gravity waves and fixed
background fields. In general, the effects of spacetime symmetry breaking on gravity waves
can be investigated using a variety of approaches. See, for example [88–96]. However, in
the context of effective field theory, as is being considered here, a perturbative approach
using linearized gravity coupled to backgrounds of the form k̄Y can be used [91–93]. In
this framework, completely generalized operators consisting of partial derivatives acting
on metric excitations hµν in a Minkowski background coupled directly to k̄Y are included,
as opposed to restricting to couplings with only the linearized curvature tensor. To avoid
conflicts with translation invariance, it is assumed that the backgrounds k̄Y are constant
or approximately constant. At the linearized level, breaking of Diffs becomes breaking of
a gauge symmetry, while breaking of Lorentz symmetry becomes global breaking in the
Minkowski background. In this context, the linearized metric includes additional degrees
of freedom associated with gauge breaking under Diffs. However, in general, they may
not appear in such a way that evades the no-go results. Thus, any detection of spacetime
breaking from gravity waves, which breaks Diffs but does not evade the no-go conditions,
would be indicative as well of a geometry that goes beyond Riemann or Riemann–Cartan.
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For additional applications with explicit breaking, see, for example [97–100].

4.3. Matter–Gravity Sector

Setting aside the potential and pure-gravity terms, the action term for the matter–
gravity sector is Sg,m,k̄Z

, which contains the fixed backgrounds k̄Z. The dynamical equations
of motion for the vierbein and spin connection are

Gµν = κT̄µν
e , (86)

T̂λµν = −κS̄ λµν
ω , (87)

where for simplicity the matter fields are put on-shell. Comparing these to Equations (19) and (20)
shows that they have the same form as in EC theory except that the energy–momentum
and spin density tensors now have bars over them, indicating that they depend on the
background fields, k̄Z.

The energy–momentum and spin density for ordinary matter are contained in T̄µν
e

and S̄ λµν
ω . The background k̄Z contributes to T̄µν

e as well when it couples to both matter

fields and the vierbein. Similarly, k̄Z contributes to S̄ λµν
ω when it couples to both matter

fields and the spin connection. The latter contributions arise, for example, when covariant
derivatives act on the matter fields, such as Dµψ or Dµ Aν, and then also couple with
k̄Z, Thus, all terms with couplings to k̄Z in the matter–gravity sector combine with both
gravitational and matter fields, which implies that in regions of spacetime where matter is
absent, T̄µν

e and S̄ λµν
ω both vanish. From (87), it follows that the torsion vanishes as well

in the absence of matter; therefore, in vacuum the theory is no different from EC theory.
Assuming that the no-go results are evaded, the Noether identities for observer LTs

and LLTs in this case are given in (64) and (67), which are consistent with the Bianchi
identities and the equations of motion in (86) and (87). Note how the identities in (64)
and (67) match the identities (34) and (35) in EC theory when bars are placed over
T̄µν

e and S̄ λµν
ω .

The condition in (70) that must hold to evade the no-go results in this case is∫
d4x e JZ δk̄Z = 0 . (88)

where δk̄Z can be observer Diffs, LTs, or LLTs of the backgrounds k̄Z.

4.3.1. Energy–Momentum

Because of the similarity with EC theory, and assuming the no-go results can be
evaded, the same procedure as described in Section 2.4 can be applied here as well. An
effective energy–momentum tensor with Belinfante–Rosenfeld form can be defined as in
Section 2.4, but with bars added to the energy–momentum and spin density so that

T̄µν
eff = T̄µν

e − 1
2 D̃σ(S̄

σµν
ω + S̄ µνσ

ω + S̄ νµσ
ω ) . (89)

The Einstein tensor can again be divided into a Riemann part and a non-Riemann part,
where on-shell the torsion in the non-Riemann part can be written in terms of S̄ λµν

ω . In
the limit where quadratic contributions ∼ κ2S̄2

ω can be neglected, the effective energy–
momentum tensor is

T̄µν
eff ≃ T̄(µν)

e − 1
2 D̃σ(S̄

µνσ
ω + S̄ νµσ

ω ) , (90)

and the effective Einstein equation reduces to G̃µν ≃ κT̄µν
eff . From this, it follows that as long

as the no-go results are evaded, D̃µT̄µν
eff ≃ 0 and Tµν

eff = Tνµ
eff must hold at leading order in a

perturbative treatment. This results in a perturbative theory that is effectively Riemann.
In particular, in a flat spacetime limit with negligible torsion, ∂µTµν

eff ≃ 0 would need
to hold. If a background k̄Z has spacetime dependence, this could lead to violations
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of global translation invariance and energy–momentum conservation. A breakdown of
energy–momentum conservation in a flat torsionless limit is problematic as well, because
no measurements detect such a violation. For these reasons, it is assumed here that k̄Z is
constant or very close to constant over relevant distance scales, so that ∂µ k̄Z ≃ 0 holds. In
this case, as long as the no-go results can be evaded, the Noether identities and equations
of motion are consistent, and the theory closely parallels EC theory.

