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Abstract: In parametric statistical modeling, it is essential to create generalizations of current statistical
distributions that are more flexible when modeling actual data sets. Therefore, this study introduces a
new generalized lifetime model named the odd Weibull Inverse Gompertz distribution (OWIG). The
OWIG is derived by combining the odd Weibull family of distributions with the inverse Gompertz
distribution. Essential statistical properties are discussed, including reliability functions, moments,
Rényi entropy, and order statistics. The proposed OWIG is particularly significant as its hazard
rate functions exhibit various monotonic and nonmonotonic shapes. This enables OWIG to model
different hazard behaviors more commonly observed in natural phenomena. OWIG’s parameters are
estimated and its flexibility in predicting unique symmetric and asymmetric patterns is shown by
analyzing real-world applications from psychology, environmental, and medical sciences. The results
demonstrate that the proposed OWIG is an excellent candidate as it provides the most accurate fits to
the data compared with some competing models.

Keywords: odd Weibull inverse Gompertz distribution; odd generalized Weibull generator; inverse
Gompertz distribution; Rényi entropy

1. Introduction

Many real-world problems do not fit the well-known probability models, despite the
availability of well-known statistical models. Therefore, it is essential to develop probability
models that more accurately capture the behavior of certain real-world phenomena.

Recently, generated families of distributions provide the potential for modeling real
data with great flexibility. In addition to improving their applicability to real-life phe-
nomena, adding new parameters to established distributions improves their ability to
characterize tail shapes more accurately. Previous studies using novel approaches have
generated several distributions and families of distributions. These include the beta-G fam-
ily by [1], Kumaraswamy-G family by [2], Weibull-G (WG) by [3], exponentiated Weibull-G
by [4], and the more general T-X family introduced by [5], among many others.

Here, we concentrate on the WG family in [3], in which the cumulative distribution
function (cdf) and the probability density function (pdf) are, respectively, obtained using
the T-X method as follows:

FWG(x) =
∫ G(x)

1−G(x)

0
λαtα−1e−λt dt = 1− e−λ

(
G(x)

1−G(x)

)α

, α, λ > 0, (1)

fWG(x) = λαg(x)
G(x)α−1

[1− G(x)]α+1 e−λ
(

G(x)
1−G(x)

)α

, α, λ > 0, (2)

where G(x) and g(x) are the cdf and pdf of any continuous distribution, respectively. The
Weibull generator’s extra parameters are sought as a way to generate more flexible distri-
butions. The WG family provides various hazard rate function (hrf) shape characteristics
and a variety of lifetime data types can be evaluated using it. Several studies have used the
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Weibull generator to introduce new distributions such as the Weibull Rayleigh [6], Weibull
Fréchet [7], and odd Weibull inverse Topp–Leone [8].

The Gompertz distribution (GD), named after Benjamin Gompertz, has an expo-
nentially growing failure rate [9,10]. Demographers and actuaries frequently use GD to
represent the distribution of adult lifespans [11,12]. Also, GD is used to analyze survival
data in several scientific disciplines, including biology, computer programming, marketing,
network theory, engineering, behavioral sciences, and gerontology [13–19].

Unfortunately, GD’s increasing failure rate decreased its flexibility and ability to
describe numerous occurrences in various domains. To compensate for these limits, a mod-
ified variant of GD with an upside-down bathtub shape hrf, called the inverse Gompertz
distribution (IG), is introduced by [20]. The cdf and pdf of the IG distribution are expressed,
respectively, as

GIG(x) = exp
[
− a

β

(
e

β
x − 1

)]
, x > 0, a, β > 0, (3)

gIG(x) =
ae

β
x

x2 exp
[
− a

β

(
e

β
x − 1

)]
, x > 0, a, β > 0. (4)

In recent years, some generalizations of the IG distribution have been introduced to
increase its flexibility. For example, the Kumaraswamy inverse Gompertz [21], exponenti-
ated generalized inverted Gompertz [22], extended inverse Gompertz [23], and inverse
power Gompertz [24].

The primary goal of this research is to investigate a new lifetime distribution called
the Odd Weibull Inverse Gompertz distribution (OWIG), which is based on the Weibull
generator and IG distribution. Including additional parameters will help with the IG
distribution’s inability to fit real-world data that showed non-monotone failure rates.
Therefore, the motivation for introducing OWIG distribution arises from the need to

• Increase IG’s flexibility by introducing new generalizations.
• Add greater versatility for modeling real-world data in numerous fields.
• Modeling different forms of hrf, which will help provide a “more effective fit” in many

practical scenarios.

