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Abstract: Data hiding encompasses a wide range of applications related to hiding messages in digital
images. The visual redundancy of images makes it possible to embed data in the images without
attracting attention. Increasing the hiding capacity and decreasing the hiding distortion are prime
objectives that data hiding intends to achieve. In this paper, we propose a high-payload data hiding
scheme based on absolute moment block truncation coding (AMBTC) to minimize the impact of
hiding. A two-level minimum mean square error (MMSE) quantizer generated by AMBTC is used
to decrease the distortion associated with hiding. Also, we present a lookup table based on the
symmetric property for adaptively hiding secrets in pixels to achieve high hiding capacity. We can
embed almost 1.9 bits per pixel (bpp) with a high image quality of an average of 31 dB. Only 5.3% of
pixels are changed during the data-hiding process. Compared with other schemes, we can use 1 bpp
more relative payload for embedding with the same stego image quality. The experimental results
show that the proposed scheme has better hiding performance because it allows a huge amount of
secret data to be hidden while maintaining the high visual quality of the stego image.

Keywords: data hiding; AMBTC; high-payload; digital images; minimizing hiding impact

1. Introduction

Cryptography uses mathematical theory to prevent people from gaining access to
secret data illegally. However, the secret data can still be threatened by malicious attackers
since the meaningless and unintelligible form generated from encryption may attract their
attention. To conceal the existence of secret data from the public, data hiding provides a
satisfactory solution by making the very existence of the original messages imperceptible.
Data hiding [1] is the science of concealed communication, which involves hiding secret
data in meaningful cover objects with a slight and imperceptible distortion. It can be
used in various applications, such as copyright protection (robust watermarking), secret
communication (steganography), and image authentication (fragile watermarking). Various
applications have different requirements. For the safety of secret communications, it
is important to conceal the existence of the secret data in order to avoid attracting an
attacker’s attention. People cannot easily distinguish the difference between the meaningful
cover object and the corresponding hiding result, i.e., the stego object. To meet the safety
requirements, the hiding distortion should be minimized, and the hiding capacity should
suffice for embedding the secret data. Intuitively, the goal of data hiding is to design
schemes that have high hiding capacity but low distortion introduced by the hiding. Hence,
a trade-off must be made between hiding capacity and hiding distortion.
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In data hiding, we will assume that the cover image is an 8-bit grayscale digital image,
which is the set of all possible pixel values in the range [0, 255]. The most common way
used in data hiding is the least significant bit (LSB) of pixel values. The LSB of pixel
value i can be computed as i mod 2. The LSB embedding operation is flipping the LSB of
the pixel value. Low hiding distortion means that there is a low probability of detecting
the existence of a secret message. Mielikainen [2] proposed a modification to the LSB
matching that involves designing a binary function of two cover pixels to the desired value,
which allows hiding the same payload as LSB matching but with fewer changes to the
cover image. Also, van Dijk et al. [3] developed another type of ±1 steganography for
improving embedding efficiency in which two-dimensional codes were proposed to embed
a 5-ary message symbol in a group of two pixels by modifying, at most, one pixel in the
group by one. In addition, this can be generalized to n-dimensional codes [4,5] that allow
log2(2n + 1) secret bits to be embedded in n cover pixels by modifying, at most, one pixel in
the group by one. Fridrich et al. [6] introduced a wet paper coding mechanism in which
the sender embeds messages into content without sharing selection rules with the recipient.
In addition, wet paper codes have been combined with most steganographic schemes to
improve their embedding efficiencies [7].

However, the LSB-based data-hiding schemes have a low hiding capacity. To improve
the hiding capacity, Lin et al. [8] proposed a high-payload, reversible data hiding scheme
that is based on the absolute moment block truncation coding (AMBTC) compression
domain. They presented four disjointed sets for embeddable blocks to embed data using
different combinations of the mean value and the standard deviation. Malik et al. [9]
modified the AMBTC compression technique for hiding secret data by first applying the
original AMBTC technique, and they identified the smooth and complex blocks using a
threshold value. They converted the one-bit plane into a two-bit plane and replaced all
bits of the bit plane with the secret bits to obtain better image quality and high capacity.
However, this approach permanently destroys the original AMBTC code and requires
overhead information. Chen et al. [10] proposed an image authentication scheme for
AMBTC of a compressed image using turtle shell-based data hiding.

