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Abstract: This paper addresses the image-based visual servoing (IBVS) control problem with an
uncalibrated camera, unknown dynamics, and constraints. A novel data-driven uncalibrated IBVS
(UIBVS) strategy is proposed, incorporated with the Koopman-based model predictive control
(KMPC) algorithm and the adaptive robust Kalman filter (ARKF). First, to alleviate the need for
calibration of the camera’s intrinsic and extrinsic parameters, the ARKF with an adaptive factor
is utilized to estimate the image Jacobian matrix online, thereby eliminating the laborious camera
calibration procedures and improving robustness against camera disturbances. Then, a data-driven
MPC strategy is proposed, wherein the unknown nonlinear dynamic model is learned using the
Koopman operator theory, resulting in a linear Koopman prediction model. Only input–output
data are used to construct the prediction model, and hence, the proposed approach is robust against
model uncertainties. Furthermore, with a symmetric quadratic cost function, the proposed approach
solves the quadratic programming problem online, and visibility constraints as well as joint torque
constraints are taken into account. As a result, the proposed KMPC scheme can be implemented in
real time, and the UIBVS performance degradation which arises from the control torque constraints
can be avoided. Simulations and comparisons for a 2-DOF robotic manipulator demonstrate the
feasibility of the proposed approach. Simulation results further validate that the computation time of
the proposed approach is comparable to the one of kinematic-based methods.

Keywords: robotic control; uncalibrated image-based visual servoing; image Jacobian matrix estimation;
data-driven model predictive control

1. Introduction

Visual servoing control that utilizes visual feedback to guide the movements
of the manipulator’s end-effector has been widely used in the field of robotics [1].
This approach enhances the manipulator’s versatility, expanding its applicability to
unstructured environments.

Image-based visual servoing (IBVS) directly controls the manipulator using image
feature errors. One class of IBVS approaches realizes visual tracking by directly using global
image information for error regulation in the loop [2]. For example, Collewet et al. [3] use
photometric information to achieve visual servoing tasks without image feature extraction;
however, this method struggles with handling diffuse reflection targets. In addition, other
types of global image information, such as histograms [4] or Gaussian mixtures [5], have
been utilized.

Another important class of IBVS methods is the point featured-based method. Since
the design of point feature-based IBVS methods is simple, they have been widely used
in the field of robotic arm visual servoing tasks. Considering the complexity of the cal-
ibration process and the impact of camera distortion, uncalibrated image-based visual
servoing (UIBVS) methods that do not require precise calibration of the camera’s intrinsic
and extrinsic parameters have been studied in depth [6–10]. The transformation of feature
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points in vision space and the robotic workspace can be represented via the image Jacobian
matrix, which is related to depth information, as well as the camera’s intrinsic and extrinsic
parameters. Therefore, for the UIBVS problem, the control performance highly depends on
the accuracy of the image Jacobian matrix estimation. However, the underlying transfor-
mation between the pose of the end-effector and the image coordinates of feature points is
nonlinear. While the image Jacobian matrix is a linearized representation, it results in mod-
eling uncertainties. Moreover, due to the presence of unknown process and measurement
noise, accurately estimating the image Jacobian matrix remains a major challenge in the
UIBVS problem.

Currently, most UIBVS methods [11–14] focus on the kinematic-based control, which
involves tracking desired image feature points via controlling joint velocities. Despite
their advantages in terms of simple controller design and high computation efficiency,
these methods require the robotic manipulator to follow commanded speeds in real time,
which is often impractical [15]. Furthermore, joint torque constraints are not considered,
potentially leading to performance degradation issues.

Dynamic-based control methods have been well studied in robotic control, but they are
not widely utilized in UIBVS. One problem resides in the fact that the dynamic model of the
robot is nonlinear, which leads to the design of a nonlinear controller with high computation
complexity, making real-time visual tracking difficult. In addition, uncertainties arise due
to the inaccurate or unknown parameters of the robotic manipulator, such as joint inertia
and mass. Designing the controller for systems with unknown dynamics also compromises
control precisions. To tackle this problem, data-driven methods [16,17] which do not require
the knowledge of the analytical models have been studied recently. However, practical
constraints such as joint torque constraints and camera field of view constraints should be
taken into account, posing additional challenges to dynamic-based UIBVS control methods.

Motivated by the above-mentioned discussions, in this paper, we propose a novel
ARKF-KMPC algorithm for UIBVS control. The ARKF is used to estimate the image
Jacobian matrix when both the camera’s intrinsic and extrinsic parameters are unknown,
which eliminates the laborious camera calibration procedures and enhances the system’s
robustness against camera disturbances. The Koopman operator is introduced to construct
a linear dynamic model of the manipulator, and the MPC controller is used to solve the
UIBVS problem with state and control constraints. The main contributions of this paper
can be summarized as follows:

• To address the IBVS problem in presence of uncalibrated camera parameters, un-
known dynamics, and state and control constraints, we propose an ARKF-KMPC
approach in which the UIBVS controller is designed at the dynamic level. Com-
pared to the kinematic-based IBVS methods [18,19], the proposed method is robust
against model uncertainties, and performance degradation arising from control torque
constraints could be avoided. In contrast to dynamic-based UIBVS methods, the
proposed approach alleviates the need for the dynamic model and achieves real-time
control performance.

• The proposed ARKF-KMPC approach could effectively handle the camera calibration
issue. The ARKF is utilized to estimate the image Jacobian matrix online when both
the camera’s intrinsic and extrinsic parameters are unknown, thereby eliminating the
laborious camera calibration procedures and improving robustness against camera
disturbances.

