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Abstract: Spin–orbit coupling and nonparaxiality effects during the propagation of vortex vector light
beams in a cylindrical graded-index waveguide are investigated by solving the full three-component
field Maxwell’s equations. Symmetry-breaking effects for left- and right-handed circularly polarized
vortex light beams propagating in a rotationally symmetric graded-index optical fiber are considered.
The mode-group delay in a graded-index fiber due to spin–orbit interaction is demonstrated. A
scheme for observing the temporal spin Hall effect is proposed. It is shown that the relative delay
times between vortex pulses of opposite circular polarizations of the order of 10 ps/km can be
observed in graded-index fibers for high-order topological charges.

Keywords: nonparaxial focusing; rotationally symmetric graded-index fiber; spin–orbit interaction;
orbital and spin Hall effects; pulse delay time; temporal spin Hall effect; polarization-dependent
asymmetry

1. Introduction

When polarized light propagates in dielectric media, various symmetry-breaking
effects occur. It is known that the intensities of radiation with left- and right-handed
circular polarizations transmitted through optically active materials differ markedly. This is
due to the fact that 3D-chiral molecules have the property of uneven absorption of light with
right- and left-handed circular polarization. The directionally asymmetric transmission
of polarized light in planar chiral structures was considered in [1,2]. Optical activity may
also occur due to extrinsic chirality. In [3], both circular dichroism and noticeable optical
activity in non-chiral planar microwave and photonic metamaterials were demonstrated.
The effect of a different longitudinal displacement of the center of gravity of the beam is
known for beams with s- and p-polarization when reflected from the interface [4]. The effect
of transverse displacement of different signs for right-handed and left-handed circularly
polarized radiation is also known [5]. In [6,7], the phenomenon of the splitting of the focal
spot of a plasmonic focusing lens, depending on polarization (spin), was demonstrated. The
splitting of the reflected beam from the surface of the subwavelength grating, depending
on polarization, was shown in [8]. In [9], the effect of a breaking of spin symmetry due
to spin–orbit interaction in plasmonic nanoapertures was observed. The same effect of
polarization-dependent transmission through subwavelength holes was demonstrated
in [10].

Polarization-dependent asymmetry effects also occur during the propagation of light
beams in optical waveguides. As was shown in [11], the plane of polarization rotates when
a light beam propagates along a helical trajectory [11,12]. Such rotation was observed
experimentally in a single-mode optical fiber wound on a cylinder [13] and interpreted in
terms of Berry’s geometrical phase [14]. In [15], the rotation of the polarization plane was
observed also in a straight multimode fiber with a step-index-type profile. Consideration
of the inverse effect, i.e., the influence of polarization on the trajectory and width of the
radiation beam, is also of interest. In [16,17], the rotation of the speckle pattern created
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by circularly polarized light at the fiber outlet, corresponding to a change in the sign of
circular polarization, was shown. The spin–orbit interaction causes an asymmetry effect
for depolarization of light with right- and left-handed circular polarization propagating
in a graded-index fiber (GRIN) [18,19]. It has been shown that depolarization is stronger
if the helicity of the trajectory of rays and photons has the same sign, and weaker if
they do not coincide. In [20], a relative shift between right- and left-handed circularly
polarized light beams propagating in a graded-index fiber was shown. This effect was
observed experimentally for a laser beam propagating in a glass cylinder along a smooth
helical trajectory [21]. This shift can be considered as a manifestation of the optical Magnus
effect [22] and the optical spin Hall effect [23,24] which arises due to a spin–orbit interaction.
The paraxial approximation is usually used to study the propagation of light beams in a
graded-index medium. Both ray and wave optics are applied to analyze the propagation of
light in graded-index media [25–38]. In [39], the polarization-dependent Goos–Hanchen
(GH) beam shift at a graded-index dielectric interface was examined. In [40], the beam
shifts caused by the nonparaxiality and spin–orbit interaction in a graded-index optical
fiber were investigated.