In 2019, Yu et al. [11] proposed a hybrid data-hiding method for AMBTC compressed
images, which combines a turtle-shell reference matrix and (7, 4) Hamming code to enhance
the hiding capacity for compressed codes. Lin et al. [12] provided a reversible data-hiding
method that uses adaptive block truncation coding based on an edge-based quantization
approach. They utilized a Canny edge detector to obtain edge-blocks and non-edge-blocks,
and they applied zero-point fixed histogram shifting to embed the secret information into
the compressed code. In 2020, Yu et al. [13] proposed an adaptive image steganography
method combining matrix coding. They constructed a reference data set by classifying
all possible 7-bit binary number combinations and adaptively embedded 3-bit data by
choosing a suitable alternative from the reference data. Their approach provided better
results than the other existing matrix coding-based data-hiding schemes.

To minimize the risk of hiding data, we aim to decrease the hiding distortion and in-
crease the hiding capacity. In this paper, we propose a high-payload data-hiding procedure
based on AMBTC to improve the embedding efficiency further. Our proposed scheme
embeds secret data by modifying the quantization level according to the pre-defined lookup
table. Moreover, previous AMBTC-based schemes may have suffered from the problem
of having a high quantization level lower or equal to a low quantization level caused by
hiding the data. We propose an adaptive embedding strategy to solve the above issues and
achieve high hiding capacity. We demonstrated that the proposed scheme has better hiding
performance in image quality and hiding capacity.

To make this paper self-contained, in Section 2, we review the absolute moment block
truncation coding (AMBTC) algorithm for data hiding. High-payload data hiding based on
AMBTC is described in Section 3. The experimental results and their analyses are presented
in Section 4. Also, in Section 4, the performance is compared to the performances of existing
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data-hiding schemes. The brief contribution is concluded in Section 5, where we also
outline the future research directions.

2. AMBTC

The absolute moment block truncation coding (AMBTC) proposed by Lema and
Mitchell [14] is a type of lossy image compression technique. It is a variation of block
truncation coding (BTC), but it is simpler in practical implementation. AMBTC preserved
the first absolute moment and proposed a two-level, non-parametric minimum mean
square error quantizer where the threshold is fixed to the sample mean. A lower mean
square error yield by AMBTC is used in our proposed data hiding to minimize the impact
of secret data hiding.

In AMBTC, an image is divided into non-overlapping blocks of n × n pixels, and xi
is the gray level of a pixel in the block where 1 ≤ i ≤ n2. Each block is quantized, and
the corresponding resulting block has the same sample mean and the same sample first
absolute central moment as each original block. For each block, the sample mean, η, is the
decision threshold of the quantizer, which is calculated as

η =
1
n2

n2

∑
i=1

xi. (1)

In AMBTC encoding, each block is encoded as (L, H, BM), where (L, H) is a two-
level MMSE (minimum mean square error) quantizer, and BM is a bitmap to denote the
thresholding result. The bitmap BM is presented as:

BMi =

{
1,
0,

if xi ≥ η,
otherwise

, (2)

where xi is encoded as 1 when xi is greater than or equal to the threshold and 0 otherwise.
The two-level MMSE quantizers are computed as shown below:

L = 1
n2−q ∑

xi<η
xi,

H = 1
q ∑

xi≥η
xi,

(3)

where q is the number of pixels above the threshold. Note that L and H are estimated
conditional means given that xi is less than or greater than η, respectively.

In AMBTC decoding, each pixel x′i of each block is decoded according to the two-level
MMSE quantizer and BM:

x′i =
{

L,
H,

if xi = 0,
otherwise.

. (4)

3. Our Proposed DH Method Based on HP-AMBTC

To improve the hiding capacity and decrease the hiding distortion, the two-level MMSE
quantizer used by AMBTC is used in our proposed data hiding to minimize the hiding
impact. In addition, we designed a lookup table for adaptively hiding secret information in
images. The details of the proposed scheme are described as follows.