• It is the first time that the data-driven control strategy has been introduced for the
UIBVS problem. The unknown nonlinear dynamic model is learned via Koopman
operator theory, resulting in a linear Koopman prediction model. Consequently, with
a symmetric quadratic cost function, the proposed approach allows for the utilization
of quadratic programming (QP) for online optimization, significantly reducing the
computation cost, and making the real-time dynamic-based UIBVS control feasible.
Simulation results further validate that the computation time of the proposed approach
is comparable to the one of kinematic-based methods.



Symmetry 2024, 16, 48 3 of 20

This paper is organized as follows. Section 2 introduces the related work of the paper.
Section 3 introduces the mathematical model of the eye-in-hand camera configuration
UIBVS system. Section 4 proposes the ARKF-KMPC algorithm for UIBVS. Simulations and
comparisons are presented in Section 5, and conclusions are drawn in Section 6.

2. Related Work

UIBVS designs the control law based on the image Jacobian matrix; however, due
to the nonlinearity of the robotics and uncertainties in camera parameters, deriving the
image Jacobian matrix analytically is nontrivial. Recently, different methods have been
proposed to enhance the accuracy and robustness of image Jacobian matrix estimation,
such as Kalman filter [20], robust Kalman filter [21], extended Kalman filter [22], particle
filter [23], and neural networks [24]. The Kalman filter method was first introduced into
the estimation of the image Jacobian matrix by Qian et al. [20]. They constructed a
dynamic system wherein the state variables of the system were composed of the elements
of the image Jacobian matrix. Subsequently, a Kalman–Bucy filter was employed to online
estimate the state variables of the system. The designed filter demonstrated robustness to
system noise and external disturbances. Zhong et al. [21] proposed a UIBVS scheme based
on the robust Kalman filter, in conjunction with Elman neural network (ENN) learning
techniques. The relationship between the vision space and the robotic workspace was
learned using an ENN, and then a robust KF was used to improve the ENN learning result.
Wang et al. [25] proposed to estimate the total Jacobian matrix using the unscented particle
filter, which can make full use of the feature measurements, and hence, can result in more
accurate estimations. Gong et al. [23] proposed a geometric particle filter for visual tracking
and grasping of moving targets. The introduction of these methods has facilitated research
in UIBVS; however, due to the discrepancy between the actual nonlinear transformation
and the linearized image Jacobian matrix, the process noise of the image Jacobian matrix
estimation model is actually unknown, and hence, how to improve the estimation accuracy
without sacrificing real-time performance remains an open problem.

Once the image Jacobian matrix is estimated, different control strategies have been
proposed for addressing the UIBVS problem. For example, Chaumette et al. [11] designed
the PD controller based on the pseudo-inverse of the image Jacobian matrix. Siradjuddin
et al. [12] designed a distributed PD controller of a 7 degrees-of-freedom (DOF) robot
manipulator for tracking a moving target. The reinforcement learning algorithm was
proposed to adaptively tune the proportional gain in [14]. To address the problem of
unknown dynamics, He et al. [26] proposed an eye-in-hand visual servoing control scheme
based on the input mapping method, which directly utilizes the past input–output data
for designing the feedback control law. The above-mentioned approaches could be used
for online control; however, the state and control constraints in the UIBVS system are not
taken into account.

Model Predictive Control (MPC) is also a method to solve the constraints in the
control system [27–29], which involves the online solution of a finite-horizon open-loop
optimization problem at each sampling instant. The first element of the obtained control
sequence is then applied, and the process is repeated at the next sampling instant. MPC
efficiently handles state and input constraints and could be implemented in real time.
Consequently, MPC has been widely used in robotic control, and several MPC-based
UIBVS methods have been developed. For example, Qiu et al. [18] proposed an adaptive
MPC control scheme wherein the unknown camera intrinsic and extrinsic parameters,
unknown depth parameters, as well as external disturbances are estimated via a modified
disturbance observer. He et al. [19] proposed a synthetic robust MPC method with input
mapping for the UIBVS problem under system constraints. However, these methods are
designed only using the kinematics of robotics.

For the dynamic-based MPC methods of the UIBVS system, Qiu et al. [1] proposed an
MPC controller based on the identification algorithm and the sliding mode observer. The
unknown model parameters are estimated via the parameter identification algorithm, and
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the sliding mode observer is designed to estimate the joint velocities of the IBVS system.
Wu et al. [30] introduced a two-layer MPC control scheme incorporating an extended
state observer to address the problem of parameter uncertainties. Two MPC controllers
were designed for both the kinematic level and the dynamic level sequentially, resulting
in solving two optimal control problems online. As a result, designing the controller
is complicated when tuning design parameters, and the performance of the dynamic
controller highly depends on the performance of the kinematic controller. Moreover, both
the above dynamic-based MPC methods are based on the nonlinear dynamic model of
robotics, which results in solving the nonlinear optimization problem, and hence, is difficult
to implement in real time.

Recently, data-driven MPC has been proposed to address the issue of unknown model
parameters, wherein input–output data are used to learn the system model. For example,
Gaussian Process (GP) [31] and neural networks [32] are employed for offline learning of
prediction models, followed by online MPC controller design. However, online updates of
GP models require tracking all measurement data, which may be computationally infeasible.
Additionally, due to the nonlinearity of the neural network, the controller suffers from
real-time implementation.

Koopman operator theory provides a data-driven solution by constructing a linear
model of the nonlinear dynamical system, enabling the use of linear control methods
like linear quadratic regulators (LQRs) and linear MPC [33]. For instance, Zhu et al. [34]
proposed a Koopman MPC (KMPC) approach for trajectory tracking control of an omnidi-
rectional mobile manipulator. Bruder et al. [35] designed MPC controllers for a pneumatic
soft robot arm via the Koopman operator and demonstrated that the KMPC controllers
outperform the MPC controller based on the linearized model, making accurate linear
control of nonlinear systems achievable. However, to the best of the authors’ knowledge,
few data-driven MPC strategies have been considered for solving the IBVS problems.