In this paper, the full three-component field Maxwell’s equations are solved to analyt-
ically demonstrate the effect of symmetry breaking for left- and right-handed circularly
polarized light in an isotropic graded-index fiber due to spin–orbit interaction forces. It
is shown that the propagation velocities of vortex modes with right- and left-handed po-
larizations differ from each other due to spin–orbit interaction. It is demonstrated that
nonparaxiality causes an asymmetry in the distribution of the field intensity in the axial
direction during tight focusing.

2. Basic Equations

The Maxwell equations for the electric field
→
Eexp(− iνt) in a general inhomogeneous

medium with the dielectric constant ε(x, y) are reduced to

∇2
→
E + k2n2

→
E +∇(

→
E ·ln n2) = 0, (1)

where k = 2π/λ is the wavenumber and ε = n2 is the dielectric permittivity of the medium.
Equation (1) in the paraxial approximation can be reduced to the equivalent time-

independent Schrodinger equation [41]. A similar approach can be used to obtain a
parabolic equation for the two-component vector field wavefunction [18–20]. Applying the
same method, it is possible to derive the equation for the three-component wave equation:

ik∂Ψ∂z = HΨ, (2)

where

Ψ = n1/2
0 exp (− ikn0z)

 ex(r,ϕ)
ey(r,ϕ)
ez(r, ϕ)

,
⌢
H =

⌢
Z
−1(⌢

H0 +
⌢
H1

)
=

⌢
H0 +

⌢
H1+

⌢
H2,

⌢
H0 =

[
− 1

2k2n0

(
∂2

∂r2 +
1
r

∂
∂r +

1
r2

∂2

∂ϕ2

)
+ 1

2n0

(
n2

0 − n2)]⌢I
is the unperturbed Hamiltonian corresponding to the first two terms in Equation (1),

⌢
H1 = − 1

2k2n0

 ∂
∂x cosϕ ∂lnn2

∂r
∂
∂x sinϕ ∂lnn2

∂r 0
∂

∂y cosϕ ∂lnn2

∂r
∂
∂y sinϕ ∂lnn2

∂r 0
0 0 0
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and
⌢
H2 =

⌢
Z
−1

1
⌢
H0 are the perturbations corresponding to the third term in the Equation (1),

⌢
Z
−1

=

 1 0 0
0 1 0

i
2kn0

∂lnn2

∂x
i

2kn0
∂lnn2

∂y 1

 =
⌢
I +

⌢
Z
−1

1 .

Consider a rotationally symmetric cylindrical waveguide with a parabolic distribution
of the refractive index:

n2(r) = n2
0 − ω2r2, r ≤ a, (3)

where n0 is the refractive index on the waveguide axis, ω = (2∆)1/2n0/a is the gradient

parameter, ∆ =
n2

0−n2(a)
2n2

0
, a is the fiber radius, r =

√
x2 + y2.

The Hamiltonian
⌢
H may be rewritten in terms of annihilation and creation opera-

tors [31]:

⌢
A1,2 = 1√

2

(
⌢
a 1 ± i

⌢
a 2

)
,
⌢
A
+

1,2 = 1√
2

(
⌢
a
+

1 ∓ i
⌢
a
+

2

)
,
⌢
a 1 = 1√

2

(√
kω

⌢
x + i

√
k
ω

⌢
p x

)
,
⌢
a 2 =

1√
2

(√
kω

⌢
y + i

√
k
ω

⌢
p y

)
,
⌢
p x = − i

k
∂

∂x ,
⌢
p y = − i

k
∂

∂y

(x, y) = (r cosϕ , r sin ϕ), ∂
∂x = cosϕ ∂

∂r −
sinϕ

r
∂

∂ϕ , ∂
∂y = sinϕ ∂

∂r +
cosϕ

r
∂

∂ϕ .

These operators satisfy the following commutation relations: [
⌢
a i,

⌢
a
+

j ] = δij,

[
⌢
Ai,

⌢
A
+

j ] = δij.

