
Citation: Wang, S.; Hu, A.; Li, T.; Lin,

S. Program Behavior Dynamic Trust

Measurement and Evaluation Based

on Data Analysis. Symmetry 2024, 16,

249. https://doi.org/10.3390/

sym16020249

Academic Editor: Michel Planat

Received: 16 January 2024

Revised: 8 February 2024

Accepted: 15 February 2024

Published: 17 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Program Behavior Dynamic Trust Measurement and Evaluation
Based on Data Analysis
Shuai Wang *, Aiqun Hu, Tao Li and Shaofan Lin

School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China; aqhu@seu.edu.cn (A.H.);
lit@seu.edu.cn (T.L.); linshaofan@seu.edu.cn (S.L.)
* Correspondence: 230209303@seu.edu.cn

Abstract: Industrial control terminals play an important role in industrial control scenarios. Due to
the special nature of industrial control networks, industrial control terminal systems are vulnerable
to malicious attacks, which can greatly threaten the stability and security of industrial production
environments. Traditional security protection methods for industrial control terminals have coarse
detection granularity, and are unable to effectively detect and prevent attacks, lacking real-time
responsiveness to attack events. Therefore, this paper proposes a real-time dynamic credibility
evaluation mechanism based on program behavior, which integrates the matching and symmetry
ideas of credibility evaluation. By conducting a real-time dynamic credibility evaluation of function
call sequences and system call sequences during program execution, the credibility of industrial
control terminal application program behavior can be judged. To solve the problem that the system
calls generated during program execution are unstable and difficult to measure, this paper proposes
a partition-based dynamic credibility evaluation method, dividing program behavior during runtime
into function call behavior and system call behavior within function intervals. For function call
behavior, a sliding window-based function call sequence benchmark library construction method
is proposed, which matches and evaluates real-time measurement results based on the benchmark
library, thereby achieving symmetry between the benchmark library and the measured data. For
system call behavior, a maximum entropy system call model is constructed, which is used to evaluate
the credibility of system call sequences. Experiment results demonstrate that our method performs
better in both detection success rate and detection speed compared to the existing methods.

Keywords: dynamic credibility; dynamic metrics; program behavior analysis; program structure
graph analysis; behavior monitoring

1. Introduction

With the continuous improvement of industrial automation, industrial control systems
have become an indispensable key infrastructure in various industries. Compared with
traditional IT systems, industrial control systems are more concerned with real-time perfor-
mance, reliability, and security. In industrial control systems, industrial control terminals
are important components that typically involve devices such as sensors, actuators, and
scheduling instruments, which can directly control production lines or other industrial pro-
cesses. While the widespread application of industrial control systems has brought many
security issues, recent security threat reports [1] show a significant increase in software
vulnerabilities over the past decade, with most information security vulnerabilities coming
from endpoint devices such as mobile devices and IoT smart devices that are vulnerable to
attacks. These attacks can not only lead to production line paralysis but also disrupt normal
industrial production, causing economic and human losses [2]. Therefore, the security
threats to industrial control terminals have received high attention.

The common attacks on industrial control terminals are code reuse attacks and mimicry
attacks. Code reuse attacks achieve the attack goal by directing the program control flow

Symmetry 2024, 16, 249. https://doi.org/10.3390/sym16020249 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16020249
https://doi.org/10.3390/sym16020249
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym16020249
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16020249?type=check_update&version=1

Symmetry 2024, 16, 249 2 of 19

to special code snippets, which have strong destructive power. To detect code reuse
attacks, techniques such as stack randomization, code signing, and address space layout
randomization can be used, but these techniques produce higher latency, so they are not
highly applicable in industrial control scenarios.

Mimicry attacks [3] refer to attackers using legitimate execution call sequences to
achieve attack goals by modifying parameters within the called function. Techniques such
as parameter discovery [4] or data flow analysis [5] can be used to detect these attacks.
However, it is difficult to ensure full coverage of all input parameters in the application
program, and the parameter discovery process is tedious and time-consuming. Data
flow analysis detection produces a large number of false positives when dealing with
exceptional situations and also incurs high system load and operating costs. Therefore,
both technologies have lower accuracy in detecting mimicry attacks.