This article is outlined as follows: Sections 2 and 3 introduce OWIG distribution and
drive some of its theoretical features, with a focus on those that could be broadly significant
in probability and statistics. To estimate OWIG’s parameters, the maximum likelihood (ML)
technique is used in Section 4, and the performance of the estimators is examined with
simulation studies in Section 5. The effectiveness of the OWIG distribution in comparison
with certain competing distributions is demonstrated in Section 6 using real data sets from
various fields. Finally, some concluding remarks are presented in Section 7.

2. Odd Weibull Inverse Gompertz Distribution

The cdf of OWIG can be obtained by replacing the G(x) in (1) by (4) as follows:

F(x) = 1− exp

−λ

e
a
β

(
e

β
x −1

)
− 1

−α, x > 0, α, λ, a, β > 0. (5)

The corresponding pdf of OWIG is obtained by replacing G(x) and g(x) in (2) by (3) and
(4), as

f (x) =
aλαe

β
x

x2

e
− a

β

(
e

β
x −1

)α1− e
− a

β

(
e

β
x −1

)−α−1

exp

−λ

e
a
β

(
e

β
x −1

)
− 1

−α. (6)
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The Survival, S(x), and hrf of OWIG are expressed as

S(x) = exp

−λ

e
a
β

(
e

β
x −1

)
− 1

−α, (7)

h(x) =
aλα

x2 e
β
x

e
− a

β

(
e

β
x −1

)α1− e
− a

β

(
e

β
x −1

)−α−1

. (8)

Figures 1 and 2 show the various forms of OWIG’s density and hrf at some values of the
parameters. The pdf of OWIG in Figure 1 shows left-skewed, symmetrical, asymmetrical,
and J-shaped densities. In addition, OWIG’s hrf is attractive, as seen in Figure 2 as it
exhibits a wide range of asymmetrical forms, including increasing, bath-tab, upside down
bath-tab, decreasing, and reversed J-shapes. As a result, OWIG may be deemed to be a
suitable model for fitting a wide range of lifetime data in practical applications.

Figure 1. The plots for the OWIG pdf for some certain values.

Figure 2. OWIG’s hrf plots at some selected values.
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3. Statistical Properties of the OWIG

This section investigates some essential statistical properties of OWIG.

3.1. Useful Expansions for OWIG’s Density

This subsection provides expansions for OWIG’s density provided in Equation (6) by
first considering the following expansion, defined as

e−x =
∞

∑
i=0

(−1)i

i!
xi. (9)

Then, the pdf of OWIG will become

f (x) =
aαe

β
x

x2

∞

∑
s1=0

(−1)s1

s1!
λs1+1

e
− a

β

(
e

β
x −1

)α(1+s1)
1− e

− a
β

(
e

β
x −1

)−(αs1+α+1)

. (10)

The negative binomial series formula is defined by

(1− z)−q =
∞

∑
s=0

Γ(q + s)
s!Γ(q)

zs. (11)

Employing (11), OWIG’s pdf in Equation (10) is rewritten as

f (x) =
aαe

β
x

x2

∞

∑
s1,s2=0

(−1)s1 Γ(α(s1 + 1) + s2 + 1)
s1!s2!Γ(α(s1 + 1) + 1)

λs1+1

e
− a

β

(
e

β
x −1

)α(1+s1)+s2

.

Moreover, applying (9), then

f (x) =
∞

∑
s1,s2,s3=0

(−1)s1+s3 Γ(α(s1 + 1) + s2 + 1)αas3+1

s1!s2!s3!Γ(α(s1 + 1) + 1)βs3 x2

(
e

β
x

)s3+1
λs1+1(α(1 + s1) + s2)

s3
(

1− e−
β
x

)s3
.