4.3.2. No-Go Results

To evade the no-go results, the identities that follow from (88) must be solvable when
δk̄Z are given as observer Diffs, LTs, and LLTs. In general, it is possible that these conditions
can hold nonperturbatively, since the current JY

m is not typically gauge invariant. Thus, the
extra degrees of freedom in the vierbein do not necessarily disappear and can take values
that satisfy the consistency conditions in (88). However, to fully evade the no-go results,
solutions must exist for the extra modes, without placing additional constraints on the
background fields. Note that there are no additional degrees of freedom in the torsion,
which according to (87) is fully determined by the spin density.

Arguments concerning consistency at the level of perturbation theory are less con-
clusive in the matter–gravity sector compared to the pure-gravity sector. Indeed, there
are known examples of theories with explicit breaking in the matter–gravity sector that
evade the no-go results. See, for example, [36,37,43]. It is also the case that the currents JY

typically contain both gravitational and matter fields coupled together, which can make
linearizing in a systematic way ambiguous. For example, if small matter excitations only
couple with the zeroth-order vierbein e a

µ ≃ δa
µ and spin connection ω

ab
µ ≃ 0, then the

extra degrees of freedom are generally suppressed. At the same time, even with quadratic
couplings retained in a perturbative treatment, the general arguments given in [43] show
that the consistency conditions stemming from (88) can run into experimental constraints
that conflict with a particular model. For example, the experimental sensitivities that are rel-
evant for JZ, k̄Z, vierbein excitations, and matter fields might be orders of magnitude apart
and therefore incompatible. This can result in a theory being perturbatively inconsistent
and not useful to use as a phenomenological framework.

4.3.3. Constant Vector Background in Matter–Gravity Sector

As concrete examples, consider theories where the background k̄Z is either a constant
spacetime vector b̄µ or a constant local vector b̄a. To first order in a perturbative approach,

with e a
µ = δa

µ and ω
ab

µ = 0 at zeroth order, the observer transformations under Diffs, LTs,
and LLTs, with infinitesimal parameters ξµ = ϵµ = δ

µ
a ϵa and ϵ b

a , are given in this case as:

δDiff b̄µ ≃ (∂µϵν)b̄ν , δLT b̄µ ≃ (∂µϵν)b̄ν , δLLT b̄µ ≃ 0 , (91)

δDiff b̄a ≃ 0 , δLT b̄a ≃ 0 , δLLT b̄a ≃ −ϵ b
a b̄b . (92)

Here, the constant spacetime components b̄µ, obeying ∂ν b̄µ ≃ 0, break particle Diffs and
LTs but not particle LLTs when they couple to dynamical quantities. This is consistent with
the relation in (30), which shows that Diffs and LTs are equal when LLTs vanish. At the
same time, the constant local background b̄a, with ∂ν b̄a = 0, breaks particle LLTs, but at
leading order it does not break particle Diffs or LTs in contrast to the result in (30). Notice,
however, that at second order in small quantities, δLT b̄a = ϵceµ

cD(ω)
µ b̄a = ϵceµ

cω
ab

µ b̄a, as

in (48). Hence, if ω
ab

µ ̸= 0 at first order, the relation in (30) would be applicable, and it
would confirm that LLTs and LTs are directly linked when Diffs vanish.

As this example illustrates, a theory with background b̄µ violates different symmetries
than a theory with b̄a. It also shows that a constant background can break particle LTs
without necessarily breaking global translations in a flat torsionless limit, since ∂ν b̄µ = 0
and ∂ν b̄a = 0. The conditions that must hold to evade the no-go results are the identities
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derived from (88), with δb̄µ or δb̄a given as infinitesimal Diffs, LTs, and LLTs (as defined
in (91) and (92)) must hold.

For the case of constant b̄µ, LLTs are unbroken to leading order, while Diffs and LTs
have the same form of breaking with ξµ = ϵµ. The resulting identity under LTs is

[(Dµ − Tλ
λµ)Jµ]b̄ν = 0 . (93)

Thus, unless (Dµ − Tλ
λµ)Jµ = 0, the theory is inconsistent and the no-go results hold. In a

limit with weak gravity and negligible torsion, the condition in (93) reduces to ∂µ Jµ
Y ≃ 0.

In models where the current is approximately conserved in this manner, consistency can
hold. However, in general, consistency would require cancelations between matter fields,
gravitational fields, and the background b̄µ to occur, which generally have very different
experimental sensitivities as argued in [43].

For constant b̄a, with broken LLTs, the conditions that must hold are

Ja b̄b − Jb b̄a = 0 . (94)

With LLTs, the extra gauge degrees of freedom are the antisymmetric components in the
vierbein, and these are not sufficient at leading order in Ja

Y to make (94) hold for generic
values of a constant vector b̄a. Thus, a no-go result holds at the perturbative level.

In summary, in theories with constant or nearly constant explicit-breaking back-
grounds b̄µ or b̄a in interaction with a matter–gravity current, the question of whether
no-go results can be evaded depends in a case-by-case manner on the type of current and
level of perturbation theory that is used. However, at leading order in perturbation theory,
the result for most models is either that the no-go conditions hold or that experimental
constraints imply that they cannot hold.