3. Preliminaries and Problem Formulation

In this section, the mathematical model of the eye-in-hand camera configuration UIBVS
system is introduced, which includes the perspective projection model, image Jacobian
matrix, manipulator dynamics model, and visual servoing control model.

3.1. Perspective Projection Control Model

The setup of the eye-in-hand camera configuration is shown in Figure 1. The fea-
ture point in the world (base) coordinate system is represented as Mi = [Xi, Yi, Zi]

T(i =
1, . . . , m). According to the perspective projection principle [36], the corresponding image
feature points si = [ui, vi]

T on the image plane are given as

ui
vi
1

 =
1
Zi

αx 0 u0 0
0 αy v0 0
0 0 1 0

Tc
e Te

b


Xi
Yi
Zi
1

, (1)

where

αx 0 u0 0
0 αy v0 0
0 0 1 0

 is the camera intrinsic matrix. The parameters αx and αy represent

the focal lengths in two directions in pixels, respectively. [u0, v0]
T represents the principal

point of the image plane. Tc
e denotes the homogeneous transformation matrix between the

end-effector frame and the camera frame. Te
b denotes the homogeneous transformation

matrix of the end-effector with respect to the base frame, which can be calculated via the
forward kinematics of the robot manipulator.



Symmetry 2024, 16, 48 5 of 20

Base Frame{B}

Camera Frame{C}

End-effector Frame{E}

Camera Frame{C}

Image Frame{I}

[ , , ]T

i i i iM X Y Z=

[ , ]T

i i is u v=

0 0( , )u v

bX

bY

bZ
cX

cY

cZ

Ix

Iy

Figure 1. Eye-in-hand camera configuration visual servoing system [19].

3.2. Image Jacobian Matrix

Denote the velocity of the end-effector (camera) as ṙ = (υx, υy, υz, ωx, ωy, ωz); then,
the velocity of the image feature [u̇i, v̇i]

T could be obtained via kinematics of rigid bodies
and projection principles as [11]

ṡi =

[
u̇i
v̇i

]
=

− αx
Zi

0 ūi
Zi

ūi v̄i
αx

− ū2
i

αx
− αx v̄i

0 − αy
Zi

v̄i
Zi

v̄2
i

αy
+ αy − ūi v̄i

αy
−ūi


︸ ︷︷ ︸

Li

ṙ, (2)

where Li is known as the image Jacobian matrix of si, and ūi = ui − u0, v̄i = vi − v0. The
derivation of the image Jacobian matrix is shown in Appendix A.

Denote s = [s1, . . . , sm]T as the collection of all image feature points; then,

ṡ = L · ṙ, (3)

where L = [LT
1 , . . . , LT

m]
T ∈ ℜ2m×6 is the overall image Jacobian matrix.

3.3. Kinematics and Dynamics of Robotic Manipulator

The forward kinematics equation of the robotic manipulator is represented as

ṙ = Jr(q) · q̇, (4)

where q ∈ ℜn represents the joint angle vector of the manipulator, n is the degree of the
robotic manipulator, and Jr(q) represents the robotic Jacobian matrix.

The dynamic model of the robotic manipulator is given by [37]

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ, (5)

where M(q) ∈ ℜn×n represents the symmetric inertia matrix, C(q, q̇) ∈ ℜn×n represents
the centrifugal and Coriolis torque matrix, G(q) ∈ ℜn×1 is the gravitational force vector,
and τ ∈ ℜn×1 denotes the control input torque vector.

3.4. Image-Based Visual Servoing Control Model

Combining (3) and (4), the relationship between the motion of the feature in image
space and the joint velocity in joint space is given as

ṡ = L · Jr(q) · q̇. (6)
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Let x1 = q, x2 = q̇; then, from (5) and (6), the overall discrete-time IBVS system model
can be written as

s(k + 1) = s(k) + L(k)Jr(k)x2(k)∆t (7a)

x1(k + 1) = x1(k) + x2(k)∆t (7b)

x2(k + 1) = x2(k) + M−1(τ(k)− Cx2(k)− G)∆t, (7c)

where s(k), x1(k), and x2(k) represent the image feature points, joint angle, and joint
angular velocity at time instant k∆t, respectively, and ∆t is the sampling time.

Therefore, in this paper, the control objective is to design the control input torque
τ(k), such that, without knowing the exact camera intrinsic and extrinsic parameters, the
manipulator could track the desired feature points sd.

4. ARKF-KMPC Algorithm for UIBVS

In this section, we propose a novel ARKF-KMPC algorithm for solving the UIBVS
problem. The ARKF is introduced to estimate the image Jacobian matrix L; then, the
Koopman operator is used to approximate the manipulator’s dynamic model, and the MPC
controller is designed for the linear UIBVS model under state and control constraints. The
uncalibrated visual servoing control system framework is shown in Figure 2.

QP Solver Robot

Prediction

Model

Constraints

( )k

( ), ( )q k q k

Camera
( )s kds

( )kL

Image Jacobian

Matrix Estimation

Figure 2. The control framework of the UIBVS system.

4.1. Image Jacobian Matrix Estimation

Since the intrinsic and extrinsic parameters of the camera are unknown or varying,
the ARKF algorithm [38] is proposed to estimate the image Jacobian matrix online. Denote
Φ(k) = [l1,1, . . . , l2m,6]

T ∈ ℜ(2m×6)×1 as an augmented state vector formed by collections
of row elements of the image Jacobian matrix L(k). The system observation vector is
Z(k) = s(k)− s(k − 1) ∈ ℜ2m, where Z(k) represents the variation of image features. The
image Jacobian matrix could be estimated via the discrete-time system [20]

Φ(k) = Φ(k − 1) + w(k) (8a)

Z(k) = H(k)Φ(k) + ν(k), (8b)

where H(k) ∈ ℜ2m×(2m×6) denotes the measurement matrix. w(k) ∈ ℜ(2m×6)×1 and
ν(k) ∈ ℜ2m are the process noise and measurement noise, respectively.