Additionally, by employing both (9) and (11), the pdf of OWIG is reduced to

f (x) =
s3

∑
s5=0

ηs5

βs4−s3

xs4+2 e−
s5β

x , (12)

where

ηs5 =
∞

∑
s1,s2,s3,s4=0

(−1)s1+s3+s5 Γ(α(s1 + 1) + s2 + 1)αλas1+1as3+1

s1!s2!s4!s5!(s3 − s5)!Γ(α(s1 + 1) + 1)
(s3 + 1)s4(α(1 + s1) + s2)

s3 . (13)

3.2. Quantile Function

The quantile function , QN(p), of OWIG is expressed as

QN(p) =
β

log
[

1 + β
a log

(
1 +

(
− log(1−p)

λ

)−1/α
)] , 0 < p < 1. (14)

Therefore, OWIG’s median can be obtained as

Median = x(0.50) =
β

log
[

1 + β
a log

(
1 +

(
− log(0.5)

λ

)−1/α
)] .
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Hence, the 25th and 75th percentiles of OWIG are obtained by replacing p by (0.25, 0.75),
respectively, in (14) .

3.3. The Galton Skewness and Moors Kurtosis

The Galton skewness (GS) by [25] and the Moors kurtosis (MK) by [26] measures can
be obtained for OWIG using (14) as follows:

GS =
QN( 6

8 )− 2QN( 4
8 ) + QN( 2

8 )

QN( 6
8 )−QN( 2

8 )
, (15)

MK =
(QN( 7

8 )−QN( 5
8 )) + (QN( 3

8 )−QN( 1
8 ))

(QN( 6
8 )−QN( 2

8 ))
. (16)

3.4. Moments

If X has an OWIG with density (12), then the rth moment of X is provided by

E(xr) =
∫ ∞

0
xr f (x)dx =

s3

∑
s5=0

ηs5 βs4−s3

∫ ∞

0
xr−s4−2 e−

s5β
x dx, (17)

where ηs5 is provided by (13). Taking u = s5β
x , limits change from ∞ to 0, then simplifying,

we obtain

E(xr) =
s3

∑
s5=0

ηs5 sr−s4−1
5 βr−s3−1

∫ ∞

0
us4−re−u du.

Thus, the rth moment is expressed as

µr = E(xr) =
s3

∑
s5=0

ηs5 sr−s4−1
5 βr−s3−1 Γ

(
s4 − r + 1

)
, r < s4 + 1. (18)

Therefore, the mean of OWIG is provided by

µ = E(x) =
s3

∑
s5=0

ηs5

ss4
5 βs3

Γ

(
s4

)
. (19)

3.5. Moment Generating Function

The OWIG’s moment-generating function (MGF) is obtained as

MGF(t) = E(etx) =
∞

∑
r=0

tr

r!
µr = αβ

∞

∑
r=0

s3

∑
s5=0

tr

r!
ηs5 sr−s4−1

5 βr−s3−1 Γ

(
s4 − r + 1

)
, (20)

where ηs5 is given by (13).

3.6. Characteristic Function

OWIG’s characteristic function is obtained as follows:

φx(t) =E(eitx) = αβ
∞

∑
r=0

s3

∑
s5=0

(it)r

r!
ηs5 sr−s4−1

5 βr−s3−1 Γ

(
s4 − r + 1

)
, (21)

where ηs5 is provided by (13).

3.7. Rényi Entropy

Entropies are measures of the variability or uncertainty of a R.V.X. The Rényi entropy,
denoted by Iν(X), is formulated as
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Iν(X) =
1

1− ν
log
(∫ ∞

0
f (x)νdx

)
; ν > 0, ν 6= 1.

Therefore, using the pdf of OWIG in (6), f (x)ν is expressed as

f ν(x) =

(
aλαe

β
x

x2

)ν
e
− a

β

(
e

β
x −1

)αν


e

−λ

 e
− a

β

(
e

β
x −1

)

1−e
− a

β

(
e

β
x −1

)


α


ν

1− e
− a

β

(
e

β
x −1

)ν(−α−1)

.

Applying similar concepts in Section 3.1 and using both (11) and (9), then

f ν(x) =
s3

∑
s5=0

η∗s5

βs4−s3

xs4+2ν
e−

s5β
x ,

where

η∗s5
= αν

∞

∑
s1,s2,s3,s4=0

(−1)s1+s3+s5 Γ(α(s1 + ν) + s2 + ν)λs1+νas3+ννs1

s1!s2!s4!s5!(s3 − s5)!Γ(α(s1 + ν) + ν)
(s3 + ν)s4(α(ν + s1) + s2)

s3 .