Based on the problems with current attack detection techniques for industrial con-
trol terminals, there is a requirement to improve the running safety of industrial control
terminal applications from both the accuracy and real-time aspects. Static analysis [6] is
based on the source code of the program itself and can obtain accurate information. Dy-
namic measurement [7] can monitor and statistically analyze specific metric objects during
program execution, avoiding the resource consumption and time cost associated with
analyzing the entire program. Therefore, this paper combines static analysis and dynamic
measurement, which divides program execution behavior into function call behavior and
system call behavior, obtains a complete and lightweight function call sequence through
static analysis, and establishes a benchmark library. We design a sliding window execu-
tion sequence measurement method and a maximum entropy system call model based
on dynamic measurement to measure program behavior, which matches and evaluates
real-time measurement results based on a benchmark library. Our proposed mechanism
can achieve symmetry between the benchmark library and the measured data, and improve
the accuracy and real-time performance of dynamic credibility evaluation.

In summary, this paper conducts research based on program execution flow to address
the issues of code reuse attacks and mimicry attacks on industrial control terminals. We
design a real-time dynamic credibility measurement evaluation mechanism that combines
static analysis and dynamic measurement techniques. This mechanism is a novel and
effective industrial control terminal security detection technology with high detection
accuracy and real-time performance. Its application will help to ensure the security of
industrial control terminals and further improve the reliability and stability of industrial
automation systems.

The main contributions of this paper are as follows:

1. Constructing a benchmark library for function call sequences based on sliding win-
dows. Traditional industrial control terminal program security protection methods
often use signature- or rule-based detection methods, which have coarse detection
granularity and cannot effectively detect and prevent attacks. We use a sliding win-
dow execution sequence measurement method to measure the sequence of application
layer function calls, and establish a complete lightweight benchmark library based
on the measurement values. The benchmark library lays the foundation for the sub-
sequent implementation of the dynamic credibility evaluation of application layer
function call sequences.

2. Proposing a partition dynamic credibility evaluation mechanism. Traditional indus-
trial control terminal security detection technology usually uses offline scanning for
detection, which lacks real-time performance and cannot respond quickly to attack
events. Meanwhile, the system calls generated during program execution are unsta-
ble and difficult to measure. We propose a dynamic credibility evaluation method
between partitions, which divides runtime program behavior into application layer
function call behavior and system call behavior within function intervals. For the
application layer function call sequence, a trust measurement method based on sliding
window execution sequence is used. The real-time measurement results are evaluated

Symmetry 2024, 16, 249 3 of 19

based on the benchmark library. For the system call sequence within the function
interval, a maximum entropy system call model is constructed and used to evaluate
the credibility of the system call sequence.

In Section 2, we review approaches in the existing literature. In Section 3, we introduce
the mechanism of program behavior trust measurement, including the dynamic credibility
measurement of function call sequence based on sliding windows and the credibility
evaluation for system calls within the interval based on maximum entropy. In Section 4,
we conduct experiments on the method proposed in this article and present the results.
Section 5 concludes the paper.

2. Analysis of the Current State of Research

This article proposes a fine-grained dynamic credibility measurement and evaluation
for industrial control terminal, which requires a trusted behavior measurement analysis
of program behavior. Trusted behavior measurement is the process of analyzing program
execution behavior to determine if the actual behavior matches the expected behavior.
The program behavior integrity measurement framework IMA [8] employs a “load-time
measurement” approach, which uses hash algorithms to verify whether the program code
matches the expected behavior to ensure software behavior integrity. However, this method
can only indicate that the program behavior has not been tampered with before running,
and cannot verify whether the program behavior during running is trustworthy.

Control Flow Integrity (CFI) achieves trusted behavior measurement by restricting
unexpected control flow to unauthorized positions [9]. Many CFI technologies have been
proposed in recent years [10–12], mainly divided into two types: fine-grained and coarse-
grained. Fine-grained CFI, also known as strict type CFI, has high accuracy and effectively
identifies control flow attacks to ensure software behavior integrity while reducing false
positives. However, since fine-grained CFI usually enforces shadow stacks, it results in
significant performance overhead. In order to solve performance issues, some researchers
proposed coarse-grained CFI, also known as loose CFI [13], which has lower performance
overhead, but has been proven to be relatively less secure [14] and has certain limitations
in obtaining application details [15].

