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Abstract: Peyssonnoside A is an unusual natural product consisting of a diterpene unit and a
sulfonated monosaccharide. The experimental and theoretical comparison of Optical Rotatory
Dispersion (ORD) and quantitative Nuclear Magnetic Resonance (NMR) data provided strong
evidence for the stereochemistry of the diterpene unit. However, predicted Vibrational Circular
Dichroism (VCD) spectra of Peyssonnoside A at the B3LYP/6-311++G(2d,2p) level showed poor
correlation to the corresponding experimental spectra, preventing independent absolute configuration
(AC) determination from VCD analysis. New calculations using the B3PW91 functional and the
6-311G(3df,2pd) basis set suggest that we can now independently and confidently assign the AC of
Peyssonnoside A through VCD analyses. The use of f-polarization functions is responsible for the
current successful assignment, compared to previously failed VCD analysis. This study highlights
two important points: (a) the importance of using multiple levels of theories for satisfactorily
reproducing the experimental spectra and (b) for quantitative comparisons using similarity indices, it
is important to consider not only the VCD spectra but also the corresponding absorption spectra.

Keywords: Peyssonnoside A; natural products; vibrational circular dichroism; optical rotation;
density functional calculations

1. Introduction

Chiroptical spectroscopy facilitates the determination of absolute configurations (ACs)
of chiral molecules by making use of the differential response of chiral molecules to left
vs. right circularly polarized light. Different techniques, each governed by a different
phenomenon, fall under the banner of chiroptical spectroscopy. They include Electronic
Circular Dichroism (ECD), Fluorescence Detected Circular Dichroism (FDCD), Optical
Rotatory Dispersion (ORD) (which constitutes Optical Rotation (OR) at multiple wave-
lengths), Vibrational Circular Dichroism (VCD) and Vibrational Raman Optical Activity
(VROA). The former three are based on electronic transitions, while the latter two are
based on vibrational transitions of chiral molecules. Chiroptical spectroscopic methods
are nondestructive and do not require chemical derivatization, provided one has enough
samples for the experimental measurements. The challenge of obtaining well-diffracting
single crystals needed for X-ray diffraction studies is also avoided. These advantages
make chiroptical spectroscopy suitable for the AC determination of a variety of organic
and inorganic chiral compounds, biologically relevant peptides and proteins, and natural
products and also for studying solute–solvent interactions [1,2]. The reader is encouraged
to refer to the books [3–6] and review articles [7,8] available on these methods, and the
suggestions [9,10] for theoretical predictions of chiroptical spectra.

For scientific inquiry, it is helpful to be aware of other useful techniques that do
not depend on the differential response to circularly polarized light for probing chiral
molecules. Such techniques include Nuclear Magnetic Resonance (NMR) and Microwave
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Rotational Resonance (MRR) [11], which is also referred to as microwave three-wave
mixing (M3WM) [12] spectroscopy. For the former method, the chiral sample of interest
is converted to a diastereomer by complexing it with another chiral sample of known AC
and then studied in the solution phase. While the NMR method has been in use for several
decades, recent developments in the prediction of chemical shifts have shed new light on
it [13]. MRR spectroscopy is applicable only to gas phase samples, where a weak complex
with a chiral tag of known AC has to be used. In the MRR method, since solid/liquid
samples have to be vaporized for gas phase measurements, it may not be possible to recover
the used sample.

The AC determination of natural products is nontrivial due to their size, conforma-
tional freedom and the limited availability of samples. OR measurements at 589 nm and
ECD measurements are the most commonly used chiroptical spectroscopic methods for
AC determination of natural products, because OR at 589 nm is easy to measure and most
natural products have appropriate ECD chromophores in the visible region. Vibrational
Circular Dichroism (VCD) and Vibrational Raman Optical Activity (VROA), the chiroptical
versions of infrared (IR) and Raman spectroscopies, have become more popular in recent
years. In VCD and VROA, the vibrational transitions serve as chromophores and provide
rich information that can be used to assign the AC. The reader is encouraged to consult
the reviews available for AC determination of natural products [14–19]. AC assignment
by chiroptical spectroscopic investigations relies on a thorough characterization of the
low-energy conformations via quantum chemical (QC) methods. Otherwise, key experi-
mental features that have to be compared in order to assign the AC may not be satisfactorily
reproduced by the employed molecular model [9,17,20]. Generally, it is important to use as
many chiroptical spectroscopic methods as possible, as sometimes a given method may not
be able to successfully differentiate between enantiomers [21].