By setting u = s5β
x , the Rényi entropy of the OWIG, is provided by

Iν(X) =
1

1− ν
log

[
s3

∑
s5=0

η∗s5
s1−s4−2ν

5 β1−s3−2ν Γ

(
s4 + 2ν− 1

)]
.

3.8. Order Statistics

Suppose X1, X2, . . . , Xn is a random sample (R.S.) from OWIG and Xi:n is the ith order
statistics. Therefore, the pdf, fi:n(x), of the ith order statistics is

fi:n(x) =
n!

(i− 1)!(n− i)!
f (x)[F(x)]i−1[1− F(x)]n−i. (22)

Applying the expansion (11) to (22), then

fi:n(x) =
n!

(i− 1)!(n− i)!
f (x)

∞

∑
k=0

(−1)k
(

n− i
k

)
[F(x)]k+i−1. (23)

Substituting (5) into (23), fi:n(x) will be

fi:n(x) =
n! f (x)

(i− 1)!(n− i)!

∞

∑
k=0

(−1)k
(

n− i
k

)1− exp

−λ

e
a
β

(
e

β
x −1

)
− 1

−αk+i−1

,

where f(x) is the OWIG’s pdf, provided by (6).
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4. ML Estimation

Let x1, x2, . . . , xn be am R.S. from OWIG. The log-likelihood (`) for Θ = (α, λ, a, β), can
be written as follows

`(Θ) =n ln(αλa)− 2
n

∑
i=1

ln(xi) + β
n

∑
i=1

1
xi
− αa

β

n

∑
i=1

(
e

β
xi − 1

)

− λ
n

∑
i=1

 e
− a

β

(
e

β
xi −1

)

1− e
− a

β

(
e

β
xi −1

)


α

− (α + 1)
n

∑
i=1

ln

1− e
− a

β

(
e

β
xi −1

).

(24)

Then, the parameters’ ML estimates (MLEs) can be obtained via maximizing (24). That
is, finding the partial derivatives of (24) with respect to α, λ, a, and β, respectively, will
result in the following

∂`

∂λ
=

n
λ
−

n

∑
i=1

 e
− a

β

(
e

β
xi −1

)

1− e
− a

β

(
e

β
xi −1

)


α

, (25)

∂`

∂α
=

n
α
− a

β

n

∑
i=1

(
e

β
xi − 1

)
+

aλ

β

n

∑
i=1



(
e

β
xi − 1

)
e−

aα

e
β
xi −1


β1− e

− a
β

(
e

β
xi −1

)
α


(26)

+ λ
n

∑
i=1



ln

1− e
− a

β

(
e

β
xi −1

) e−
aα

e
β
xi −1


β

1− e
− a

β

(
e

β
xi −1

)
α


−

n

∑
i=1

ln

1− e
− a

β

(
e

β
xi −1

), (27)

∂`

∂a
=

n
a
− α

β

n

∑
i=1

(
e

β
xi − 1

)
+

αλ

β

n

∑
i=1

(e
β
xi − 1

)1− e
− a

β

(
e

β
xi −1

)
−α−1

e
− a(α+1)

β

(
e

β
xi −1

)

+
αλ

β

n

∑
i=1

(
e

β
xi − 1

)
e
− aα

β

(
e

β
xi −1

)

1− e
− a

β

(
e

β
xi −1

)
α +

(α + 1)
β

n

∑
i=1

(
e

β
xi − 1

)
e
−a
β

(
e

β
xi −1

)

1− e
− a

β

(
e

β
xi −1

)
,

(28)
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∂`

∂β
=

n

∑
i=1

1
xi
− aα

β

n

∑
i=1

e
β
xi

xi
+

aα

β2

n

∑
i=1

(
e

β
xi − 1

)
− λ

n

∑
i=1



(
aα
β2

(
e

b
xi − 1

)
− aα

βxi
e

β
xi

)
e
− aα

β

(
e

β
xi −1

)

1− e
− a

β

(
e

β
xi −1

)
α



− αλ
n

∑
i=1

(
a

β2

(
e

β
xi − 1

)
− a

βxi
e

β
xi

)
e
− a(α+1)

β

(
e

β
xi −1

)1− e
− a

β

(
e

β
xi −1

)
−α−1

− (α + 1)
n

∑
i=1

(
a

β2

(
e

β
xi − 1

)
− a

βxi
e

β
xi

)
e
− a

β

(
e

β
xi −1

)

1− e
− a

β

(
e

β
xi −1

)
.