Due to the issues of large performance overhead, complex implementation processes,
and poor compatibility in measuring program behavior integrity, CFI cannot meet the
requirements of trusted behavior measurement in industrial control scenarios. Abera
et al. [16] proposed a Control Flow Attestation (C-FLAT) architecture for verifying the
trustworthiness of program behavior on industrial control devices, but this method involves
a great deal of computation and the classification processing of some basic blocks, resulting
in low real-time performance.

Reference [17] creates a software behavior model based on n-gram [18,19], using
fixed-length system call sequences to represent program behavior, and predicting the next
system call sequence by statistically analyzing the frequency of n consecutive system calls.
Since this model does not assume any prior probability distribution, it is sometimes more
applicable than Markov chain and Hidden Markov Models. However, when using n-gram
to create a program behavior model, the program behavior sequence needs to be divided
into multiple sub-sequences of the same length, which is less flexible in the application
environment. The variable-length sequence model (Var-gram) [20] has improved the n-
gram model, but both models represent all system calls, including some low-security system
calls, which increases the time cost of the program trusted behavior measurement process.

Dynamic symbolic execution [21–23] can integrate specific program execution behav-
iors and program symbolic execution behaviors, providing an accurate memory model
and significant effect in detecting memory-related errors. However, symbolic execution
is prone to path explosion problems and lacks scalability [24,25], making it unsuitable for
industrial control scenarios.

Amer E et al. [26] established a behavior model based on API call sequences for the
trusted behavior of API calls in industrial control scenarios, depicting the actual behav-

Symmetry 2024, 16, 249 4 of 19

ior relationship between API functions for devices with more API calls. However, this
model is only applicable to industrial control devices with more API calls and has limited
applicability for devices with fewer API calls.

Based on the characteristics of the program in industrial control devices, this article
divides program behavior into function call behavior and system call behavior by function-
level interval partitioning, and only considers important system calls for system call
behavior, designing a program behavior dynamic trust measurement and evaluation system
with accuracy and real-time performance.

3. Research Content
3.1. Function Call Sequence Trust Measurement Evaluation

Due to the fact that there are fewer and more stable call sequences during program
execution, this paper uses a partial matching method to measure function call sequences.
Traditional measurement methods include one-to-one matching and overall matching. If
one-to-one matching is performed for function call sequences, the time for dynamic trust
measurement will be increased. If the entire function call sequence is to be measured, the
measurement result can only be obtained after the program is executed, which does not
meet the real-time requirements of dynamic trust measurement. Therefore, this paper
uses a sliding window execution sequence measurement method to partially track and
measure the dynamically monitored function call sequence, and compares the real-time
measurement results with the benchmark library to obtain a reliable evaluation result
for the internal function call sequence of the program. The dynamic trust measurement
evaluation process of function call sequences is shown in Figure 1, and func1-func16 is an
example of a sequence of function calls arranged in order.

Symmetry 2024, 16, x FOR PEER REVIEW 4 of 21

prone to path explosion problems and lacks scalability [24,25], making it unsuitable for
industrial control scenarios.

Amer E et al. [26] established a behavior model based on API call sequences for the
trusted behavior of API calls in industrial control scenarios, depicting the actual behavior
relationship between API functions for devices with more API calls. However, this model
is only applicable to industrial control devices with more API calls and has limited ap-
plicability for devices with fewer API calls.

Based on the characteristics of the program in industrial control devices, this article
divides program behavior into function call behavior and system call behavior by func-
tion-level interval partitioning, and only considers important system calls for system call
behavior, designing a program behavior dynamic trust measurement and evaluation sys-
tem with accuracy and real-time performance.

3. Research Content
3.1. Function Call Sequence Trust Measurement Evaluation

Due to the fact that there are fewer and more stable call sequences during program
execution, this paper uses a partial matching method to measure function call sequences.
Traditional measurement methods include one-to-one matching and overall matching. If
one-to-one matching is performed for function call sequences, the time for dynamic trust
measurement will be increased. If the entire function call sequence is to be measured, the
measurement result can only be obtained after the program is executed, which does not
meet the real-time requirements of dynamic trust measurement. Therefore, this paper uses
a sliding window execution sequence measurement method to partially track and meas-
ure the dynamically monitored function call sequence, and compares the real-time meas-
urement results with the benchmark library to obtain a reliable evaluation result for the
internal function call sequence of the program. The dynamic trust measurement evalua-
tion process of function call sequences is shown in Figure 1, and func1-func16 is an exam-
ple of a sequence of function calls arranged in order.

func1 func2 func3 func4 func5 func6 func7 func8 func9 func10 func11 func12 func13 func14 func15 func16

move distance

window size

metric
value 1

detection and comparison

. . .