Thus, we have

⌢
H0 = ω

kn0

(
⌢
A
+

1
⌢
A1 + A+

2

⌢
A2 + 1

)
⌢
I ,

⌢
H1 = η

[
c1

(
1 + 1

2
⌢
σ z − 1

2
⌢
σ

2
z

)
+ c2

(
1
2
⌢
σ z +

3
2
⌢
σ

2
z − 1

)
+ c3

(
⌢
σ z

⌢
σ+ −⌢

σ−
⌢
σ z

)
+ c4(σzσ+ + σ−σz)

]
,

⌢
H2 =

[
h
⌢
σ

2
− + 1

2 s
(
⌢
σ− −⌢

σ−
⌢
σ z −

⌢
σ z

⌢
σ−
)]⌢

H0.

(4)

Here,

c1 =
⌢
1 +

⌢
A1

⌢
A2 −

⌢
A
+

1
⌢
A
+

2 , c2 = 1
2 (

⌢
A

2

1 −
⌢
A
+2

1 +
⌢
A

2

2 −
⌢
A
+2

2 ), c3 = −ik
⌢
L z,

c4 = − i
2(

⌢
A

2

1 +
⌢
A
+2

1 −
⌢
A

2

2 −
⌢
A
+2

2 ), h = −iξ(
⌢
A1 +

⌢
A
+

1 +
⌢
A2 +

⌢
A
+

2 ), s = ξ(
⌢
A
+

1 −
⌢
A1 +

⌢
A2 −

⌢
A
+

2 ),

η = ω2

2k2n3
0
, ξ = 1

2 (
ω
k )

3/2 1
n3

0
,
⌢
L z = − i

k
∂

∂ϕ = 1
k (

⌢
A
+

2
⌢
A2 −

⌢
A
+

1
⌢
A1),

⌢
I =

1 0 0
0 1 0
0 0 1

 is the unit

matrix and

⌢
σx = 1√

2

0 1 0
1 0 1
0 1 0

,
⌢
σy = 1√

2

0 −i 0
i 0 −i
0 i 0

,
⌢
σz =

1 0 0
0 0 0
0 0 −1

,
⌢
σ+ = 1√

2
(
⌢
σx + i

⌢
σy),

⌢
σ− = 1√

2
(
⌢
σ x − i

⌢
σ y).

The operator method allows us to analytically calculate the matrix elements describing
the parameters of vector light beams. Note that generalized Stokes vectors consisting of
nine real parameters in terms of vector and tensor operators are considered to completely
describe three-dimensional fields [42].

The solution of the unperturbed equation is described by radially symmetric Laguerre–
Gauss functions Ψvl(r, ϕ) = |v, l⟩:

Ψvl(r, ϕ) =

(
kω

π

) 1
2
[

p!
(p + l)!

] 1
2 (

kωr2
) |l|

2 exp
(
−kωr2

2

)
Ll

p

(
kωr2

)
exp(ilϕ), (5)
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where v = 2p + |l| is the principal quantum number; p and l are the radial and azimuthal
indices, respectively; l = ±v,±(v − 2),±(v − 4), ...1 or 0; ω = 2/

(
kw2

0
)
; and w0 is the

radius of the fundamental mode.
The numbers v and l express the eigenvalues of the unperturbed Hamiltonian

⌢
H0|v, l⟩ =

(
ω/kn2

0
)
(v + 1)|v, l⟩ and eigenvalues L = l/k of the angular momentum opera-

tor
⌢
L z|v, l⟩ = (l/k)|v, l⟩. Note that the term

(
kωr2) |l|

2 is equivalent to the term
(√

2r
w0

)|l|
, so

the solution (5) describes the well-known Laguerre–Gauss modes [43].
It was shown in [32,34] that the hybrid wave functions consisting of transverse and

longitudinal components are the solutions of Equation (2):

Ψ(r,ϕ,0)=

∣∣∣∣∣∣
|vl⟩
iσ|vl⟩
ez

〉
, (6)

where σ = +1 and σ = −1 correspond to right-handed and left-handed circularly polarized
beams, respectively, and σ = 0 corresponds to the linear polarization.