(29)

The MLE for each parameter cannot be calculated directly from Equations (25)–(29).
Therefore, optimization techniques such as the Newton–Rapshon algorithm in “R software
version 4.3.2” can be utilized to obtain α̂, λ̂, â, β̂.

5. Simulation Studies

A Monte Carlo simulation is conducted to illustrate the performance of MLE of the
OWIG parameters based on their mean square error (MSE) and root mean square error
(RMSE) using the following expression:

MSE = var(θ̂) + [Bias(θ̂)]2 =
1
N

n

∑
i=1

(θ̂−θtr)
2

where, Bias = 1
N ∑n

i=1
(
θ̂ − θtr

)
RMSE =

√
MSE =

√
1
N

n

∑
i=1

(θ̂ − θtr)2

The simulation results are conducted via R program by generating 1000 samples from
OWIG using the quantile function provided in Equation (14). Also, by using different
sample sizes when n = 50, 100, 200, and 500 and several values of true parameters are
obtained, as follows:

Case I: α = 0.7, a = 0.5, β = 0.2, λ = 0.2
Case II: α = 0.9, a = 1.1, β = 0.35, λ = 1.1
Case III: α = 2.0, a = 1.5, β = 4.0, λ = 0.1
Case IV: α = 2.0, a = 0.5, β = 1.2, λ = 0.1
It can be observed from Tables 1 and 2 that MSE and RMSE decrease when the sample

size n increases. In addition, when the sample size n increases, the estimates approach the
true values of the parameters.

Table 1. Simulation study: Parameter estimates, MSE, and RMSE for case I and case II.

Sample Size Parameter
Case I Case II

Estimate MSE RMSE Estimate MSE RMSE

n = 50

α 1.9142 0.3997 0.6322 0.8690 0.0586 0.2421
a 0.4209 0.6975 0.8352 1.0842 3.5263 1.8778
β 0.6130 0.3843 0.6199 0.9822 1.0892 1.0437
λ 0.1735 0.0621 0.2493 1.0883 2.8870 1.6991
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Table 1. Cont.

Sample Size Parameter
Case I Case II

Estimate MSE RMSE Estimate MSE RMSE

n = 100

α 0.6880 0.0049 0.0702 0.8745 0.0298 0.1728
a 0.4195 0.3496 0.5913 1.0149 2.2070 1.4856
β 0.4756 0.1924 0.4387 0.8286 0.6433 0.8021
λ 0.1698 0.0360 0.1896 1.0241 1.7828 1.3352

n = 200

α 0.6923 0.0024 0.0494 0.8889 0.0156 0.1248
a 0.4258 0.2052 0.4530 0.9865 0.9415 0.9703
β 0.4011 0.1276 0.3572 0.6753 0.4045 0.6360
λ 0.1714 0.0231 0.1521 1.0205 1.0337 1.0167

n = 500

α 0.6976 0.0009 0.0307 0.8956 0.0076 0.0872
a 0.4216 0.1029 0.3208 1.0151 0.4463 0.6680
β 0.3288 0.0720 0.2684 0.5313 0.2020 0.4494
λ 0.1704 0.0118 0.1088 1.0395 0.5193 0.7206

Table 2. Simulation study: Parameter estimates, MSE, and RMSE for case III and case IV.

Sample Size Parameter
Case III Case IV

Estimate MSE RMSE Estimate MSE RMSE

n = 50

α 1.9452 0.4048 0.6363 1.8989 0.3381 0.5814
a 1.5665 5.2237 2.2855 0.4679 0.2520 0.5020
β 5.8516 27.9653 5.2882 1.9143 3.2040 1.7900
λ 0.3557 3.1456 1.7736 0.2428 1.0497 1.0245

n = 100

α 1.9801 0.1765 0.4202 1.9668 0.1699 0.4122
a 1.4780 2.7060 1.6450 0.5088 0.2192 0.4682
β 4.9706 11.2436 3.3532 1.5100 1.1033 1.0504
λ 0.2225 1.2119 1.1009 0.2230 0.5908 0.7686

n = 200

α 1.9557 0.0829 0.2879 1.9545 0.0855 0.2925
a 1.5413 1.1824 1.0874 0.5213 0.1734 0.4164
β 4.6192 5.2342 2.2878 1.4016 0.5594 0.7479
λ 0.1880 0.2274 0.4768 0.2164 0.4497 0.6706

n = 500

α 1.9712 0.0323 0.1796 1.9688 0.0326 0.1805
a 1.5281 0.7382 0.8592 0.5113 0.0892 0.2987
β 4.3456 2.2659 1.5053 1.3180 0.2617 0.5115
λ 0.1547 0.0946 0.3076 0.1546 0.0738 0.2717