4.3.4. Stückelberg Approach

Since a Stückelberg approach is commonly used in gravity theories with explicit
breaking of Diffs in Riemann space [101], it is examined here in Riemann–Cartan space.
For simplicity, the example of a constant background vector b̄µ is considered again. The
technique involves introducing a set of Stückelberg scalar fields ϕa and using them to
replace b̄µ as

b̄µ → (∂µϕa)b̄a , (95)

where b̄a is constant and where the scalars ϕa are dynamical fields. This procedure (often
called a trick) restores the broken Diffs. At the same time, since the scalars ϕa are dynamical,
there are equations of motion for them that must hold.

In the Stückelberg approach, Diffs are spontaneously broken by the vacuum value for
ϕa, which is given as ⟨ϕa⟩ = δa

νxν. When ϕa takes this value, (∂µϕa)b̄a = b̄µ, reproducing
the fixed background b̄µ. The idea then is that any fixed nondynamical field that explic-
itly breaks Diffs can be reproduced as a gauge-fixed vacuum solution in a theory with
spontaneous breaking caused by the Stückelberg fields.

Making the substitution (95) in the matter–gravity action term changes it to a new
action in terms of ϕa:

Sg,m,k̄Z
=

∫
d4x e Jµ b̄µ

→
∫

d4x e Jµ(∂µϕa)b̄a .
(96)

Varying ϕa, using integration by parts, and discarding a boundary term, gives the result

[(Dµ − Tλ
λµ)Jµ]b̄a = 0 . (97)

Therefore, the condition (Dµ − Tλ
λµ)Jµ = 0 holds as a result of the equations of motion for

ϕa, illustrating that the Stückelberg approach still works when there is torsion.
However, regardless of whether the condition (Dµ − Tλ

λµ)Jµ = 0 holds as the result
of invariance under observer Diffs or LTs or as the result of using a Stückelberg approach,
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the consistency of a theory still depends in both cases on whether this condition can
hold for generic constant vectors b̄µ. If not, the no-go result applies, and the theory is
inconsistent. Thus, while the Stückelberg method can be useful in exploring theories with
explicit-breaking background fields for which the no-go results are evaded, it does not
provide a way to make a theory that is inconsistent into one that is consistent.

5. Spontaneous Breaking

Spontaneous breaking of spacetime symmetry has been widely investigated both theo-
retically and experimentally [17–25,102,103]. Specific mechanisms for how spontaneous
breaking can occur have been identified and explored [14–16], and examples and proper-
ties of the NG modes that can arise have been studied [29,30,104–121]. In the SME, both
the pure-gravity and matter–gravity sectors have been constructed in EC theory [20]. In
addition, perturbative frameworks in Riemann space with spontaneous breaking have been
developed. In the pure-gravity sector, these include a post-Newtonian framework [26] and
a linearized perturbative framework suitable for gravity waves [91]. In the matter–gravity
sector, techniques leading to the construction of a consistent perturbative framework have
been found [27,28]. These different frameworks have been used to analyze a wide range
of experimental tests of spacetime symmetry in gravity theories [25]. In addition, specific
models exhibiting spontaneous spacetime symmetry have been constructed and investi-
gated [15,16,29,30], including Bumblebee models, where numerous applications have been
explored (for examples, see [122–137]).

With spontaneous breaking, the generic form of the action is given in (43), and the
equations of motion are given in (54)–(56). In general, the energy–momentum tensor does
not have to be symmetric or covariantly conserved when the torsion is nonzero. These
equations show that the torsion can be sourced by spin density from ordinary matter as
well as by contributions that depend on the backgrounds.

As originally shown in [20], in an EC theory with spontaneous breaking of Diffs and
LLTs, the no-go results are evaded. The same is true using LTs and LLTs as the basic
symmetries, since these yield an equivalent set of Noether identities. The no-go results are
evaded because the background fields, k̄Y, k̄Y, and k̄Z are vacuum expectation values of
dynamical fields KY, KY, and KZ, which obey the equations of motion:

δSg,k̄X

δKX
= 0 ,

δSg,m,k̄Z

δKZ
= 0 ,

δSg,m,k̄Z

δKZ
= 0 . (98)

Thus, the backgrounds k̄X, k̄Y , and k̄Z are the vacuum solutions to these equations. As a
result, all three conditions in (61) hold for the vacuum solutions. Since each of the action
terms are individually scalars under observer LTs and LLTs, the Noether identities for LTs
in (62)–(64) and for LLTs in (65)–(67) all hold. These identities are consistent with each other,
with the contracted forms of the Bianchi identities in (13) and (14), and with the equations
of motion.

Notice that with spontaneous breaking, there is nothing that prevents the breaking
from happening in more than one particle sector. Thus, in principle k̄X , k̄Y , and k̄Z can all
have nonzero values at the same time. However, to avoid potential issues with breakdown
of global translation invariance and energy–momentum conservation in a flat limit, the
backgrounds k̄X , k̄Y, and k̄Z can be approximated as constant or nearly constant on relevant
experimental distance scales.