The propagation constant, which takes into account nonparaxial terms of the first
order, is given by the following expression [34,44]:

βvlσ=kn0

{
1−η(v+1)−η2

32

[
11(v+1)2−j2−2jσ

]}
, (7)

where η = ω/kn2
0, n0 is the refractive index on the waveguide axis, ω is the gradient

parameter, j = l + σ is the total angular momentum, and σ is the spin angular momentum.
The term j · σ in (7) relates to the spin–orbit and spin–spin interactions.
Consider the incident vector vortex beams with right-circular and left-circular po-

larizations, namely
〈
Ψ+

0

∣∣ = (⟨v′l|,−i⟨v′l|, ez) and
〈
Ψ−

0

∣∣ = (⟨v′l|, i⟨v′l|, ez), respectively,
where |v′l⟩ is given by (5), and ω′ = 2/

(
ka2

0
)
; a0 is the radius of a beam which is different

from the radius of the fundamental mode of the medium w0 =
√

2/(kω). The arbitrary
incident beam may be expanded into modal solutions, so the evolution of a beam in the
medium (3) can be represented as

Ψ(r,ϕ,z) = ∑vlσ avlσ

∣∣∣∣∣∣∣
|vl⟩
iσ|vl⟩
(i/kn0)

→
∇⊥
(→

x + iσ
→
y
)
|vl⟩

〉
exp (iβvlσz), (8)

where avlσ are the coupling coefficients.
If the incident beam is described by the Laguerre–Gauss function Ψ∗

v′ l′σ =(
1/

√
2
)
⟨⟨v′l′|,−iσ⟨v′l′|, e∗z |, the coupling coefficients avlσ can be calculated analytically:

〈
vlσ
∣∣v′lσ 〉 = (2

√
ωω

′

ω + ω
′

)l+1(
ω

′ − ω

ω
′ + ω

)p−p
′(

p
′
!(p + l)!(

p′ + l
)
!p!

) 1
2

P[p−p
′
,l]

p′
(t), (9)

where P[p−p’,l]
p’ (t) are the Jacobi polynomials, t = 1 − 2

(
ω’−ω
ω’+ω

)2
, ω’ = 2/ka2

0, ω = 2/kw2
0.

3. Simulation Results

Below we consider the effects of asymmetry caused by nonparaxiality and spin–orbit
interaction when Laguerre–Gauss beams with different radial and azimuthal indices and
polarization states propagate in a rotationally symmetric cylindrical waveguide with a
parabolic distribution of the refractive index (3). The modal decomposition method [36] is
used for numerical modeling based on Formulas (8) and (9).
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3.1. Effect of Nonparaxiality on the Beam Width and Axial Intensity Distribution

The effects of nonparaxiality are most evident when the beam is being focused. Non-
paraxial effects significantly affect the characteristics of a tightly focused beam [45–48]. In
the paraxial approximation, focusing occurs periodically with a period zT = πn0

ω = πa√
2∆

.
The first plane of focus is located at a distance z f = zT/2. However, the focusing begins to
weaken with increasing distance if nonparaxial effects are considered (Figure 1). In addition,
there is a shift in focus plane towards the source aperture, and this shift accumulates with
distance and increases with increasing aperture size a0. Unlike the paraxial case, focusing
ceases to be observed with increasing distance; i.e., the properties of self-imaging will
decrease at a certain distance, determined by the degree of nonparaxiality η = a0/zT .
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Figure 1. Beam width change with distance. l = 0, σ = 0, 𝜆 = 0.63 μm, 𝑛0 = 1.5. Dashed line—paraxial 
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Figure 1. Beam width change with distance. l = 0, σ = 0, λ = 0.63 µm, n0 = 1.5. Dashed line—paraxial
approximation. (a) a0 = 45 µm; (b) a0 = 90 µm.

In Figure 2, the intensity distributions in the axial direction of the transverse field
component are presented for nonparaxial and paraxial cases. The intensity distributions in
the longitudinal direction at different distances are determined by the function I⊥(0, z) =
|Ψ⊥(0, z)|2. It follows from the simulation that intensity oscillations in front of the focusing
plane occur due to interference between modes. In addition, a focal plane shift occurs
when the nonparaxiality effects are considered (Figure 2c,d). This shift increases with the
aperture of the incident beam and the degree of nonparaxiality.
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Figure 2. Intensity distributions of the transverse electric field in the axial direction. l = 0, σ = 0,
λ = 0.63 µm, n0 = 1.5, a0 = 45 µm. (a) Nonparaxial; (b) paraxial approximation; (c) intensity profiles
at a second focus plane: black line—nonparaxial, red line—paraxial; (d) intensity profiles at a third
focus plane: black line—nonparaxial, red line—paraxial.