6. Applications

The efficacy of OWIG is investigated by examining three data sets from different
disciplines. The data are listed as follows:

Data 1: Pre-schoolers data
The following are the General Rating of Affective Symptoms for Preschoolers (GRASP)

scores, which indicate how children’s emotional and behavioral issues are measured
(frequency in parentheses) [27]:

19 (16) 20 (15) 21 (14) 22 (9) 23 (12) 24 (10) 25 (6) 26 (9) 27 (8) 28 (5) 29 (6)
30 (4) 31 (3) 32 (4) 33 34 35 (4) 36 (2) 37 (2) 39 42 44

Data 2: Precipitation data
The following is the precipitation data, which represents the annual maximum precip-

itation (inches) in Fort Collins, Colorado, for one rain gauge (1900–1999) [28]:
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239 232 434 85 302 174 170 121 193 168 148 116 132
132 144 183 223 96 298 97 116 146 84 230 138 170
117 115 132 125 156 124 189 193 71 176 105 93 354
60 151 160 219 142 117 87 223 215 108 354 213 306
169 184 71 98 96 218 176 121 161 321 102 269 98
271 95 212 151 136 240 162 71 110 285 215 103 443
185 199 115 134 297 187 203 146 94 129 162 112 348
95 249 103 181 152 135 463 183 241

Data 3: Survival times of cancer patients
The survival rates for 44 people with head and neck cancer are listed below. Chemother-

apy and radiation (RT+CT) are used to treat patients [28]:

12.20 23.56 23.74 25.87 31.98 37 41.35 47.38 55.46 58.36 63.47 68.46
78.26 74.47 81.43 84 92 94 110 112 119 127 130 133
140 146 155 159 173 179 194 195 209 249 281 319
339 432 469 519 633 725 817 1776

The appropriateness of the three data sets for OWIG is evaluated by comparing its fit
to the following distributions:

• The Weibull Inverse Gompertz (WIG) using the Weibull-G family in [5], where the G
is represented by the IG distribution

F(x) = 1− exp
[
−λ−α

(
−log

(
1− exp

(
− a

β

(
e

β
x − 1

))))α]
.

• The generalized inverse Gompertz (GIG) by [23]

F(x) = 1−
[

1− exp
(
− a

β

(
e

β
x − 1

))]α

.

• The inverse power Gompertz (PIG) by [24]

F(x) = exp
(
− a

β

(
e

β
xα − 1

))
.

The performance of OWIG is assessed using the goodness of fit criteria (GoF), which
include the −`, Akaike information criterion (AIC), corrected AIC (CAIC), Bayesian infor-
mation criterion (BIC), Kramér-von Mises (W*), Anderson–Darling (AD*), and Kolmog-
orov–Smirnov (KS) test statistics with its corresponding p-value. In general, the model with
the lowest AIC, CAIC, BIC, and KS values with the highest p-value will provide a better fit
for the data.

Tables 3–5 present the MLEs, as well as the GoF criteria of OWIG and the competing
distributions for all datasets. Furthermore, the estimated pdf and cdf of OWIG and rival
distributions are shown in Figures 3–5.

Table 3. MLEs and GoF measures for GRASP data.

Distributions OWIG WIG GIG PIG IG

Estimates λ̂ = 4.5623 λ̂ = 0.1231
α̂ = 0.4747 α̂ = 0.9684 α̂ = 1.5841 α̂ = 5.2337
â = 0.0062 â = 0.9731 â = 0.0532 â = 3.9800 â = 0.0101

b̂ = 10.9913 b̂ = 3.3355 b̂ = 7.2699 b̂ = 2.8420 b̂ = 9.4218
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Table 3. Cont.