When excitations about the vacuum are included, the symmetry becomes hidden, but
NG modes and massive Higgs-like excitations combine with the backgrounds and other
dynamical excitations to keep the symmetry unbroken in the action, and the Equations
in (98) continue to hold. The counting of degrees of freedom in the vierbein and spin
connection is unchanged from the case of EC theory, and all ten of the spacetime symmetries,
consisting of LLTs and either Diffs or LTs, can be used to gauge away ten degrees of freedom.
The torsion does not propagate, and on-shell it is fixed by the spin density.
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Just as in EC theory, an effective theory can be found as described in Section 2.4, where
the curvature is split into Riemann and non-Riemann parts, and the torsion is eliminated
on-shell using the equations in (55). The relevant equations in the effective theory are found
by making the replacements

κT µν
e → (−Ūµν − Ḡµν + κT̄ µν

e ) , (99)

κSω µαβ → (T̄µαβ + κS̄ω µαβ) , (100)

in Equations (37) through (41). In a limit where the torsion and background fields are
weak, so that quadratic terms in (T̄µαβ + κS̄ω µαβ) can be neglected, the curvature becomes
Riemann, and the Einstein equations reduce to G̃µν ≃ κT̄µν

eff . It follows from this that
D̃µT̄µν

eff ≃ 0 and T̄µν
eff ≃ T̄µν

eff hold in a weak-torsion limit. As the bar indicates, T̄µν
eff in general

depends on the backgrounds k̄X , k̄Y , and k̄Z . Nonetheless, with spontaneous breaking, the
energy–momentum is covariantly conserved in an effective theory with Riemann curvature
in a weak-torsion limit, just as it is in EC theory with no symmetry breaking.

5.1. Bumblebee Models

Bumblebee models are useful for studying how spontaneous breaking of spacetime
symmetry can occur [14–16,20,29,30]. They allow various features and properties of the
symmetry breaking to be explored, including how NG modes and Higgs-like modes can
appear, and whether a Higgs mechanism might occur.

The Bumblebee field has spacetime components Bµ that are connected to local compo-
nents Ba by the vierbein, so that Bµ = e a

µ Ba. Its defining feature is that it has a potential
V that has a minimum when Bµ and the vierbein have nonzero vacuum values, which
spontaneously break Diffs and LLTs. In addition to having an Einstein–Hilbert term, the
action for a Bumblebee model can take a range of forms, with different kinetic terms and
with either minimal or nonminimal couplings.

The simplest form to consider is where there are only minimal couplings and where
the kinetic term has a Maxwell form, in which case the Bumblebee Lagrangian can be
written as

LB = −1
4

BµνBµν − V(BµBµ + b2) . (101)

Here, Bµν is the field strength, which in Riemann space can be defined using covariant
derivatives, which simply reduce to partial derivatives. However, in EC theory the torsion
enters when covariant derivatives are used:

Bµν = DµBν − DνBν = ∂µBν − ∂νBµ − Tλ
µνBλ . (102)

For an electromagnetic field, including the term with torsion would break local U(1) gauge
symmetry, and therefore a definition in terms of only partial derivatives would be preferable.
However, in Bumblebee models, the potential V breaks local U(1) invariance, and therefore
either definition of Bµν can be considered. In the case where covariant derivatives are used,
and the torsion is included, contributions to the spin density can occur.

The potential V is given as a function of the combination (BµBµ + b2), where b is a
constant. One possibility is to define V as a smooth quadratic function,

V(BµBµ + b2) =
1
2

λ(BµBµ + b2)2 , (103)

where λ is a constant. This potential has a minimum when

V′ = λ(BµBµ + b2) = 0 . (104)



Symmetry 2024, 16, 25 23 of 32

Thus, the components Bµ and Ba as well as the vierbein all have nonzero vacuum values
when V is at its minimum,

⟨Bµ⟩ = b̄µ , ⟨e a
µ ⟩ = δa

µ . ⟨Ba⟩ = b̄a , (105)

Here, b̄µ and b̄a are both assumed to be constant, and a Minkowski background is assumed
for the vierbein. The vacuum metric is then given as ⟨gµν⟩ = ηµν, while the local metric is
ηab. The vacuum values for the background vector are related by b̄µ = ⟨e a

µ ⟩b̄a, which must
obey b̄µ b̄µ = b̄a b̄a = −b2 so that V′ = 0 holds. Each of these vacuum values is fixed under
particle spacetime transformations. Thus, when one of them transforms under observer
transformations, it spontaneously breaks the symmetry.

5.1.1. Vacuum Solution with ⟨ω ab
µ ⟩ = 0

In EC theory, the vacuum solution for the spin connection can be chosen as

⟨ω ab
µ ⟩ = 0 . (106)

With this and the vierbein vacuum, ⟨e a
µ ⟩ = δa

µ, the vacuum values for the Bumblebee field
strength, spin density, torsion, energy–momentum, and curvature all vanish:

⟨Bµν⟩ ̸= 0 , ⟨S̄ λµν
ω ⟩ ̸= 0 , ⟨Tλ

µν⟩ ̸= 0 , ⟨T̄µν
e ⟩ ̸= 0 , ⟨Rκ

λµν⟩ ̸= 0 . (107)

Together the vacuum values, b̄µ, b̄a, and ⟨e a
µ ⟩ spontaneously break all three spacetime

symmetries: Diffs, LTs, and LLTs. However, each individually spontaneously breaks
different symmetries.