3.1. Data Embedding

Assume that the cover image is an 8-bit grayscale digital image, which is the set of all
possible pixel values in the range [0, 255]. The cover image is divided into non-overlapping
blocks of 4 × 4 pixels, and let {x1, x2, . . ., x16} be the pixels in a block read in a raster scan
where xi ∈ [0, 255].

Step 1. For each block, we use AMBTC to encode it to generate the AMBTC compression
code (L, H, BM).
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Step 2. Reconstruct the block using Equation (4) to obtain the reconstructed pixels {x′1, x′2,
. . ., x′16} read in a raster scan.

Step 3. For each reconstructed block, we mark x′1 and x′16 as the non-embeddable pixels
and modify x′16 as

x′16 =

{
L
H

if x′1 = H
if x′1 = L

. (5)

Step 4. Embed secret data into embeddable pixels {x′2, x′3, . . ., x′15} as

yi = x′i + mv,

where yi is the stego pixel, and mv is defined as follows:

Case 1: |H−L| = 0

Secret Data H/L mv

00 −1
01 0
10 +1
11 +2

Case 2: |H−L| = 1

Secret Data L mv H mv

0 0 0
1 −1 +1

Case 3: 2 ≤ |H−L| < 5

Secret Data L mv H mv

00 −1 −1

01 0 0

10 −2 +1
11 −3 +2

Case 4: |H−L| = 5

Secret Data L mv H mv

1111 −1 +3

0000 −2 −2

00 −1 −1

01 0 0

10 +1 +1
11 +2 +2
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Case 5: |H−L| > 5

Secret Data H/L mv

1111 +3
0000 −2
00 −1
01 0
10 +1
11 +2

Note that the lookup table, which is our embedding and extraction rule, should be
previously shared between the two parties using a secure channel. Taking Figure 1 as the
data hiding to conceal 34 secret bits, for example, after decoding the AMBTC encoded
code (90, 150, BM) to obtain a reconstructed image block, we define x′1 and x′16 as the
non-embeddable pixels. According to |H−L| = 60 > 5 and secret data, we choose the Case
5 lookup table to adaptively increase the embeddable pixels by the corresponding modified
value, mv. Note that the stego image is also an 8-bit grayscale digital image rather than
a compressed image or a decompressed image. From Figure 1, we can see that the stego
image block is very similar to the cover image block. After hiding 34 bits of secret data, the
hiding distortion is very low since we used a two-level MMSE quantizer to minimize the
impact of hiding.
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3.2. Data Extraction

This process extracts the secret data from the 8-bit grayscale stego image. Assume
that the grayscale stego image is divided into non-overlapping blocks of 4 × 4 pixels,
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and let {y1, y2, . . ., y16} be the pixels in a stego image block and read in raster scan where
yi ∈ [0, 255].

Step 1. For each block, we mark y1 and y16 as the non-embeddable pixels. If y1 ≥ y16,
it indicates y1 as H and y16 as L, respectively. Otherwise, y1 is L and y16 is H,
respectively.

Step 2. For each pixel of embeddable pixels {y2, y3, . . ., y15}, we extract the secret data
according to the absolute difference of H and L and the lookup table defined below:

Case 1: |H−L| = 0

Stego Value Secret Data

(H − 1)/(L − 1) 00
H/L 01
(H + 1)/(L + 1) 10
(H + 2)/(L + 2) 11

Case 2: |H−L| = 1

Stego Value Secret Data

H/L 0
(H + 1)/(L − 1) 1

Case 3: 2 ≤ |H−L| < 5

Stego Value Secret Data

(H − 1)/(L − 1) 00
H/L 01
(H + 1)/(L − 2) 10
(H + 2)/(L − 3) 11

Case 4: |H−L| = 5

Stego Value Secret Data

(H + 3)/(L − 3) 1111
(H − 2)/(L − 2) 0000
(H − 1)/(L − 1) 00
H/L 01
(H + 1)/(L + 1) 10
(H + 2)/(L + 2) 11

Case 5: |H−L| > 5

Stego Value Secret Data

(H + 3)/(L + 3) 1111
(H − 2)/(L − 2) 0000
(H − 1)/(L − 1) 00
H/L 01
(H + 1)/(L + 1) 10
(H + 2)/(L + 2) 11

Figure 2 illustrates the data extraction example. We define y1 and y16 as the non-
embeddable pixels, and we regard y1 as L and y16 as H due to y1 < y16. According to
|H−L| = 60 > 5, we choose the Case 5 lookup table to extract the secret data. Finally, 34-bits
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of secret data can be extracted after scanning 14 pixels. Moreover, the AMBTC decoded
image block can be almost restored according to the corresponding Ls and Hs except for
the first and the last pixels.