3.2. Effect of Spin–Orbit Interaction on the Intensity Distribution

The intensity distributions in the transverse and longitudinal directions at differ-
ent distances are determined by the functions I⊥(r, ϕ, z) = |Ψ⊥(r, ϕ, z)|2 and Iz(r, ϕ, z) =
|ez(r, ϕ, z)|2, respectively. In Figure 3, the intensity profiles of the transverse and longi-
tudinal field components in a focal plane z f are presented for the circularly polarized
incident beams with radial index p = 0 and different azimuthal indices (topological charges).
The waveguide (3) with the gradient parameter ω = 7·10−3 µm−1 and the refractive in-
dex n0 = 1.5 is considered. Here and below, beams with the wavelength λ = 0.63 µm
are considered. The initial beam width or the full width at half maximum (FWHM) is
a0 = 45 µm.
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Figure 4 shows the intensity profiles of the transverse and longitudinal components 

of the field in the focal plane 𝑧𝑓 for circularly polarized incident beams with opposite 

helicity signs and similar azimuthal indices (topological charges). The intensity profiles of 

both the transverse and longitudinal components are similar to the intensity profiles of 

incident beams with topological charges of opposite signs and the same circular polariza-

tion (Figure 3). This is because the spin–orbit interaction term 𝑙 ∙ 𝜎 in the equations de-

scribing the evolution of an incident beam in a graded-index medium retains its sign and 

numerical value. 

Figure 3. Intensity distributions of the transverse electric field (left column) and the longitudinal
electric field component (right column) for the circularly polarized incident beam with zero radial
index in the focal plane z f = 331 µm: (a,b) l = 1, σ = 1; (c,d) l = −1, σ = 1.

As can be seen, the intensity profiles of the transverse components are similar for
topological charges with opposite signs (Figure 3a,c), but the longitudinal components
differ significantly (Figure 3b,d). If for a positive topological charge l = 1, the longitudinal
component has a ring shape (Figure 3b), then for a negative topological charge l = −1, it
has a Gaussian shape (Figure 3d). This effect can be interpreted as an orbital Hall effect.

Figure 4 shows the intensity profiles of the transverse and longitudinal components
of the field in the focal plane z f for circularly polarized incident beams with opposite
helicity signs and similar azimuthal indices (topological charges). The intensity profiles
of both the transverse and longitudinal components are similar to the intensity profiles
of incident beams with topological charges of opposite signs and the same circular po-
larization (Figure 3). This is because the spin–orbit interaction term l·σ in the equations
describing the evolution of an incident beam in a graded-index medium retains its sign
and numerical value.
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Figure 4. Intensity distributions of the transverse electric field (left column) and the longitudinal 
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in a focal plane 𝑧𝑓 are presented for the incident beams with the right- and left-handed 

polarizations and different topological charges. The total angular momentum of both in-

cident beams 𝑗 = 𝑙 + 𝜎 = 1, and the radial index p = 0. 
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Figure 4. Intensity distributions of the transverse electric field (left column) and the longitudinal
electric field component (right column) for the circularly polarized incident beam with zero radial
number in the focal plane z f = 331 µm: (a,b) l = 1, σ = 1 ; (c,d) l = 1, σ = −1.

In Figure 5, the intensity profiles of the transverse and longitudinal field components
in a focal plane z f are presented for the incident beams with the right- and left-handed
polarizations and different topological charges. The total angular momentum of both
incident beams j = l + σ = 1, and the radial index p = 0.
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In Figure 5, the intensity profiles of the transverse and longitudinal field components 
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Figure 5. Cont.