While the vierbein vacuum value spontaneously breaks all three symmetries, the
constant local background b̄a spontaneously breaks three LLTs, but not Diffs or LTs. The
background b̄a does not break LTs, because D(ω)

µ b̄a = 0 to lowest order when b̄a is constant

and ⟨ω ab
µ ⟩ = 0, and Diffs are not broken when b̄a is constant. In contrast, the spacetime

vector b̄µ breaks Diffs and LTs, but not LLTs. It breaks LTs because the vierbein breaks LTs,
and similarly for Diffs. Notice, however, that a constant vector b̄µ only breaks one Diff,
where ξµ is in the same direction as the vacuum value b̄µ. Similarly, at leading order, b̄µ

only breaks one LT where ϵa is in the same direction as ⟨e a
µ ⟩b̄µ. Finally, since b̄a and ⟨e a

µ ⟩
transform inversely under observer LLTs, b̄µ does not transform under LLTs.

The fate of the NG modes in this Bumblebee model was examined in [29,30] for
spontaneous breaking of Diffs and LLTs, where it was found that massless NG modes for
the broken LLTs can appear and propagate, while the NG modes for Diffs disappear and
do not propagate. However, it is also possible to consider symmetry breaking where LTs
and LLTs are the independent transformations, and to look at whether the formation of the
NG modes is changed in any way from the case where Diffs and LLTs are independent.

As described in [29,30], the excitations around the vacuum value in Bµ consist of a
combination of excitations of both the local vector Ba and the vierbein e a

µ , which take
the form

⟨Bµ⟩+ δBµ = (⟨e a
µ ⟩+ δe a

µ )(⟨Ba⟩+ δBa) , (108)

where δBµ, δe a
µ , and δBa are the relevant excitations, which are assumed to be small. Thus,

to first order,
δBµ ≃ (δe a

µ )b̄a + ⟨e a
µ ⟩δBa . (109)

To identify the physical degrees of freedom in the case where the NG modes are associated
with Diffs and LLTs, ten gauge degrees of freedom must first be fixed. This is necessary
with spontaneous breaking because the symmetries still hold when all the excitations are
included. One choice for the gauge fixing is to set the antisymmetric components in δe a

µ to
zero, which fixes the six LLTs, and then set (δe a

µ )b̄a = 0, which fixes the four gauge degrees
of freedom under Diffs. The result is that
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δBµ ≃ ⟨e a
µ ⟩δBa , (110)

where there are now four degrees of freedom remaining in δBa. Since three LLTs are
spontaneously broken by b̄a, there are three NG modes that can appear. These have the
form of excitations generated by the broken LLTs, which stay in the minimum of the
potential V. The remaining fourth mode is a massive mode, which does not stay in the
minimum of the potential V. The three NG modes for LLTs have the form δBa ≃ −ϵ b

a b̄b,
where the broken generators, ϵ b

a , become the fields for the NG excitations. These obey
(δBa)b̄a = 0, while the massive mode in δBa is an excitation along the direction of b̄a.

In δBµ, as given in (110), it is only the NG modes for LLTs that appear, while the
NG mode for the broken Diff disappears. Under the broken Diff, the NG mode would
appear as an excitation (∂µξν)⟨e a

ν ⟩b̄a, where in this case ξµ for the broken transformation
would become the field for the NG mode. The reason it disappears is because gauge fixing
(δe a

µ )b̄a = 0 imposes a condition on any excitations that might arise as NG modes in
the vierbein:

(∂µξν)⟨e a
ν ⟩b̄a − ϵa

b⟨e
b

µ ⟩b̄a = 0 . (111)

This condition locks the NG mode for the broken Diff to the NG modes for the broken LLTs,
and they cancel in the vierbein excitations. The net result is that only the three NG modes
for the broken LLTs appear in δBµ.

A corresponding analysis can be carried out starting from (109) and finding the
NG modes when it is LTs and LLTs that are spontaneously broken. In this case, the
gauge freedoms under LTs and LLTs must be fixed, which can be accomplished by again
setting the antisymmetric components in δe a

µ to zero, and then using the four LTs to
set (δe a

µ )b̄a = 0. The result is again that δBµ ≃ ⟨e a
µ ⟩δBa consists of three NG modes

for spontaneous breaking of LLTs and one massive mode. The gauge fixing in this case
locks excitations having the form of LTs and LLTs in (δe a

µ )b̄a, imposing the condition that

(∂µϵa)b̄a − ϵa
b⟨e

b
µ ⟩b̄a = 0. Here, the first excitation (∂µϵa)b̄a is what would be the NG mode

for the broken LT; however, it is locked to the NG modes for the broken LLTs by the gauge
fixing, which therefore causes them to cancel in the vierbein excitations. The net result is
again that only the three NG modes for the broken LLTs appear in δBµ.

Thus, regardless of whether Diffs and LLTs are used or LTs and LLTs are used, the
only NG modes that propagate as physical modes are the three NG modes stemming from
spontaneous breaking of LLTs. No NG modes for either Diffs or LTs appear in the theory.