Diterpenes are one class of natural product molecules that have benefited extensively
from the use of chiroptical spectroscopies in structural elucidation. They include ECD,
VCD and X-ray structural investigations of Incensfuran [22], the VCD investigation of Bifur-
catriol [23], ECD and VCD investigations of Andrographolide [24], the ECD investigation
of Aphamines A–C [25] and the ECD study of Taxodinoid A [26].

The present work focuses on the application of VCD and ORD for Peyssonnoside A,
which is an unusual diterpene glycoside that is highly substituted and features a sterically
encumbered cyclopropane ring within the diterpene unit [27]. The relative configuration of
the diterpene unit was determined by ROESY and HSQC–ROESY NMR data, leading to
two possible diastereomers for Peyssonnoside A, 1 and 2 (Figure 1). Evidence for the AC
assignment of Peyssonnoside A was obtained by quantitative ROESY [28] data using the
glycoside unit as an internal probe [29] of the stereochemistry of the attached diterpene
unit [27]. DFT predicted DP4+ probabilities [30] and Optical Rotatory Dispersion (ORD) at
the B3LYP/6-311++G (2d,2p) level [27] also pointed to the AC assignment of 1. However,
VCD predictions, at the same level used for ORD and DP4+, had a poor correlation to
the corresponding experimental spectra [27]. Since that report, two total syntheses of
Peyssonnoside A have been reported in the literature, making it clear that this unusual
molecule has captured the attention of synthetic chemists [31,32]. These studies further
confirm the AC assignment made by ORD and DP4+ correlations. However, since erroneous
stereochemical assignments are usually not caught until their total synthesis [13,18,33],
chiroptical spectroscopic investigations and their reliability are worthwhile.

One unique feature of Peyssonnoside A is the sulfonated saccharide unit. Recent work
suggests that the S=O symmetric and antisymmetric stretching vibrational frequencies
display a significant basis set dependence, resulting in red-shifted S=O stretches in the
vibrational absorption (VA) and VCD spectra, if f-polarization functions are not included
on the sulfur atom [34]. Since previous VCD analysis [27] did not include f-polarization
functions, we now investigate their influence on the predicted VCD spectra of Peysson-
noside A using the B3PW91 functional [35,36]. The B3LYP and B3PW91 functionals are
known to do well in predicting the VCD spectra [37,38].
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5′R, 1R, 3S, 6R, 7S, 10R, 11R, 14R). 
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Figure 1. ChemDraw renderings of the two possible diastereomers of Peyssonnoside A. Stereode-
scriptors of diastereomer 1: (1′S, 2′R, 3′S, 4′S, 5′R, 1S, 3R, 6S, 7R, 10S, 11S, 14S), 2: (1′S, 2′R, 3′S, 4′S,
5′R, 1R, 3S, 6R, 7S, 10R, 11R, 14R).

2. Materials and Methods
2.1. Computational

The diastereomers 1 and 2 were both built in ChemDraw. Conformational analysis
was performed in Pcmodel 10.0 (GMMX search algorithm) [39] at the molecular mechanics
(MM) level, with a 30 kcal/mol initial search limit and a final screening limit of 10 kcal/mol.
This yielded 5573 conformers for 1 and 3939 conformers for 2. Subsequent DFT calculations
were performed in Gaussian 16 [40]. The single-point energies of these conformers were
computed at the B3PW91/6-31G(2d, p) [41,42] level using the SG1 integration grid. All
single-point, optimization and frequency calculations included a Polarizable Continuum
Model (PCM) [43,44] representing the DMSO-d6 solvent used for VCD measurements.
The geometries within the lowest 5.0 kcal/mol limit based on the computed single-point
energies were then optimized at the same level using the default UltraFine integration
grid, which was used thereafter. VCD and ORD calculations were performed on optimized
structures in the lowest 2.0 kcal/mol window based on electronic energies at the B3PW91/6-
31G(2d,p)/PCM level. The optimized geometries within the lowest 3.0 kcal/mol based
on Gibbs energies at the B3PW91/6-31G(2d, p)/PCM level were further optimized at the
B3PW91/6-311G(3df,2pd) [45–47]/PCM level, and VCD calculations were performed there-
after for conformers in the lowest 2.0 kcal/mol based on electronic energies. A 3.0 kcal/mol
limit was chosen due to the lower computed energy difference between conformers at the
B3PW91/6-311G(3df,2pd)/PCM level relative to the B3PW91/6-31G(2d,p)/PCM level. In
addition to our new calculations on diastereomers 1 and 2, we also analyzed the VCD
spectra that were reported previously at the B3LYP/6-311++G(2d,2p) level [27].