The measurement matrix H(k) could be written as

H(k) =

 ∆r(k)
. . .

∆r(k)


2m×(2m×6)

. (9)

where ∆r(k) represents the pose change of the camera (end-effector) between time k and
k − 1.
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The state and covariance prediction equations are

Φ̂(k|k − 1) = Φ̂(k − 1) (10a)

P(k|k − 1) = P(k − 1) + Q(k), (10b)

where Φ̂(k − 1) and P(k − 1) represent the state estimation and error covariance matrix at
time k − 1, respectively. Q(k) is the covariance matrix of the process noise.

Define the error of the state and measurement at time k as

W(k) = Φ̂(k)− Φ̂(k | k − 1)
V(k) = Z(k)− H(k)Φ̂(k)

. (11)

Denote R(k) as the covariance matrix of measurement noise, P(k|k − 1) as the error
covariance matrix of predicted state vector Φ̂(k|k − 1), and α(k) is an adaptive factor with
values 0 < α(k) ≤ 1.

By using the least squares principle,

min(VT(k)R−1(k)V(k) + α(k)WT(k)P−1(k|k − 1)W(k)), (12)

the estimator of the adaptive filter is

Φ̂(k) = Φ̂(k|k − 1) + K(k)[Z(k)− H(k)Φ̂(k|k − 1)], (13)

where K(k) is an adaptive gain matrix, and

K(k) =
1

α(k)
P(k|k − 1)HT(k)

[
1

α(k)
H(k)P(k|k − 1)HT(k) + R(k)

]−1
. (14)

The posterior error covariance matrix of the estimated state vector is

P(k) = [I − K(k)H(k)]P(k|k − 1)/α(k). (15)

Furthermore, the adaptive factor α(k) is constructed based on the prediction residual,
which is tuned automatically.

Define the prediction residual vector as

ε(k) = Z(k)− H(k)Φ̂(k|k − 1). (16)

The theoretical calculated covariance matrix is

Cε(k) = H(k)P(k|k − 1)HT(k), (17)

and the estimated covariance matrix is

Ĉε(k) =
1
N

N

∑
i=1

ε(k + 1 − i)ε(k + 1 − i)T , (18)

where N is often chosen as 1 in practice. To verify whether the filter diverges, a statistical
measure for discerning the adaptive factor is constructed by comparing the computed
matrix Cε(k) of ε(k) with the estimated matrix Ĉε(k) as

∆ε(k) =

(
tr(Ĉε(k))
tr(Cε(k))

)1/2

. (19)
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An adaptive factor function model is constructed as

α(k) =


1 |∆ε(k)| ≤ c0

c0
|∆ε(k)|

(
c0−|∆ε(k)|

c1−c0

)2
c0 ≤ |∆ε(k)| ≤ c1

0 |∆ε(k)| > c1

. (20)

where c0 and c1 are design parameters, and usually, c0 = 1.0 ∼ 1.5, c1 = 3.0 ∼ 8.0.
The ARKF algorithm for the image Jacobian matrix estimation is summarized in

Algorithm 1.

Algorithm 1 ARKF Algorithm.

Input: Φ̂(0),P(0),Q(k),R(k),c0,c1.
Output: L(k).

for k = 1, 2, · · · do.
Step 1. Predict state Φ̂(k|k − 1) and error covariance P(k|k − 1) via (10).
Step 2. Calculate the adaptive factor α(k) via (16)–(20), where Z(k) = S(k)− S(k − 1)
is the variation of image features, and H(k) is defined in (9).
Step 3. Update the posterior state Φ̂(k) and error covariance P(k) via (13)–(15).
Step 4. Reorganize Φ̂(k) for L(k).

Remark 1. Due to the nonlinearity of the visual servoing system of the robotic manipulator,
applying the KF for estimating the image Jacobian matrix needs to satisfy the requirement that the
manipulator should not move too fast; otherwise, the linear model (8a) is not valid. Furthermore, the
model uncertainties w(k) and ν(k) are not known a priori and may not be Gaussian white noise.
From (12), it can be seen that the ARKF could adjust the weight of the prediction information, and
hence, estimating the image Jacobian matrix via the ARKF could provide more accurate results [38].

4.2. Koopman Operator for Dynamical System

To tackle the problem where the system’s dynamic model is unknown, in this paper,
we propose a data-driven modeling approach based on the Koopman theory. We briefly
summarize procedures for constructing linear dynamical systems via Koopman operators.
For further details, the reader may refer to the work [39,40].

Consider a discrete-time nonlinear dynamical system

x(k + 1) = f (x(k)), (21)

where x(k) ∈ X ⊆ Rnx is the system state, X is a non-empty compact set, and f (·) : X →
X is assumed to be a locally Lipschitz continuous nonlinear function.

Define a real-valued observable function of x as g(x) : X → R, and denote G as the
space of observables. Koopman theory maps the nonlinear system (21) to a linear system
using an infinite-dimensional linear operator K : G → G, which acts on the observable
function, i.e.,

Kg(x(k)) = g( f (x(k))) = g(x(k + 1)). (22)

Therefore, the Koopman operator K is a linear infinite-dimensional operator which
propagates the observable g(x(k)) to the next time step. In other words, the Koopman
operator evolves nonlinear dynamics linearly without loss of accuracy.

Since the Koopman operator K is infinite-dimensional, a data-driven algorithm, ex-
tended dynamic mode decomposition (EDMD), is used to approximate K with a finite-
dimensional operator Kd using collected data. A set of observables is used to lift the
system from the original state space to a high-dimensional space, and the procedures are
summarized as follows.