Symmetry 2024, 16, 87 9 of 15Symmetry 2024, 16, x FOR PEER REVIEW 9 of 16 
 

 

−2 −1 0 1 2 3

−2

−1

0

1

2

3

(c)

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0.05

0.10

0.15

0.20

 

 

−2 −1 0 1 2 3

−2

−1

0

1

2

3

(d)

0
.0

0
0
5

0
.0

0
1
0

0
.0

0
1
5

0
.0

0
2
0

0
.0

0
2
5

0
.0

0
3
0

0
.0

0
3
5

0
.0

0
4
0

0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035
0.0040
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Figure 5. Intensity distributions of the transverse electric field component (left column) and the
longitudinal electric field component (right column) for the circularly polarized incident beams with
zero radial number in the focal plane z f = 331 µm: (a,b) l = 0, σ = 1; (c,d) l = 2, σ = −1.

It is seen that the shapes of transverse field components are different. If for a right-
handed polarization with σ = 1, the longitudinal component has a Gaussian shape
(Figure 5a), then for a left-handed polarization with σ = −1, it has a ring shape (Figure 5c).
There is a difference in the shapes of the transverse components, although the total angular
momentum is the same in both cases.

In Figure 6, the intensity profiles of the transverse and longitudinal field components
in a focal plane z f are presented for the incident beams with the right- and left-handed po-
larizations and different topological charges l = 1 and l = 3. The total angular momentum
of both incident beams j = l + σ = 2, and the radial index p = 0.

As can be seen, the intensity distributions of the transverse and longitudinal field
components for the right- and left-handed polarizations have ring shapes. However, the
radii of the rings for the transverse components differ significantly.

In Figure 7, the intensity profiles of the transverse and longitudinal field components
in a focal plane z f are presented for the incident beams with the right- and left-handed
polarizations, the radial index p = 1, and the same topological charges l = 1.
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Figure 6. Cont.
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Figure 6. Intensity distributions of the transverse electric field component (left column) and the
longitudinal electric field component (right column) for the circularly polarized incident beams with
zero radial number in the focal plane z f = 331 µm: (a,b) l = 1, σ = 1; (c,d) l = 3, σ = −1.
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Figure 7. Intensity distributions of the transverse electric field component (left column) and the
longitudinal electric field component (right column) for the circularly polarized incident beams with
nonzero radial number p = 1 in the focal plane z f = 331 µm: (a,b) l = 1, σ = 1; (c,d) l = 1, σ = −1.

It can be seen that the ring size in Figure 7a is much larger than the ring size in
Figure 3a, although both cases have the same total angular momentum j = l + σ = 2. The



Symmetry 2024, 16, 87 11 of 15

transverse components have an annular shape, whereas the longitudinal component of the
left-handed polarization has a Gaussian shape (Figure 7d). Note that the spot size of the
longitudinal field component in the plane of focus is less than the wavelength. The FWHM
(full width at half maximum) value of the focused spot in the longitudinal component of the
field is only 0.55 µm (Figure 7d). The thickness of the ring is also less than the wavelength
(Figure 7a).

3.3. Effect of Spin–Orbit Interaction on the Speed of Vortex Beams in Optical Fiber

Spin–orbit interaction affects the trajectory and intensity distribution of the light beam
during propagation in a graded-index medium. The modes of a cylindrical waveguide are
degenerated in the scalar approximation. When the vector term in the wave equation defin-
ing the spin–orbit interaction is considered, the spectrum of the propagation constant is split.
The splitting of levels due to the term ∇ε (spin–orbit interaction of photons) in lens-like me-
dia has been considered in several papers [49,50]. Spin–orbit interaction in waveguides can
significantly change the energy spectrum, causing splitting and the removal of degeneracy
of modes with different radial and azimuthal indices and polarizations [44,51,52]. These
effects affect the group delay of modes in optical waveguides.

The group delay of the modes or the average time of arrival of a pulse is given
by [44,52]

τ =
z
vg

=
z
c

∂β

∂k
∼=

zn0

c
+

zn0

c
η2

32

[
11(ν+ 1)2 − j2 − 2j · σ

]
, (10)

where c is the velocity of light in a vacuum, vg is the mode-group velocity, z is the length of
the fiber, j = l + σ is the total angular momentum, and σ is the spin angular momentum.