All spectral simulations and similarity analyses [48,49] were undertaken using the
in-house developed CDSpecTech program [50]. The numerical measures of quantitative
similarities for VA, VCD and vibrational dissymmetry factor (VDF) spectra were assessed
from SimVA, SimVCD and SimVDF functions, respectively [48,49]. The SimVA and SimVDF
values reported here are at the same scale factor that gives maximum SimVCD. Similarity
analysis was performed between calculated and experimental spectra using the experimen-
tal 1100 to 1490 cm−1 region.

Additional optimizations and VCD spectral predictions were also undertaken on
fragments of the lowest energy conformers for 1 at the B3PW91/6-311G(3df,2pd) level,
whereby the separate diterpene and saccharide units were cleaved at the glycosidic linkage
and capped with an –OC3H3 group. 3H isotope was used in place of 1H to avoid interfering
vibrations from –C–1H vibrations of the capping group. VCD calculations were performed
on the unique diterpene and saccharide-optimized geometries.

All molecular visualizations were made with CYLview [51].
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2.2. Experimental

Optical rotations of Peyssonnoside A were measured in DMSO at a concentration
of 12 mg/mL in a 1 cm pathlength cuvette using A Jasco J-815 instrument (JASCO Inc.,
Easton, MD USA) [27]. VCD measurements were carried out using a commercial ChiralIR
instrument (BioTools Inc., Jupiter, FL USA) using a fixed pathlength (100 µm) SL3 cell at a
concentration of 80 mg/mL using DMSO-d6 as solvent [27].

3. Results and Discussion

Given the size of the ensembles of 1 and 2, as well as the large number of atoms,
we initially elected to rank the MM geometries based on DFT single-point energies at
the B3PW91/6-31G(2d,p)/PCM level and to optimize only those within a 5.0 kcal/mol
limit. This is a wider energy range than the 2.5 kcal/mol recommended by Ruud and
coworkers for cyclic oligopeptides [52] and seems to work well for locating the low-
energy conformers of very flexible molecules [53]. The 6-31G(2d,p) basis set was used
as a reasonable compromise between the 6-31G(d) basis and those that include multiple
diffuse and polarization functions that appear to be very computationally expensive for
this large molecule, while still having polarization functions included in its definition.
Additionally, good VCD agreement can be obtained with this basis set for dipeptides,
which are very flexible molecules with several conformers [54]. We explored the use of the
semi-empirical PM6 [55] method for preoptimization prior to DFT single-point ranking,
but single-point energies after PM6 optimization were several kcal/mol higher than the
single-point energies of the MM geometries, so we avoided the use of the PM6 method.

Optimizations of 1 and 2 at the B3PW91/6-31G(2d,p) level gave a total of 11 conformers
for 1 and 10 conformers for 2 within a 2.0 kcal/mol window, which is a small number of
conformers similar to the low number of low-energy conformations obtained previously
(five for each diastereomer) [27]. It is likely that the diterpene unit at the anomeric carbon
prevents the otherwise flexible sugar moiety from puckering, thereby limiting the ring
to one favorable chair position. Additionally, the C-3 alcohol group is pointing towards
one of the oxygens in the C-2 sulfate group, locking both into place and further limiting
the number of obtained conformers due to this favorable intermolecular interaction. This
oxygen also has a shorter S=O bond length, likely due to the stabilizing hydrogen bonding
interaction from the C-3 hydroxyl group.