5.1.2. Vacuum Solution with ⟨ω ab
µ ⟩ ̸= 0

An alternative vacuum structure can be considered for the case of a constant back-
ground b̄a, which spontaneously breaks both LTs and LLTs in the local frame. It occurs
when the vacuum vierbein has a Minkowski solution, ⟨e a

µ ⟩ = δa
µ, and the spin connection

also has a nonzero vacuum value,
⟨ω ab

µ ⟩ ̸= 0 . (112)

The condition that the Bumblebee vacuum is in the minimum of the potential, obeying
V′ = 0, is still satisfied when ⟨Ba⟩ = b̄a and ⟨Bµ⟩ = ⟨e a

µ ⟩b̄a. Spontaneous breaking of

LTs occurs in this case, because under observer transformations, δLTb̄a = ϵceµ
cD(ω)

µ b̄a, and
therefore the vacuum solution obeys

δLTb̄a = ϵc⟨eµ
c⟩⟨ω

b
µa ⟩b̄a ̸= 0 . (113)

In this case, the constant vector b̄a spontaneously breaks three LTs, where the broken
generators ϵa are transverse to b̄a. Thus, three NG modes for the broken LTs are expected.
At the same time, spontaneous breaking of LLTs occurs, since δLLTb̄a = −ϵ b

a b̄b ̸= 0 under
observer LLTs. Thus, there are three broken LLTs and three NG modes for LLTs are expected.

Notice that the spin connection is not forced to have a nonzero vacuum value so
that V′ = 0 holds. Instead, it acquires a vacuum value spontaneously at the same time
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that e a
µ and Ba take vacuum values making V′ = 0. However, as long as ⟨ω ab

µ ⟩ is
constant, in addition to b̄a and ⟨e a

µ ⟩ being constant, then the Bumblebee field strength, spin
density, torsion, energy–momentum, and curvature can all have constant nonvanishing
vacuum values:

⟨Bµν⟩ ̸= 0 , ⟨S̄ λµν
ω ⟩ ̸= 0 , ⟨Tλ

µν⟩ ̸= 0 , ⟨T̄µν
e ⟩ ̸= 0 , ⟨Rκ

λµν⟩ ̸= 0 . (114)

Thus, the Bumblebee vacuum Lagrangian in this case is a constant, whereas it was zero
when the spin connection had a vacuum solution ⟨ω ab

µ ⟩ = 0.
Since the spin connection has mass dimension equal to one, its vacuum value can be

written as ⟨ω ab
µ ⟩ ∼ w̄ (dropping indices), where w̄ has units of mass. Here, w̄ sets the

energy scale for the spin connection vacuum solution. Similarly, ⟨Ba⟩ ∼ ⟨Bµ⟩ ∼ b, where
b also has mass units. The vacuum Bumblebee field strength is nonzero because of the
torsion contribution in (102), which gives

⟨Bµν⟩ = −⟨Tλ
µν⟩⟨e a

λ ⟩b̄a , (115)

where the torsion vacuum value is

⟨Tλµν⟩ = ⟨ωµλν⟩ − ⟨ωνλµ⟩ . (116)

This shows that the torsion has mass dimension one and scales as ⟨Tλµν⟩ ∼ ω̄, while
the field strength has mass dimension two and scales as ⟨Bµν⟩ ∼ ω̄b. The vacuum spin

density ⟨S̄ λµν
ω ⟩ is found by varying the Lagrangian term − 1

4 BµνBµν with respect to the spin
connection and substituting in the vacuum solutions. It has mass dimension three and scales
as ⟨S̄ λµν

ω ⟩ ∼ ω̄b2. Since the torsion equation for the vacuum is ⟨T̂λµν⟩ = −κ⟨S̄ λµν
ω ⟩, this

shows that on-shell the torsion scales as ⟨Tλµν⟩ ∼ κω̄b2, where the dimensional coupling
κ ∼ M−2

Pl has mass dimension minus two, with MPl equal to the Planck mass. The fact that
the torsion scales as both ∼ ω̄ and ∼ κω̄b2 on-shell shows that κb2 ∼ 1 or that b ∼ MPl,
and therefore ⟨Tλµν⟩ ∼ ω̄ and κ⟨S̄ λµν

ω ⟩ ∼ ω̄. Similarly, the energy–momentum is found
by varying − 1

4 eBµνBµν with respect to the vierbein. The result is that T̄µν
e is dimension four

and scales as ∼ ω̄2b2. However, κT̄µν
e ∼ ω̄2. Finally, the vacuum curvature, which has

mass dimension two, scales as ⟨Rκ
λµν⟩ ∼ ω̄2.