The group velocities vg = z/τ of vortex modes with right- and left-handed polariza-
tions differ from each other; therefore, effective anisotropy is induced due to spin–orbit
interaction. Such an asymmetry does not exist in the case of zero orbital momentum l = 0.
It follows from (10) that the group velocity of the modes decreases with increasing angular
momentum of the propagating modes. Note that a similar result was obtained for a twisted
light in vacuum in [53,54].

In Figure 8a, the relative propagation delay of modes compared with the fundamen-
tal mode as a function of radial mode number p for various fundamental mode radii
w0 = (2/kω)1/2 is presented. In Figure 8b, the delay times of the azimuthal modes of fixed
radial indices l (p = 0) are presented.
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Figure 8. Delay times as a function of radial (a) and azimuthal (b) indices, accordingly, z = 1 km, 

𝑛0 = 1.5, σ  = 0. 

It can be seen that the delay time increases with increasing radial and azimuthal in-

dices. The delay time also increases with a decrease in the radius of the fundamental mode 

𝑤0. For high-order azimuthal modes and topological charge, a delay time can be observed 

compared to the fundamental mode of the order of 10 ns/km. Note that the number of 

propagating modes is given by 𝑁 = 𝑉2 4⁄ , where 𝑉 = 𝑎𝑘𝑛0√2∆= 𝑎𝑘𝑁𝐴 [25,55]. Graded-

index fibers with a core diameter of 62.5 μm and a numerical aperture of NA = 0.275 support 

several hundred propagating modes. 
It follows from (10) that the group delay time depends on the spin angular momen-

tum σ. Figure 9 shows the spin-dependent relative delay times ∆τ between pulses of dif-

ferent polarization states depending on the topological charge for waveguides with dif-

ferent gradient parameters. 

0 20 40 60 80 100

−15

−10

−5

0

5

10

15

D
t,

 p
s

Topological charge, l

1

2

3

4

(a)

 

0 20 40 60 80 100
−150

−100

−50

0

50

100

150

D
t,

 p
s

Topological charge, l

1

2

3

4

(b)

 

Figure 9. Relative delay times as a function of topological charge: z = 1 km, 𝑛0 = 1.5; 1—delay be-

tween beams with σ = −1 and σ = 1, ∆𝜏 = 𝜏−1 − 𝜏1; 2—∆𝜏 = 𝜏0 − 𝜏1; 3—∆𝜏 = 𝜏0 − 𝜏−1; 4—∆𝜏 = 𝜏1 −

𝜏−1. (a) 𝜔 = 8 ∙ 10−3 μm−1; (b) 𝜔 = 2.2 ∙ 10−2 μm−1. Subindex in 𝜏𝜎 corresponds to the spin angular 

momentum σ = 0, 1. −1. 

It can be seen in Figure 9 that in the case of positive azimuthal indices, the delay time 

of a pulse with left-handed polarization is longer than that of pulses with linear and right-

handed polarizations; i.e., 𝜏+1 < 𝜏0 < 𝜏−1 . This indicates that a right-handed polarized 

Figure 8. Delay times as a function of radial (a) and azimuthal (b) indices, accordingly, z = 1 km,
n0 = 1.5, σ = 0.



Symmetry 2024, 16, 87 12 of 15

It can be seen that the delay time increases with increasing radial and azimuthal indices.
The delay time also increases with a decrease in the radius of the fundamental mode w0.
For high-order azimuthal modes and topological charge, a delay time can be observed
compared to the fundamental mode of the order of 10 ns/km. Note that the number of
propagating modes is given by N = V2/4, where V = akn0

√
2∆ = akNA [25,55]. Graded-

index fibers with a core diameter of 62.5 µm and a numerical aperture of NA = 0.275
support several hundred propagating modes.