3.1. Vibrational Circular Dichroism

The simulated VCD spectra of 1 and 2 at the B3LYP/6-311++G(2d,2p)/PCM level
were previously found to have a poor correlation to the corresponding experimental VCD
spectrum and, therefore, AC could not be determined in that study [27]. These previously
predicted spectra of 1 and 2 are compared with corresponding experimental spectra in
Figure 2, and quantitative similarities are reported in Table 1. The choice of frequency scale
factor for predicted spectra at B3LYP/6-311++G(2d,2p)/PCM level is not trivial, as the
quantitative Sim values are very low. If the S=O vibrations, which are clearly mispredicted,
are ignored, then a scale factor of 0.967 appears to be appropriate based on correlation with
the weak VA bands at 1460 and 1370 cm−1. For diastereomers 1 and 2 at this level of theory,
quantitative analysis of the maximum SimVCD gives two distinct scale factors: 1.035 for 1
and 0.981 for 2. Owing to the conflicting observations, we presented the simulated spectra
in Figure 2 with one frequency scale factor of 1.000. The similarity values listed in Table 1
are for the frequency scale factor that yields maximum SimVCD.

The quantitative similarities between the predicted spectra of 1 and the experimental
spectra are SimVCD = 0.30 and SimVDF = 0.27, while corresponding values for 2 are 0.14
and 0.23, respectively (see Table 1). These magnitudes are quite low for suggesting reliable
AC, and this was the reason for not being able to assign the AC of Peyssonnoside A from
VCD spectra previously [27]. This negative conclusion motivated us to explore different
levels of theory for VCD predictions.



Symmetry 2024, 16, 133 5 of 13

Symmetry 2024, 16, x FOR PEER REVIEW 5 of 14 
 

 

quantitative analysis of the maximum SimVCD gives two distinct scale factors: 1.035 for 1 
and 0.981 for 2. Owing to the conflicting observations, we presented the simulated spectra 
in Figure 2 with one frequency scale factor of 1.000. The similarity values listed in Table 1 
are for the frequency scale factor that yields maximum SimVCD. 

 
Figure 2. Comparison of simulated and experimental spectra for Peyssonnoside A at the B3LYP/6-
311++G(2d,2p)/PCM level [27]; VDF and VCD spectra are multiplied by 2 for comparison with ex-
periment. Simulated frequencies are scaled by 1.000 for both 1 and 2. Experimental conditions: con-
centration = 80 mg/mL, pathlength = 100 µm, DMSO-d6. 

The quantitative similarities between the predicted spectra of 1 and the experimental 
spectra are SimVCD = 0.30 and SimVDF = 0.27, while corresponding values for 2 are 0.14 
and 0.23, respectively (see Table 1). These magnitudes are quite low for suggesting reliable 

Figure 2. Comparison of simulated and experimental spectra for Peyssonnoside A at the B3LYP/6-
311++G(2d,2p)/PCM level [27]; VDF and VCD spectra are multiplied by 2 for comparison with
experiment. Simulated frequencies are scaled by 1.000 for both 1 and 2. Experimental conditions:
concentration = 80 mg/mL, pathlength = 100 µm, DMSO-d6.

Simulated spectra of 1 and 2 at the B3PW91/6-31G(2d,p) level and comparison with
experimental spectra are presented in Figure 3. The predominant difference in the two
predicted spectra is that the positive experimental VCD bands at 1344, 1321 and 1298 cm−1

are all predicted to be negative for 2, and the band shape of the positive experimental
1177 cm−1 band is better reproduced by 1. Quantitative similarities between predicted
and experimental spectra, which are presented in Table 1, show the maximum SimVCD
(0.47) and corresponding SimVDF (0.42) for 1 to be greater than 0.4, but they are less than
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0.25 for 2, pointing towards AC assignment of Peyssonnoside A as that of 1. However, the
SimVA of 0.54 for diastereomer 1, at the scale factor (0.980) that yields maximum SimVCD,
is not a high enough value unlike those normally found for VA spectra. Visualization of
the vibrations in the simulated spectra shows that the simulated VA bands at 1253 and
1178 cm−1, as well as the corresponding VCD bands, have significant contributions from
S=O symmetric and antisymmetric stretching vibrations, and these bands did not line
up with experimental bands due to their red-shifted positions. These mispredicted S=O
stretching vibrations have little impact on the VDF spectra due to the high associated
VA intensities.

Table 1. Similarities between simulated and experimental (Exp.) spectra in the ~1100–1500 cm−1

region using the frequency scale factor that gives maximum SimVCD. Levels of theory are indicated
above each set of similarity values.