First, we select Nli f t observables gi, i = 1, . . . , Nli f t, and let

g(x) = [g1(x), g2(x), · · · , gNli f t(x)]T . (23)
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We collect P snapshot pairs [x(j), x(j + 1)], j = 1, · · · , P, and construct the lifted data
matrices

X1li f t =
(

g(x(1)) g(x(2)) · · · g(x(P))
)

Nli f t×P,

X2li f t =
(

g(x(2)) g(x(3)) · · · g(x(P + 1))
)

Nli f t×P.
(24)

Then, the approximate Koopman operator Kd could be calculated by solving the
least-squares problem

min
Kd

∥X2li f t −KdX1li f t∥2
2. (25)

where ∥ · ∥2 represents the Euclidean vector norm [41].
Next, we generalize the Koopman theory to the controlled system:

x(k + 1) = f (x(k), u(k)), (26)

where u(k) ∈ U ⊆ Rnu is the control input at time step k. The extended state
χ(k) = [x(k)T , u(k)T ]T ∈ Rnx+nu is defined, and the lifted data matrices are further ex-
tended as

χ1 =

(
X1li f t

U

)
, χ2 =

(
X2li f t

U

)
, (27)

where U = [u(1), u(2), · · · , u(P)] such that x(j+ 1) = f (x(j), u(j)), j = 1, · · · , P. Therefore,
the finite-dimensional Koopman operator for the controlled system Kdu can be obtained as
the solution to the optimization problem

min
Kdu

∥χ1 −Kduχ2∥2
2. (28)

Denote the linear Koopman model of (26) as

zd(k + 1) = Adzd(k) + Bdu(k),

x̂(k) = Cdzd(k),
(29)

where zd(k) = g(x(k)) ∈ RNli f t is the lifted state and x̂(k) is the predicted value of the
original state x(k). Then, problem (28) is equivalent to

min
Ad ,Bd

∥X2li f t − AdX1li f t − BdU∥2
2, (30)

and the analytical solution is given as

[Ad, Bd] = X2li f t[X1li f t, U]+, (31)

where (·)+ denotes the pseudoinverse of matrix (·). Cd is obtained by solving the least-
squares problem

min
Cd

∥X − CdX1li f t∥2
2, (32)

where X = [x(1), x(2), · · · , x(P)], and the solution is given as

Cd = XX+
1li f t. (33)

Furthermore, we choose observable functions

g(x) = [xT , gnx+1(x), · · · , gNli f t(x)]T , (34)

i.e., the observable functions contain the original state; then,

Cd = [Inx×nx , 0]. (35)
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The Koopman linear system identification algorithm is summarized in Algorithm 2.

Algorithm 2 Koopman Linear System Identification.

Input: Nli f t.
Output: Ad, Bd,Cd.

Step 1. Collect P snapshot pairs [x(j), x(j + 1)] and u(j) for j = 1, · · · , P, where
x(j) = [x1(j), x2(j)]T and u(j) = τ(j).
Step 2. Choose Nli f t observable functions gi, i = 1, · · · , Nli f t and construct the lifted
data matrices via (25) and (28).
Step 3. Identify the linear Koopman model (31) via (32) and (34).

Remark 2. To train the Koopman model, we collect P input-state datasets [x(j), x(j + 1), u(j)]Pj=1,
satisfying (26), and the data need not to be collected at consecutive time steps. The dimension of
the lifted state space Nli f t is a design parameter, which should be selected according to the precision
requirements. The observable functions gi can be chosen as some basis functions, such as Gaussian
kernel functions, polyharmonic splines, and thin plate splines, or neural networks.

Remark 3. A standard algorithm [39] is used to realize the Koopman model (29), and modifications
of the algorithm are beyond the scope of this research. Recently, different algorithms have been
proposed to improve the estimation accuracy of the model (29). For example, deep neural networks
have been used to learn the observable functions [42], and instructions to construct a stable Koopman
model have been studied in [43]. Stability analysis has been discussed in [43,44].

4.3. KMPC for UIBVS

Consider the nonlinear dynamic model of the manipulator (7b) and (7c), and let
x(k) = [x1

T(k), x2
T(k)]T ∈ ℜ2n. We choose observable functions to contain the original

state x(k) as (34); then, the linear Koopman model (29) could be constructed, where
zd(k) = [x1

T(k), x2
T(k), gT

R(x(k))]T , and gT
R(x(k)) ∈ ℜNli f t−2n represents the rest of the

lifted states. Therefore, the overall linear UIBVS prediction model is

z̃d(k + 1) = Ãd z̃d(k) + B̃dτ(k),

x̃d(k) = C̃d z̃d(k),
(36)

where

Ãd =

[
I2m×2m 02m×n LJr∆t 02m×(Nli f t−2n)

0Nli f t×2m AdNli f t×Nli f t

]
,

B̃d =

[
0

Bd

]
,

C̃d =

[
I2m×2m 0

0 Cd2n×Nli f t

]
,

(37)

and z̃d(k) =
[

s(k)
zd(k)

]
is the extended state vector, x̃d(k) =

[
s(k)
x̂(k)

]
is the extended predicted

value of states.
In the UIBVS, the image feature should remain within the image plane, so that the

visibility constraints are defined as

smin ≤ s(k) ≤ smax, (38)

where smin and smax are the image boundaries, respectively.
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The control input constraints are defined as

τmin ≤τ(k) ≤ τmax (39a)

∆τmin ≤ ∆τ(k) ≤ ∆τmax, (39b)

where τmin and τmax are the minimum and maximum control input torques, respectively.
∆τmin and ∆τmax are the minimum and maximum control input increments, respectively.

Define the quadratic cost function at sampling time k as

J(k) =
Np−1

∑
i=1

∥sd − s(k + i|k)∥2
F∗ +

∥∥sd − s(k + Np|k)
∥∥2

R∗

+
Np

∑
i=1

∥τ(k + i − 1|k)∥2
G∗ ,

(40)

where Np is the prediction horizon, F∗, G∗, and R∗ are the weighting matrices. s(k + i|k)
denotes the predicted image feature points at time k + i via prediction model (36) given the
current state s(k), τ(k + i − 1|k) denotes the input at the time instant k + i − 1.