It follows from (10) that the group delay time depends on the spin angular momentum
σ. Figure 9 shows the spin-dependent relative delay times ∆τ between pulses of different
polarization states depending on the topological charge for waveguides with different
gradient parameters.
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It can be seen in Figure 9 that in the case of positive azimuthal indices, the delay
time of a pulse with left-handed polarization is longer than that of pulses with linear
and right-handed polarizations; i.e., τ+1 < τ0 < τ−1. This indicates that a right-handed
polarized pulse propagates at a higher speed than linear and left-handed polarized pulses;
i.e., v−1 < v0 < v+1. In the case of negative azimuthal indices, the delay time of a
pulse with right-handed polarization is longer than that of pulses with linear and left-
handed polarizations; i.e., τ+1 > τ0 > τ−1. This indicates that in this case, a left-handed
polarized pulse propagates at a higher speed than linear and right-handed polarized pulses;
i.e., v−1 > v0 > v+1. This effect can be attributed to the temporary spin Hall effect,
which manifests itself as a difference in the arrival time of pulses with different circular
polarizations. Unlike the conventional spin Hall effect, which is expressed in the spatial
separation of photons with different circular polarizations, there is a temporary separation
of the incident pulse with linear polarization into two pulses due to the difference in the
propagation velocities of vortex photons with opposite signs of circular polarization.

Thus, the pulses with right- and left-handed polarizations propagate with different
velocities due to spin–orbit interaction. The spin–orbit interaction is responsible also for
the degeneracy lifting of modes with distinct orbital angular momentum (OAM) and
polarization but the same total angular momentum. The removal of degeneracy can be
considered as an optical analogue of the Lamb shift, in which the levels are separated
between degenerate states with the same total angular momentum. This level splitting is
very small for ordinary optical fibers, where w0 ≫ λ, but it becomes significant for fibers
with a diameter of the order of the wavelength. Numerical estimates have shown that the
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elimination of degeneracy leads to a delay time between degenerate modes of the order
of 1 ns/km for an optical fiber with a radius of the fundamental mode of the order of the
wavelength of light.

4. Conclusions

Thus, the full three-component field Maxwell’s equations are solved to study the effects
of nonparaxiality and spin–orbit coupling on the axial and radial intensity distributions and
on the group velocities of modes. It is shown that nonparaxiality causes an asymmetry in
the distribution of the field intensity in the axial direction during tight focusing. Spin–orbit
interaction induces effective anisotropy in an isotropic graded-index medium, causing
asymmetry effects between the right- and left-handed polarized beams. Note that these
effects can be regarded as a manifestation of the optical spin Hall effect [23,24] which arises
due to a spin–orbit coupling. In its turn, the spin Hall effect is related to the geometric
Berry phase [7,21,27,56]. It was shown in [7,27] that the spin Hall effect and the Berry
phase are closely associated with the spin angular momentum dynamics and can be
explained in terms of the Coriolis effect. Although numerical modeling was performed for
parameters that are reasonable for conventional graded-index fibers with a core radius of
50–60 microns, the results obtained can also be observed using a GRIN rod with typical
values: a = 1 mm, ∆ = 0.05, z f = 5 mm [57].

Future research may be related to the study of asymmetric effects in the propagation
of vortex pulses and partially polarized and partially coherent vortex beams in a graded-
index medium [58–62]. Of particular interest is the consideration of the effects of a large-
scale revival [34,63], the transverse spin phenomenon [64–66], and the optical spin Hall
effect [67,68].

In summary, the modal solutions in a GRIN medium, which are the hybrid vector
Laguerre–Gauss modes with spin–orbit entanglement, are used to study the propagation of
vector wave beams in a graded-index medium. Modes with spin–orbit entanglement can be
useful for classical implementations of quantum communication and computational tasks.
The asymmetric distribution of the field intensity of the focused spot in the axial direction
is shown. The effects of asymmetry are demonstrated, manifested in a different intensity
distribution in the focal plane for opposite handedness of vorticity and/or polarization. It is
shown that the group velocities of vortex modes with right- and left-handed polarizations
differ from each other, so the effective anisotropy is induced due to spin–orbit interaction.
The velocities of the left- and right-handed circularly polarized light pulses propagating in
a graded-index fiber are different, which leads to a difference in the arrival time of pulses
with opposite circular polarizations. This difference increases with the topological charge
and radial index. The different delay times for opposite handedness of polarization can
be considered as a temporal spin Hall effect, which can be observed for light with left-
and right-handed circular polarization in an isotropic graded-index fiber. These effects
influence the group delay of modes and the average time of arrival of a pulse in optical
fibers and become important in fiber optic communications with high carrying capacities
and faster transmission rates.
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