B3LYP/6-311++G(2d, 2p)

Compared Spectra σ SimVA MaxSimVCD SimVDF

1 and Exp. 1.035 0.62 +0.30 +0.27

2 and Exp. 0.981 0.40 +0.14 +0.23

B3PW91/6-31G(2d, p)/PCM

1 and Exp. 0.980 0.54 +0.47 +0.42

2 and Exp. 0.989 0.70 +0.24 –0.01

B3PW91/6-311G(3df, 2pd)/PCM

1 and Exp. 0.981 0.94 +0.76 +0.67

2 and Exp. 0.980 0.94 +0.27 +0.06

Noting the poor agreement between the experimental and simulated VA spectra of
1 and 2 at the B3LYP/6-311++G(2d,2p) level and only a marginal agreement for 1 at the
B3PW91/6-31G(2d,p) level, we hoped that f-polarization functions might improve the
predictions. However, the size of 1 and 2 makes the use of a larger basis set very expensive,
even with relatively few conformers. Despite this limitation, we further optimized the
low-energy conformers of the B3PW91/6-31G(2d,p) level (11 for 1 and 10 for 2) at the
B3PW91/6-311G(3df,2dp)/PCM level. The relative energies of the conformers dropped
significantly, so we expanded the energy window of the conformers to be optimized at the
higher level of theory to those within 3.0 kcal/mol from the B3PW91/6-31G(2d,p)/PCM
level. Additionally, we also optimized the conformers whose single-point energies at
the B3PW91/6-31G(2d,p) level were within a 5.0 kcal/mol limit, so as to ensure that no
conformers were missed. Ultimately, this process gave two additional conformations within
2.0 kcal/mol for both diastereomers 1 and 2, for a total of 13 conformers for 1 and 12 for 2
at the B3PW91/6-311G(3df,2pd) level.

The use of empirical dispersion corrections, such as those proposed by Grimme [56,57],
is not considered in the present calculations. This is because the inclusion of these correc-
tions typically leads to a lower overall agreement between experimental and calculated
VCD spectra [52,58–60]. Additionally, we have not tackled in this research the possible
effect that the solvent DMSO-d6 has on the orientations of the hydroxyl groups amongst
the low-energy conformers. This is because our experience has been that when there are
several groups participating in intramolecular hydrogen bonding, the influence of hydro-
gen bonding solvent is minimal and PCM model is likely to be adequate for satisfactorily
reproducing the experimental spectra in methanol solvent [48]. However, this situation
may change with solvent and individual solute molecules. The added consideration of
solvation in VCD spectroscopy, typically by explicit solvation or microsolvation [58,61–63],
can quickly become computationally expensive.
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31G(2d,p)/PCM level. VDF and VCD spectra are multiplied by 2 for comparison with experiment.
Simulated frequencies are scaled by 0.980. Experimental conditions: concentration = 80 mg/mL,
pathlength = 100 µm, DMSO-d6.

A comparison of spectra simulated at the B3PW91/6-311G(3df,2pd) level to the exper-
imental spectra of Peyssonnoside A is presented in Figure 4. The simulated VDF and VCD
spectra have been multiplied by 2 for better comparison with the experimental spectra. The
B3PW91/6-311G(3df,2pd) predicted S=O VA and VCD bands at 1275 and 1207 cm−1 are
now in line with corresponding experimental bands. The addition of f-polarization func-
tions gives a substantial improvement in the quantitative similarity of simulated spectra of
1 with the corresponding experimental spectra (see Table 1). The similarity values of SimVA
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(0.94), SimVCD (0.76) and SimVCD (0.67) for 1 are among the largest Sim magnitudes seen
in the literature, giving very high confidence for 1 as the AC of Peyssonnoside A.
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Two of the lowest energy conformers for 1 at the B3PW91/6-311G(3df,2pd) level are
presented in Figure 5 and the rest in Supplementary Materials.
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Given that much of the VCD activity appears to arise from the sulfonated saccharide
instead of the rigid diterpene unit, we set out to investigate the VCD activities of the
respective fragments. Normally, VCD contributions from individual parts of a molecule
do not necessarily add up to the VCD spectrum of the entire molecule. However, because
of the different bond types in the diterpene and sugar units, we decided to check if the
VCD calculations of the individual fragments may be a good approximation of the overall
VCD spectrum.