The object of the UIBVS is to track the desired feature points sd, and the optimization
problem is formulated as follows:

min
{τ(k+i−1|k)}Np

i=1

J(k),

s.t. (36), (38), (39)
(41)

At each sampling time, the optimal input sequence {τ(k + i − 1|k)}Np
i=1 is calculated

by solving the open-loop finite-horizon optimal control problem. The first element of the
sequence is considered as the optimal control input τ∗(k), and is applied to the robot. The
process is repeated at the next sampling moment. Since J(k) is a symmetric quadratic
cost function, and the prediction model (36) is linear, the quadratic programming (QP)
algorithm is used to solve the optimal control problem above.

Remark 4. Compared to conventional visual servoing control methods [7,12,45], MPC is suitable
for addressing situations with state and control constraints. Furthermore, in contrast to approaches
in [18,30], the proposed method directly controls the joint torques of robotics, which can improve the
control accuracy and robustness to external disturbances, enabling the control system to better adapt
to complex working environments. Additionally, the symmetric cost function and the Koopman
MPC strategy used in this paper result in a linear quadratic optimization problem, which could
be solved via QP. This leads to a notable increase in computation speed, ensuring that real-time
requirements are met and substantially enhancing the practical applicability of the proposed method.

The proposed ARKF-KMPC algorithm for UIBVS is summarized in Algorithm 3.

Algorithm 3 ARKF-KMPC Algorithm.

Input: Prediction horizon Np, cost matrices F∗, G∗, R∗.
Output: Control input τ∗.

Step 1. Koopman Linear System Identification. Identify the Koopman linear model
Ad, Bd, Cd via Algorithm 2.
Step 2. for k = 0, 1, 2, . . . do.
a. Image Jacobian Matrix Estimation. Estimate L(k) via Algorithm 1, and update Ãd
in (37).
b. KMPC optimization. Solve (41) via QP to find the optimal input τ∗(k).
c. Apply τ∗(k) to the UIBVS system.
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5. Simulation Results

We test the proposed ARKF-KMPC method on a 2-DOF robotic manipulator. The
parameters of the manipulator are shown in Table 1. The inertia matrix M(q), the cen-
tripetal and Coriolis matrix C(q, q̇), and the gravitational torque vector G(q) are defined in
Appendix B [30].

Table 1. Parameters of the manipulator.

Notation Parameters Value Unit

Length of link 1 l1 0.45 m
Center length of link 1 lc1 0.091 m
Center length of link 2 lc2 0.048 m
Mass of link 1 m1 23.902 kg
Mass of link 2 m2 3.880 kg
Inertia of link 1 H1 1.266 kg m2

Inertia of link 2 H2 0.093 kg m2

Gravity acceleration g 9.81 m/s2

Simulations are carried out with unknown dynamics, and the camera intrinsic param-
eters are unknown. The actual intrinsic parameters of the camera are set as follows: the
focal length f = 0.008 m, the coordinates of the principal points (u0, v0) = (512, 512) pixels.
The image has a 1024 × 1024 pixels resolution. The sampling time is 0.01s. The simulations
are conducted in MATLAB with a 2.6 GHz Intel Core i5.

In general, root mean squared deviation (RMSD) is defined as

RMSD =

√√√√ 1
Nsim

Nsim

∑
k=1

∥Ψ(k)− Ψ̄(k)∥2
2, (42)

where Ψ(k) ∈ ℜn0×1 is any n0-dimensional actual state vector at time step k, and
Ψ̂(k) ∈ ℜn0×1 represents the corresponding predicted state vector.

5.1. Verification of the Model Accuracy

First, we test the prediction accuracy of the Koopman model.
Training of the Koopman model. Data are collected over 1000 trajectories, with 100

snapshots in each trajectory. The control input for each trajectory is generated from a
two-dimensional Gaussian distribution with zero mean and covariance of 2I2×2. The initial
condition for each trajectory is randomly generated with a uniform distribution over [−1, 1].
The observable functions are chosen to be the state itself, and the thin plate spline radial
basis functions, where the center points are uniformly distributed in a given interval [−1, 1].
The total number of observable states is Nli f t.

In Table 2, we compare the prediction performance of different Koopman models
during a short duration of 0.15 s, a medium duration of 0.5 s, and a long duration of 2 s.
For each model, a Monte Carlo simulation with 1000 randomly generated initial conditions
is conducted, and the RMSDs over the entire prediction horizon are shown in Table 2 as a
function of Nli f t.

It should be noted that prediction errors do not necessarily decrease as Nli f t increases,
and the prediction performance for the short, medium, and long durations are different.
For example, the best prediction performance can be achieved when Nli f t = 69 for the short
duration but it performs the worst for the long duration. Therefore, the design parameter
Nli f t should be tuned by trial-and-error.
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Table 2. Comparisons of modeling errors.

Nli f t

RMSD Tmax(s)
0.15 s 0.5 s 2.0 s

65 0.1901 0.4390 1.6361
66 0.1884 0.3753 0.9543
69 0.1862 0.3754 2.5227
77 0.1927 0.5617 1.8364
80 0.1948 0.5410 2.5043
86 0.1862 0.3814 2.0103

102 0.1862 0.4226 1.9516

Testing of the Koopman model. In Figure 3, we compare the prediction results
between the original nonlinear dynamic model (7b) and (7c), and the proposed Koopman
model with Nli f t = 66 within a duration of 0.15s. It can be seen that predictions using the
Koopman model are rather accurate.