Notice how these equations set the Bumblebee mass scale b to the Planck mass, but
the scale for the spin connection vacuum ∼ ω̄ is left undetermined. However, since the
vacuum torsion scales as ∼ ω̄ and the vacuum curvature scales as ∼ ω̄2, on experimental
grounds the parameter ω̄ must be very small. This would be consistent with ⟨ω ab

µ ⟩ arising
spontaneously as a small vacuum value. While the potential term scales as V ∼ b4 ∼ M4

Pl,
it is zero in the vacuum solution. In contrast, the other operator terms in the action all
scale as ∼ ω̄2M2

Pl. Matching the scale of these other nonvanishing vacuum operators on
experimental grounds to a cosmological constant term that scales as ∼ ΛM2

Pl indicates that
an appropriate scale for the vacuum spin connection would be ω̄ ∼

√
Λ, and hence ω̄ must

be extremely small.
To examine the NG modes for spontaneous breaking with ⟨ω ab

µ ⟩ ̸= 0, consider again
the excitations in (109). Ten gauge symmetries must be fixed. The six LLTs can be fixed
by setting the antisymmetric components of the vierbein to zero, and the four LTs can be
chosen so that the excitations (δe a

µ )b̄a = 0. This leaves δBµ ≃ ⟨e a
µ ⟩δBa, where δBa consists

of three NG modes for the broken LTs and three NG modes for the broken LTTs all acting
together, which are given as

δBa = ϵc⟨eµ
c⟩⟨ω

b
µa ⟩b̄b − ϵ b

a b̄b , (117)

where ϵa and ϵ b
a become the fields for the NG modes. These combined excitations obey

(δBa)b̄a = 0 and therefore remain in the minimum of the potential V. The massive mode
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is along the direction of b̄b, and is assumed to be highly suppressed due to the mass scale
b ∼ MPl.

With the gauge freedom fixed by setting (δe a
µ )b̄a = 0, a condition is imposed on any

excitations arising as NG modes for LTs and LLTs in the vierbein:

(δe a
µ )b̄a = (∂µϵa)b̄a + ϵb⟨ω a

µ b⟩b̄a + ϵb⟨Ta
bµ⟩b̄a − ϵa

b⟨e
b

µ ⟩b̄a = 0 . (118)

Substituting for the torsion, rearranging, and making insertions of the vacuum vierbein,
this condition can be rewritten as:

⟨eµ
a⟩(∂µϵb)b̄b − [ϵc⟨eµ

c⟩⟨ω
b

µa ⟩b̄b − ϵ b
a b̄b] = 0 . (119)

This form shows that the excitation ⟨eµ
a⟩(∂µϵb)b̄b, which involves the LT with ϵa along the

direction of b̄a, is locked to the combination of NG modes for the three LTs and the three
LLTs, which appear together in δBa in (117). Thus, the condition in (119) prevents a fourth
NG mode for the LTs, with ϵa parallel to b̄a, from appearing in δBµ.

Notice also that the locked excitation (∂µϵb)b̄b takes a form in the spacetime frame
that is the same as a Diff NG mode: (∂µξν)b̄ν, where b̄ν = ⟨e b

ν ⟩b̄b and the Diff generator

is ξν = ⟨eν
a⟩ϵa. In fact, if the vacuum value ⟨ω b

µa ⟩ is set equal to zero, so that LTs are no
longer broken, then the condition in (119) reduces to the condition that locks the Diff NG
mode to the NG modes from LLTs just as in the previous example.

The net result of this example, however, is that with ⟨ω ab
µ ⟩ ̸= 0, there are three

excitations in δBµ, which consist of a combination of three NG modes for LTs and three
NG modes for LLTs. The fourth mode is the Bumblebee massive mode, which scales as
∼ b ∼ MPl, and therefore its excitations are heavily suppressed and are unlikely to matter
at lower energies.

The nature of the full solution depends on which components of the spin connection
acquire vacuum values. This would determine which components of the vacuum values
in (114) are nonvanishing, and how they combine to give an overall constant vacuum La-
grangian. With the gravitational, NG, and massive mode excitations included, the physical
viability of such a theory could be evaluated. Additional terms involving nonminimal
couplings or additional couplings to the torsion could be considered as well. See, for
example, [138]). In addition, adding terms that allow the spin connection to propagate
would allow investigation of the possibility of a Higgs mechanism for the spin connection.
However, exploring possibilities like these goes beyond the scope of the present work,
which is focused on the nature of the spontaneous breaking of spacetime symmetries, the
resulting vacuum structure, and the appearance of NG modes.

6. Discussion and Conclusions

In this paper, the processes of explicit and spontaneous spacetime symmetry breaking
in EC theory when fixed background fields are present have been reviewed and reexamined
with a focus being placed on the roles of torsion and LTs.