Distributions OWIG WIG GIG PIG IG

−` −15.4156 −22.5233 −21.6541 −18.5220 −21.8509
AIC 38.8313 53.0465 49.3083 43.0441 47.7019

CAIC 44.6270 58.8422 53.6551 47.3908 50.5998
BIC 50.4227 64.6379 58.0019 51.7376 53.4976

W* 0.1231 0.2307 0.2092 0.2141 0.2177
AD* 1.0045 1.9120 1.5296 1.5319 1.6097
KS 0.0886 0.0891 0.0991 0.0945 0.0973

p-value 0.2428 0.2384 0.1385 0.1821 0.1581

Figure 3. Estimated cdfs and pdfs for GRASP data.

Table 4. MLEs and GoF measures for precipitation data.

Distributions OWIG WIG GIG PIG IG

Estimates λ̂ = 0.9241 λ̂ = 1.9389
α̂ = 1.0991 α̂ = 4.3919 α̂ = 0.8167 α̂ = 0.2891
â = 79.9890 â = 26.8193 â = 54.4072 â = 0.0071 â = 40.7834

b̂ = 141.2530 b̂ = 31.4120 b̂ = 16.0385 b̂ = 34.3842 b̂ = 238.2838

−` −564.6826 −564.8341 −641.5151 −572.47 −579.5334
AIC 1137.365 1139.994 1289.030 1150.940 1163.067

CAIC 1142.575 1147.745 1292.938 1154.848 1165.672
BIC 1147.786 1152.955 1296.846 1158.755 1168.277

W* 0.0156 0.0465 4.3555 0.1391 0.3240
AD* 0.1524 0.3555 21.4890 1.1192 2.4481
KS 0.0407 0.0551 0.3884 0.0764 0.1215

p-value 0.9964 0.8714 1.559 × 10−13 0.6022 0.1041



Symmetry 2024, 16, 197 12 of 14

Figure 4. Estimated cdfs and pdfs for precipitation data.

Figure 5. Estimated cdfs and pdfs for cancer data.
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Table 5. MLEs and GoF measures for cancer data.

Distributions OWIG WIG GIG PIG IG

Estimates λ̂ = 0.0055 λ̂ = 10.5667
α̂ = 0.7541 α̂ = 14.9225 α̂ = 0.6323 α̂ = 0.6977
â = 0.1596 â = 0.0073 â = 30.5926 â = 15.8997 â = 46.3294

b̂ = 80.7622 b̂ = 3.4091 b̂ = 8.4041 b̂ = 8.2868 b̂ = 9.8322

−` −277.836 −289.9746 −286.0049 −282.6561 −283.3979
AIC 563.6720 587.9493 578.0097 571.3122 570.7958

CAIC 567.2403 591.5176 580.686 573.9885 572.5800
BIC 570.8087 595.0860 583.3623 576.6648 574.3642

W* 0.0432 1.4577 0.6158 0.1885 0.8875
AD* 0.2655 7.9456 3.1290 1.2207 4.0556
KS 0.0908 0.2938 0.2156 0.1195 0.2415

p-value 0.8284 0.0007 0.0282 0.5167 0.0096

Concerning Tables 3–5, OWIG has the largest p-value and the lowest values of GOF
criteria. This suggests that OWIG provides better fits for all three applications when
compared with the rival distributions. Figures 3–5 also clearly show that OWIG matches
the histogram more closely than the other competitive distributions.

7. Conclusions

This work introduced the OWIG distribution derived by considering the Weibull
generator with the IG distribution. This is regarded as a new generalization of the IG
distribution. The proposed OWIG is more versatile as its density and hrf present attractive
shapes. The OWIG’s hrf includes increasing, bath-tab, upside down bath-tab, decreasing,
reversed J-shape, and unimodal shapes, which are suitable to fit an extensive variety of real
data behaviors. Some essential statistical properties of OWIG are obtained. The well-known
ML approach is utilized to estimate the parameters of OWIG, and the performance of the
ML estimators is examined using Monte Carlo simulation studies. The simulation results
confirmed that the ML estimation approach functioned effectively for estimating the OWIG
parameters. Three real data sets from psychology, environmental, and medical sciences
are analyzed to determine the OWIG’s modeling capability and efficiency, demonstrating
that it can fit data more accurately than WIG, GIG, PIG, and IG. OWIG has the highest
p-value of KS statistics and the lowest GoF criterion for the three data. Compared with
many lifetime models, the proposed OWIG will be capable of providing a superior fit for
many lifetime and reliability applications.
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