0 0.05 0.1 0.15

Time [s]

-0.2

-0.1

0

0.1

0.2

True
Koopman

(a)

0 0.05 0.1 0.15

Time [s]

-0.5

0

0.5

1
True
Koopman

(b)

0 0.05 0.1 0.15

Time [s]

-1

-0.5

0

0.5

1
True
Koopman

(c)

0 0.05 0.1 0.15

Time [s]

-4

-2

0

2

4
True
Koopman

(d)
Figure 3. Prediction results for a 2-DOF robotic manipulator. (a) Joint angle q1. (b) Joint angle q2.
(c) Joint angular velocity q̇1. (d) Joint angular velocity q̇2.

5.2. Verification the Control Performance of the Model

Next, we test the control performance of the proposed ARKF-KMPC method. The
visibility constraints are set as[

0
0

]
pixels ≤ s ≤

[
1024
1024

]
pixels. (43)

The control input constraints are set as
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[
−0.5
−0.5

]
Nm ≤ ∆τ ≤

[
0.5
0.5

]
Nm (44a)[

−10
−10

]
Nm ≤τ ≤

[
10
10

]
Nm. (44b)

The control objective is to map four feature points from their initial positions to desired
positions on the image plane, with an error tolerance of four pixels, i.e.,

∥e(k)∥2 = ∥s(k)− sd∥2 ≤ 4. (45)

The initial positions of the feature points on the image plane are (529.5, 97.8)T pix-
els, (729.5, 297.8)T pixels, (729.5, 97.8)T pixels, and (529.5, 297.8)T pixels, respectively.
The desired positions of the feature points on the image plane are (454.8, 377.7)T pixels,
(654.8, 577.7)T pixels, (654.8, 377.7)T pixels, and (454.8, 577.7)T pixels, respectively. For
image Jacobian matrix estimation, the weighting matrices are chosen as P = 10I48×48,
Q = 0.1I8×8, and R = 0.1I8×8, and the design parameters are c0 = 1.0 and c1 = 3.0.
For the MPC controller, the weighting matrices are chosen as F∗ = I8×8, G∗ = 100I8×8,
and R∗ = 0.1I2×2. To balance the computation time and control efficiency, the prediction
horizon is chosen as Np = 0.15 s. The dimension of the Koopman model is chosen as
Nli f t = 66.

Figure 4 shows simulation results for a 2-DOF robotic manipulator. The error curve
∥e(k)∥2 between the four actual feature points and the desired ones is shown in Figure 4a,
where the smallest error is 3.7793 pixels. In Figure 4b, the 2-D trajectory of the feature
points on the image plane is presented. It can be seen that the robotic manipulator can
reach the desired position successfully. The control input torques of the joints are shown
in Figure 4c, from which we can observe that the joint torques and the increment of joint
torques are always within the constraints. Joint angles of the 2-DOF manipulator are shown
in Figure 4d, which changes smoothly. The average optimization time at each time step is
0.0009 s, comfortably meeting real-time requirements.
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Figure 4. Simulation results for a 2-DOF robotic manipulator. (a) Image errors. (b) Image trajectory.
(c) Control input torque. (d) Joint angles.
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Furthermore, we conducted 100 Monte Carlo simulations for models with different
values of Nli f t. Table 3 presents the average final control errors for different models. The
results further corroborate the effectiveness of the proposed control algorithm.

Table 3. Control errors for different models.

Model(Nli f t) 65 66 69 77 80 86 102

Error(pixels) 3.7723 3.7641 3.8262 3.2758 3.1437 3.8592 3.7712

We also compare the proposed method with the method using the original nonlinear
dynamics model. Although the image feature points using the nonlinear dynamic model
converge to the desired ones with a smaller error of 2.72 pixels, the average computation
time is 5.4201 s, which results from solving the nonlinear optimization problem using
fmincon, and hence, is not suitable in real applications.

Furthermore, to validate the performance of the proposed ARKF algorithm for image
Jacobian matrix estimation, we compare the RMSD between the estimated image Jacobian
matrix and the actual image Jacobian matrix using KF and ARKF. We perform 100 Monte
Carlo simulations; in each simulation, the control inputs are randomly generated from a
two-dimensional Gaussian distribution with zero mean and a covariance of 2I2×2, over a
simulation time of 6 s. The average RMSD of 100 Monte Carlo simulations using the KF
algorithm is 1.3716 ×103 and 1.1995 ×103 using the ARKF. The RMSDs in 100 Monte Carlo
simulations for both algorithms are presented in Figure 5.

10 20 30 40 50 60 70 80 90 100

Monte Carlo Simulations

1000

1100

1200

1300

1400

1500

1600

1700

R
M

S
D

KF
ARKF

Figure 5. Comparison of RMSDs of the estimated image Jacobian matrix and the actual image
Jacobian matrix.

It can be seen that, compared to the KF method, applying the ARKF for estimating
the image Jacobian matrix effectively reduces the estimation error, enabling the system to
perform visual servoing tasks accurately.

5.3. Comparisons with Related Work

To further demonstrate the superiority of the proposed algorithm, a comparative
analysis is conducted against three related methods, as detailed in Table 4. For all methods,
the kinematic-based MPC is solved using QP, and design parameters are all tuned for
best performance.
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Table 4. Comparison with existing methods.

Methods Kinematics Dynamics Error (pixels) Time (s)

(a) MPC × 7.3696 0.0005

(b) MPC PID 8.9505 0.0014

(c) MPC MPC 18.3579 1.5778

Ours × KMPC 3.7793 0.0009

Method (a) designs the MPC controller only considering the kinematics of the ma-
nipulator, resulting in the fastest convergence rate. The average computation time for
this method is about 0.0005 s per time step, which is the lowest among four algorithms;
however, the final image error is 7.3696 pixels, which cannot satisfy the control performance
requirement.