We said the AMBTC encoded image block could be almost restored because the first
and the sixteenth pixels needed to be modified and then served as the indicators for data
extraction later. If these two pixels in a block are the same as the original ones after the data
hiding, the original AMBTC-encoded image blocks can be completely restored. Otherwise,
only fourteen pixels in a block can be restored to the original AMBTC compression codes
after data extraction.
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4. Experimental Results

In this section, a series of analyses and simulation results are demonstrated to prove
the performance of the proposed scheme. In addition, comparisons among [15–20] also are
presented in this section.

4.1. Capacity Versus Distortion Performance

To test our performance on data hiding and image quality, all experiments were per-
formed with ten commonly used grayscale images sized 512 × 512, i.e., “Lena,” “Airplane,”
“Baboon,” “Barbara,” “Peppers,” “Boat,” “F-16,” “Boat,” “House,” “Houses,” “Zelda,” and
“Gold Hill.” Six 512 × 512 selected grayscale images are shown in Figure 3 to demonstrate
partial test images.

We use the peak signal-to-noise ratio (PSNR), which is the most common image quality
criterion, to evaluate the visual quality of the reconstructed images. The PSNR (unit: dB) is
defined as:

PSNR = 10 × log10
2552

MSE
, (6)

where MSE is the mean square error defined by:

MSE =
1

M × N ∑M
i=1 ∑N

j=1

(
xi,j − x′i,j

)2
, (7)

where xi,j and x′i,j present the pixel values of the original image and the modified image,
respectively, and M × N indicates the size of the image. Moreover, structural similarity
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(SSIM) is also used to evaluate the similarity between the stego image and the original
cover image. The SSIM is defined as:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) , (8)

where µx and µy are the mean values of the pixel values of image x and image y, respectively.
σx and σy are the standard deviations of the pixel values of image x and image y, respectively.
c1 = (k1L)2 and c2 = (k2L)2, and k1 = 0.01 and k2 = 0.03. In general, SSIM(x, y) ranges between
1 and −1. When two images are identical, the corresponding SSIM value will be 1.

Symmetry 2024, 16, x FOR PEER REVIEW 8 of 12 
 

 

where μx and μy are the mean values of the pixel values of image x and image y, respec-
tively. σx and σy are the standard deviations of the pixel values of image x and image y, 
respectively. c1 = (k1L)2 and c2 = (k2L)2, and k1 = 0.01 and k2 = 0.03. In general, SSIM(x, y) 
ranges between 1 and −1. When two images are identical, the corresponding SSIM value 
will be 1. 

   
(a) (b) (c) 

(d) (e) (f) 

Figure 3. Greyscale test image. (a) Lena; (b) F-16; (c) Baboon; (d) Barbara; (e) Peppers; and (f) Boat. 

Figure 4 presents the relationship between the capacity and the corresponding im-
age distortion for the six test images. It is obvious that the achievable capacity of our 
proposed HP-AMBTC-based DH scheme depends on the features of the image. It indi-
cates that the smooth images provide a higher capacity at the same embedding distor-
tion; this made it evident that images with high correlation offer a larger hiding capacity 
than images with low correlation. To further demonstrate the performance of our scheme, 
Table 1 presents the performance of PSNR, maximum hiding capacity, and its corre-
sponding bit per pixel (bpp) with our proposed HP-AMBTC-based DH scheme. Here, we 
can see that the average bpp can be rounded to 2 bpp while maintaining 31.96 dB for the 
average image quality of the stego image with our proposed HP-AMBTC-based DH 
scheme when “Baboon” is excluded. Even if “Baboon” is included, our average PSNR 
still remains at 31.340 dB, and previous works [21,22] have confirmed that the visual 
quality of AMBTC is acceptable, although the value of its PSNR value is less than 30 dB. 