The original investigation of spacetime symmetry breaking in gravity [20], published
20 years ago, found that with explicit breaking no-go results consisting of inconsistencies
between the Bianchi identities and the equations of motion can arise, but that with sponta-
neous breaking the no-go results are evaded. The construction of the gravity sector of the
SME based on the idea of spontaneous breaking of spacetime symmetries has provided a
phenomenological framework that has been used in numerous gravity tests. These include
both pure-gravity and matter–gravity tests, where extremely high sensitivities to possible
symmetry breaking have been attained. In addition, implications of spontaneous break-
ing of spacetime symmetries have been explored, including looking at various scenarios
and mechanisms for the symmetry breaking as well as addressing questions concerning
the appearance of NG modes, Higgs-like modes, and the possibility of a gravitational
Higgs mechanism.
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However, over the past decade, gravity theories with explicit breaking of spacetime
symmetry breaking have been investigated in more detail, and it was found in certain cases
that it is possible to evade the no-go results. Seeing how this occurs involves looking at the
relationships between the Bianchi identities, Noether identities stemming from observer
independence, energy–momentum conservation, and the equations of motion. It was found
that the no-go results can most readily be evaded in theories where the extra degrees of
freedom in the vierbein due to explicit breaking can appear and have nonperturbative
interactions with matter and gravitational fields. It is also the case that highly specific forms
of background fields are able to evade the no-go results, while generic forms typically
do not. In addition, in perturbative treatments, which are widely used in gravity tests,
the extra modes often disappear or are highly restricted so that useful solutions evading
the no-go results do not exist. This makes post-Newtonian approaches not useful when
the symmetry breaking is explicit. Nonetheless, to investigate the possibility of explicit
breaking experimentally, a generalization of the SME with gravity has been developed,
where the interpretation is that if any violations are discovered in cases where the no-go
results are not evaded, they would give evidence of a geometry that goes beyond Riemann
or Riemann–Cartan, such as Finsler geometry.

Much of the progress that has been made in understanding the differences between
explicit and spontaneous breaking has relied on investigations in which Diffs and LLTs are
broken, while the breaking of LTs has been looked at to a lesser extent. In addition, the
effects of torsion have often been ignored, including the question of how to interpret the
fact that energy–momentum is not covariantly conserved when torsion is present.

The primary goal of this paper has been to revisit EC theory with background fields
included and to look more closely at the effects of torsion and breaking of LTs in theories
with either spontaneous or explicit breaking. One immediate effect involving LTs in theories
with fixed backgrounds is the possibility of violation of global translation invariance in a
flat spacetime limit and breaking energy–momentum conservation. For this reason, the
investigation here has been limited to the case where the backgrounds are constant or
nearly constant on relevant distance scales, which is an assumption that is often made in
the SME. The idea is that if no-go results arise for a constant background, then having a
background with spacetime dependence would be even more problematic. Interestingly,
it is possible for LTs to be broken by backgrounds that are constant, where presumably
breaking of global translations is then not an issue. However, even with restriction to
constant backgrounds, it is found that the no-go results still typically occur with explicit
breaking. Moreover, even if a theory is not totally ruled out, in a perturbative treatment,
the no-go results can still render it useless as a phenomenological framework.

There are noteworthy effects involving torsion that can occur in EC theory when
background fields are present. One is that background fields can act as a source of spin
density and torsion even in a vacuum. However, for this to work with explicit breaking
the no-go results must be evaded, while with spontaneous breaking there are no no-go
results. As long as the spin connection has a nonvanishing coupling to a background field,
spin density and torsion can result in a vacuum solution. Another effect of torsion is that
energy–momentum is not covariantly conserved when it is present. However, in theories
with background fields, it is found that the effects of torsion can be accounted for in ways
that parallel what happens in EC theory. With no symmetry breaking in EC theory, there
are weak limits where the curvature is Riemann and the spin density effectively acts like
additional contributions to the energy–momentum. This same interpretation can hold as
well when background fields are present. However, with explicit breaking, it can only
hold in highly restricted cases, and it cannot hold at all if the no-go results are not evaded.
In contrast, with spontaneous breaking, the no-go results are evaded, and thus the same
interpretation of energy–momentum conservation when torsion is included can hold as in
EC theory.
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The effects of torsion and spontaneous breaking of LTs were looked at specifically
for the case of a simple Bumblebee model with a Maxwell kinetic term. To consider the
effects of torsion, a field strength defined with covariant derivatives that included coupling
to the torsion was chosen. Two scenarios were examined, one where the vacuum value
of the spin connection vanishes, and the other where it spontaneously takes a constant
value. In the latter case, spontaneous breaking of LTs occurs in the local frame, whereas
such breaking does occur when the vacuum spin connection is zero. The spin density,
curvature, and energy–momentum density can all have constant vacuum values when
the spin connection has one. A comparison of the NG modes that can occur with the two
types of vacuum structures reveals that the NG modes for LLTs are present as propagating
degrees of freedom in both cases. However, in the case where the spin connection has
a vacuum value, the Bumblebee modes are due to a combination of both breaking of
LLTs and LTs. At the same time, in both scenarios, the NG mode due to spontaneous
breaking of the Diff or the LT along the direction of the Bumblebee background vector does
not propagate.

Overall, the results found here continue to show that explicit breaking of spacetime
symmetry is much more unnatural and problematic compared to spontaneous breaking.
The effects of torsion or breaking of LTs do not alter this conclusion. The processes involved
in spontaneous breaking of spacetime symmetry are far more elegant and compatible with
EC theory than the corresponding processes that occur with explicit breaking.
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79. Hořava, P. Quantum gravity at a Lifshitz point. Phys. Rev. D 2009, 79, 084008. [CrossRef]
80. Mukohyama, S. Hořava–Lifshitz cosmology: A review. Class. Quantum Gravity 2010, 27, 223101. [CrossRef]
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