Both Methods (b) and (c) design two controllers for kinematics and dynamics sepa-
rately. The joint angular velocities are optimized via the kinematic-based MPC controller,
and the PD controller and MPC controller are designed at the dynamic level to track the
desired joint angular velocities, respectively. It can be seen that, without sacrificing too
much computation time, the position control using the PD controller is feasible, and the
final image error of Method (b) is comparable to that of Method (a); however, the joint
torque constraints are not considered when using the PD controller. On the other hand,
Method (c) needs to solve a nonlinear optimization problem at each time step, and the
average computation time is around 1.5778 s, which could not be implemented in real time.
Moreover, the control performance of both Methods (b) and (c) highly depends on the
results from the kinematic-based MPC controller, and the selection of design parameters
also poses challenges in this problem.

Therefore, from Table 4, it can be seen that the proposed ARKF-KMPC method, which
designs the dynamic-based MPC controller directly, could achieve the best performance.
With a linear Koopman prediction model and a symmetric quadratic cost function, a
linear optimization problem is solved at each time step, the computation time of the
proposed approach is comparable to the one of the kinematic-based MPC controller and is
significantly reduced when compared to Method (c). Moreover, the proposed approach is a
data-driven control approach which does not need the actual dynamic model, making it
robust to model uncertainties.

6. Conclusions

In this paper, we propose an ARKF-KMPC scheme for the data-driven control of con-
strained UIBVS systems. First, when the intrinsic and extrinsic parameters of the camera
are unknown, the ARKF with an adaptive factor is utilized to estimate the image Jacobian
matrix online. Then, the KMPC strategy is proposed to solve the UIBVS problem at the
dynamic level. To address the issue of unknown dynamics, a linear Koopman prediction
model is constructed via input–output data offline, resulting in a linear optimal control
problem which is solved via QP online. The proposed UIBVS strategy is robust to imprecise
camera calibration as well as unknown dynamics, with state and control constraints taken
into account. Numerical simulations demonstrate that the proposed approach outperforms
the kinematic-based control approaches, and the computation time of the proposed ap-
proach is comparable to the one of the kinematic-based control approach and has been
significantly reduced when compared to the dynamic-based control approaches. The
existing problem when estimating the image Jacobian matrix via the ARKF algorithm
with a linear discrete-time system model is that the robotic manipulator should not move
too fast. Therefore, the application of the proposed approach may be limited and the
construction of a more realistic model for estimating the image Jacobian matrix could
be further studied in future work. Also, the proposed approach is validated using the
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simulation, and future work will include testing the proposed method using data collected
from actual experiments.
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Appendix A. Image Jacobian Matrix Definition

Denote the coordinates of the feature points Mi in the world coordinate system with
respect to the camera is Mi = [Xi, Yi, Zi]

T ; then, the projection of the feature points on the
image plane is

xi,I =
f Xi
Zi

yi,I =
f Yi
Zi

.
(A1)

where f is the focal length.
Time derivatives of Equation (A1) are

ẋi,I = f
ZiẊi − XiŻi

Z2
i

ẏi,I = f
ZiẎi − YiŻi

Z2
i

,
(A2)

which could be written in a matrix form as

[
ẋi,I
ẏi,I

]
=

 f
Zi

0 − f Xi
Z2

i

0 f
Zi

− f Yi
Z2

i

Ẋi
Ẏi
Żi

. (A3)

The speed of the feature points with respect to the camera is

Ṁi = −ω × Mi − υ. (A4)

Expanding (A4) leads to

Ẋi = Yiωz − Ziωy − υx

Ẏi = Ziωx − Ziωz − υy

Żi = Xiωy − Ziωx − υz.

(A5)

Rewrite (A5) into a matrix form as

Ẋi
Ẏi
Żi

 =

−1 0 0 0 −Zi Yi
0 −1 0 Zi 0 −Xi
0 0 −1 −Yi Xi 0




υx
υy
υz
wx
wy
wz

. (A6)
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The relationship between the known image coordinate system and the pixel coordinate
system is

ui =
f

ρx
· xi,I + u0

vi =
f

ρy
· yi,I + v0,

(A7)

where ρx and ρy are the width and height of each pixel, respectively.
According to (A1), (A3), (A6), and (A7), we can obtain

ṡi =

[
u̇i
v̇i

]
=

 − αx
Zi

0 ūi
Zi

ūi v̄i
αx

− ū2
i

αx
− αx v̄i

0 − αy
Zi

v̄i
Zi

v̄2
i

αy
+ αy − ūi v̄i

αy
−ūi


︸ ︷︷ ︸

Li

ṙ, (A8)

where αx = f
ρx

and αy = f
ρy

, Li is known as the image Jacobian matrix of si, and ūi = ui − u0,
v̄i = vi − v0.

Appendix B. 2-DOF Robotic Manipulator Model

The entries Mij(q)(i, j = 1, 2) in the inertia matrix M(q) are given by

M11(q) = H1 + m1l2
c1 + m2(l2

1 + l2
c2 + 2l1lc2cos(q2))

M12(q) = H2 + m2

(
l2
c2 + l1lc2cos(q2)

)
M21(q) = H2 + m2

(
l2
c2 + l1lc2cos(q2)

)
M22(q) = H2 + m2l2

c2.

(A9)

The elements in the centripetal and Coriolis matrix C(q, q̇) are given by

C11(q, q̇) = 2m2l1lc2sin(q2)q̇2

C12(q, q̇) = −m2l1lc2sin(q2)q̇2

C21(q, q̇) = m2lc2sin(q2)q̇1

C22(q, q̇) = 0

, (A10)

and the elements in the gravitational torque vector G(q) are

G11(q) = g(m1lc1 + m2l1)sin(q1) + gm2lc2sin(q1 + q2)

G21(q) = gm2lc2sin(q1 + q2)
, (A11)

where qi denotes ith joint of the manipulator.
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