Figure 3. Greyscale test image. (a) Lena; (b) F-16; (c) Baboon; (d) Barbara; (e) Peppers; and (f) Boat.

Figure 4 presents the relationship between the capacity and the corresponding image
distortion for the six test images. It is obvious that the achievable capacity of our proposed
HP-AMBTC-based DH scheme depends on the features of the image. It indicates that the
smooth images provide a higher capacity at the same embedding distortion; this made it
evident that images with high correlation offer a larger hiding capacity than images with
low correlation. To further demonstrate the performance of our scheme, Table 1 presents
the performance of PSNR, maximum hiding capacity, and its corresponding bit per pixel
(bpp) with our proposed HP-AMBTC-based DH scheme. Here, we can see that the average
bpp can be rounded to 2 bpp while maintaining 31.96 dB for the average image quality
of the stego image with our proposed HP-AMBTC-based DH scheme when “Baboon” is
excluded. Even if “Baboon” is included, our average PSNR still remains at 31.340 dB, and
previous works [21,22] have confirmed that the visual quality of AMBTC is acceptable,
although the value of its PSNR value is less than 30 dB.

To further demonstrate the competitive performance of our proposed HP-AMBTC-
based DH scheme in Table 2, we compare our scheme with six other existing BTC or
AMBTC-based data hiding schemes [15–20]. It is noted that all data of the other six schemes
are cited from the original experimental data presented by the original research teams.
Based on the data presented in Table 2, it is obvious that the average maximum hiding
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capacity of the test images delivered by the proposed scheme is 1.90 bpp, which is relatively
higher than that offered by the other six data-hiding schemes. Our scheme embeds data
into the high mean values or the low mean values derived from AMBTC. The maximum
change to the mean value is within the range [−2, 3], which means that we can embed
1.9 bpp with an embedding efficiency of almost 2 bits per change. Moreover, there are
differences between the original pixel value and the mean value. Embedding data to the
mean value makes it possible to get close to the original pixel value, which greatly decreases
the embedding distortions; this means that the stego pixel value is nearly the same as the
original pixel value. As shown in Figure 5, our scheme achieves the highest average hiding
capacity while maintaining better image quality at 32.26 dB. However, a lookup table is
required for data hiding and extraction in our scheme; either the corresponding data hiding
rules or data extraction rules can be easily programmed to replace the lookup table.
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Table 1. Performance on image quality (PSNR), max. hiding capacity and bpp with ten 512 × 512 test
images.

Test Images

Criteria Hiding Capacity
(bits)

bpp
PSNR

HP-AMBTC

Lena 494,464 1.9 32.253

Baboon 509,764 1.9 25.755

Peppers 502,476 1.9 32.624

F-16 476,036 1.8 31.144

Boat 505,308 1.9 30.240

House 457,444 1.7 35.914

Houses 480,850 1.8 29.964

Zelda 499,818 1.9 35.667

Gold Hill 509,688 1.9 31.660

Barbara 500,334 1.9 28.172

Average 493,618 1.9 31.334
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Table 2. Performance comparison with our scheme and six existing BTC/AMBTC-based data-hiding
schemes [15–20] (Unit: dB for PSNR, and bit for bpp).

Methods Test Images Boats Goldhill F-16 Lena Peppers Zelda Average

Ou and Sun [15] bpp 0.79 0.81 0.9 0.92 0.93 0.85 0.87

PSNR 29.57 29.12 30.75 30.69 31.43 29.93 30.25

Huang et al. [16] bpp 0.99 1.02 1.09 1.12 1.12 1.05 1.07

PSNR 29.30 29.41 30.34 30.44 31.06 29.79 30.06

Hong [17] bpp 0.9 0.92 1.01 1.04 1.05 0.96 0.98

PSNR 29.56 29.11 30.74 30.68 31.41 29.92 30.24

Malik et al. [18] bpp 1.52 - 1.52 1.52 1.52 - 1.52

PSNR 31.09 - 31.90 33.10 33.30 - 32.35

Yeh et al. [19] bpp 1.9 - 1.3 1.67 1.83 - 1.675

PSNR 31.04 - 32.09 33.06 33.01 - 32.30

Kim et al. [20] bpp 1.02 1.03 1.11 1.14 1.13 1.08 1.09

PSNR 30.39 29.65 31.86 29.89 28.57 31.02 30.24

Our proposed bpp 1.93 1.95 1.82 1.89 1.92 1.91 1.90

scheme PSNR 30.24 31.66 31.14 32.25 32.62 35.67 32.26
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4.2. Security Analysis