One sugar and one diterpene fragment for each of the thirteen conformations of
diastereomer 1 was used as the starting point. After optimization of these geometries at the
B3PW91/6-311G(3df,2pd) level, there were seven unique sugar fragment conformers and
two unique diterpene fragment conformers. VCD calculations were performed on these
optimized geometries. The simulated VCD spectra of 1 and its optimized fragments are
presented in Figure 6.

VCD contributions from the diterpene fragment are much weaker than those of the
sulfonated sugar. However, from visual inspection, there are six bands that can be identified
as originating from the diterpene fragment, and these bands are marked with an asterisk (*)
in Figure 5. These bands are (1) a shoulder at 1464 cm−1, (2) a weak (+)-band at 1325 cm−1,
(3) the S=O antisymmetric (1270 cm−1) band, (4) the S=O symmetric (1234 cm−1) band,
(5) a shoulder (+)-band at 1178 cm−1 and (6) a weak (–)-band at 1148 cm−1. These bands in
1 each have a corresponding band in the experimental VCD spectrum, and these bands are
either of smaller magnitude or opposite signs in the predicted spectrum of 2, indicating that
these bands are sensitive to the stereochemistry of the rigid diterpene fragment. Overall,
the sum of the VCD spectra of diterpene and sugar fragments appears to be a reasonably
good approximation to the VCD spectrum of the whole molecule.

3.2. Optical Rotatory Dispersion

The good agreement between experimental and predicted ORD curves at the B3LYP/6-
311++G(2d, 2p) level was one of the key pieces of evidence for the previous AC assignment
of Peyssonnoside A [27], so it is important that the ORD of 1 and 2 also be computed at
the same level that gives satisfactory VCD agreement as additional evidence for the AC of
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Peyssonnoside A. Predicted ORD curves for both 1 and 2 at the B3PW91/6-31G(2d,p) and
B3PW91/6-311G(3df, 2pd) levels are displayed in Figure 7. At both levels, the Boltzmann
conformer average predicted ORD curves of 1 are all negative and of 2 are all positive. Despite
being diastereomers, the ORD curves for 1 and 2 are almost mirror images. These mirror-image
curves suggest that ORD is more sensitive to the stereochemistry of the diterpene fragment as
opposed to the saccharide fragment. The current ORD data at the B3PW91/6-31G(2d,p) and
B3PW91/6-311G(3df, 2pd) levels also support the AC assignment of 1.
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4. Conclusions

Overall, the large size of Peyssonnoside A makes an accurate computation of VCD
spectra challenging. Despite its unusual structure, the dominant VCD activity for 1 and
2 arises from the monosaccharide unit instead of the rigid diterpene unit. The marginal
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quantitative similarities at a more cost-effective, double-ζ basis set pointed towards an AC
assignment of 1, but low VA similarities arising from red-shifted S=O stretching vibrations
posed a limitation. Calculations at a higher level of theory, including f-polarization func-
tions, dramatically increased the quantitative similarities between 1 and the experimental
spectra for both VA and VCD spectra.

Previously reported VCD analysis at the B3LYP/6-311++G(2d,2p) level was unable
to establish the AC of Peyssonnoside A. On the contrary, the current VCD analysis at the
B3PW91/6-311G(3df,2pd) level has provided a convincing AC assignment. This stark
contrast between the failed and successful VCD analyses is attributed to the inclusion of
f-functions in the basis set.

Contrary to VCD, which is dominated by the contributions from sugar fragments,
ORD is dominated by contributions from stereogenic centers of diterpene fragments. There-
fore, the ORD and VCD spectroscopies are sensitive to separate stereogenic fragments of
Peyssonnoside A, highlighting the importance of the use of multiple chiroptical spectro-
scopies in the stereochemical analysis of complex natural-product molecules.

The current investigation highlights the importance of exploring multiple levels of
theories for satisfactorily reproducing the experimental VA and VCD spectra. Moreover,
for quantitative comparisons using similarity indices, matching the theoretical and experi-
mental spectra for vibrational absorption is as important as matching the corresponding
VCD spectra.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/sym16020133/s1, Figure S1: conformers for diastereomer 1 at the
B3PW91/6-311G(3df,2pd)/PCM level; Figure S2: conformers for diastereomer 2 at the B3PW91/6-
311G(3df,2pd)/PCM level.
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