Since the cover image must be modified to conceal secret data with data-hiding
strategies, whether the pixel distribution of the stego image remains an unidentified pattern
similar to that of the cover image is crucial when evaluating the security of a data-hiding
scheme. To demonstrate the security of our proposed HP-AMBTC-based DH scheme,
several metrics: SSIM (structural similarity), number of changing pixel rate (NPCR), unified
averaged changed intensity (UACI), and peak signal-to-noise ratio (PSNR) are used to
analyze the stego images derived from our proposed scheme.

PSNR has been defined in Equation (6), and SSIM has been defined in Equation (8).
As for NPCR and UACI, the corresponding detailed definitions are given in the following
equations:

D
(
i′, j′

)
=

{
0, i f O(i′, j′) = O∗(i′, j′),
1, i f O(i′, j′) ̸= O∗(i′, j′),

(9)

NPCR =
1

M × N ∑i′ ,j′ D
(
i′, j′

)
× 100%, (10)
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UACI =
1

M × N ∑i′ ,j′
O(i′, j′)− O∗(i′, j′)

255
× 100%. (11)

The ranges of NPCR and UACI are both [0, 1], and a higher value indicates a higher
difference between the original image and the stego image. At the same time, the value of
UACI is not as obvious as that of NPCR.

The security analyses for our proposed HP-AMBTC-based DH scheme are demon-
strated in Table 3. Table 3 shows the similarity of structure between the original image and
the stego image, which remains at 0.905, which is very close to 1. In addition, NPCR and
UACI indicate that the pixel difference between the original image and the stego image
is quite slight. Take NPCR, for example; only 5.3% of pixels between the original image
and stego images are different. With the results demonstrated in Table 3, it is concluded
that our proposed HP-AMBTC-based DH scheme can guarantee the similarity between the
original image and the stego image. In other words, the security of the hidden secret can be
guaranteed.

Table 3. Security analyses with six different test images.

Metrics
Test Images

Baboon F-16 Barbara Boat House Peppers Average

PSNR 25.755 dB 31.144 dB 28.172 dB 30.240 dB 35.914 dB 32.624 dB 30.642 dB

SSIM 0.8515 0.9260 0.8978 0.8958 0.9509 0.9104 0.905

NPCR 0.0592 0.0492 0.0556 0.0556 0.0437 0.0539 0.053

UACI 0.0002 0.0001 0.0001 0.0002 0.0001 0.0002 0.0001

5. Conclusions

To mitigate the impact of concealed data while enhancing the hiding capacity for
AMBTC compressed images, this paper introduces a high-payload data-hiding scheme
based on AMBTC. The proposed scheme leverages a two-level MMSE quantizer generated
by AMBTC and our specially designed data-hiding strategies tailored for different quantizer
distortions. The collaboration between the quantizer and our strategies aims to strike a
balance between induced distortion and hiding capacity. Experimental results validate that
our scheme surpasses six existing BTC or AMBTC-based data-hiding schemes in terms of
both hiding capacity and visual quality. We can embed almost 1.9 bits per pixel with a high
image quality of an average of 31 dB. The data hiding process only modifies 5.3% pixels of
the original image on average. The similarity of structure between the original image and
the stego image is 0.905, which means that the stego pixel image is nearly the same as the
original image. Additionally, security analyses affirm that the increased capacity does not
compromise the similarity in either structure or pixel distribution. Based on these findings,
future efforts will explore incorporating integrity authentication codes during data-hiding
operations. This enhancement will allow the receiver(s) to verify the integrity of received
stego images before extracting hidden data, thereby bolstering the usability of the extracted
confidential data.
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