. . .

. . .

function call sequence

real-time acquisition of
execution flow

metric
value 2

metric
value 3

metric
value 4

metric
value N

baseline
value 1

baseline
value 4

baseline
value 3

baseline
value N

baseline
value 2

Figure 1. Schematic diagram of dynamic trust measurement evaluation process for function call
sequences.

The dynamic trust measurement evaluation requires the use of a benchmark library
as a comparison standard. Therefore, this article first constructs a low-complexity pro-
gram execution flow graph, then traverses the program execution flow graph to obtain a
complete sequence of function calls, and finally establishes a benchmark library through

Figure 1. Schematic diagram of dynamic trust measurement evaluation process for function call se-
quences.

The dynamic trust measurement evaluation requires the use of a benchmark library as
a comparison standard. Therefore, this article first constructs a low-complexity program
execution flow graph, then traverses the program execution flow graph to obtain a complete
sequence of function calls, and finally establishes a benchmark library through the sliding
window execution sequence measurement method. The steps of this process are as follows.

Symmetry 2024, 16, 249 5 of 19

3.1.1. Construction of Function-Level Execution Flow Graph (FEFG)

The function-level execution flow graph focuses on the control and data dependencies
between functions, and is a prerequisite for extracting the sequence of function calls. Its
construction process is shown in Figure 2.

Symmetry 2024, 16, x FOR PEER REVIEW 5 of 21

the sliding window execution sequence measurement method. The steps of this process
are as follows.

3.1.1. Construction of Function-Level Execution Flow Graph (FEFG)
The function-level execution flow graph focuses on the control and data dependen-

cies between functions, and is a prerequisite for extracting the sequence of function calls.
Its construction process is shown in Figure 2.

Figure 2. Construction process of function-level execution flow graph (FEFG).

1. Construction of Abstract Syntax Tree (AST)
Firstly, a lexical analyzer is used to scan the source program, recognize words based

on word formation rules, generate lexemes, and ultimately generate lexical units as out-
put. Next, a syntax analyzer is used to organize and convert the tokens� output by the
lexical analyzer into sequences defined by the target language syntax, and construct to-
kens into hierarchical structures such as syntax analysis trees or abstract syntax trees.
2. Construction of Control Flow Graph (CFG)

A control flow graph expresses the possible flow directions of all basic blocks in a
program, consisting of basic blocks and control flows, where basic blocks are nodes of the
graph and control flows are directed edges of the graph.

Assuming the set of program basic blocks is 𝐵 = 𝑣 , 𝑣 , … , 𝑣 , for each basic block
vi, there are corresponding start instructions Ini and stop instructions Outi. By traversing
the stop instruction of each basic block vi, if the target of the stop instruction is to start the
instruction of basic block vj, a directed line segment is drawn from vi to vj as the control
flow from basic block i to basic block j. After traversing all the basic blocks, the entire CFG
is obtained. The basic blocks with an in-degree of 0 are the entries of the program, and the
basic blocks with an out-degree of 0 are the exits of the program.

The construction algorithm of CFG is shown in Algorithm 1.

Figure 2. Construction process of function-level execution flow graph (FEFG).

1. Construction of Abstract Syntax Tree (AST)

Firstly, a lexical analyzer is used to scan the source program, recognize words based
on word formation rules, generate lexemes, and ultimately generate lexical units as output.
Next, a syntax analyzer is used to organize and convert the tokens’ output by the lexical
analyzer into sequences defined by the target language syntax, and construct tokens into
hierarchical structures such as syntax analysis trees or abstract syntax trees.

2. Construction of Control Flow Graph (CFG)

A control flow graph expresses the possible flow directions of all basic blocks in a
program, consisting of basic blocks and control flows, where basic blocks are nodes of the
graph and control flows are directed edges of the graph.

Assuming the set of program basic blocks is B = {v0, v1, . . . , vn}, for each basic block
vi, there are corresponding start instructions Ini and stop instructions Outi. By traversing
the stop instruction of each basic block vi, if the target of the stop instruction is to start the
instruction of basic block vj, a directed line segment is drawn from vi to vj as the control
flow from basic block i to basic block j. After traversing all the basic blocks, the entire CFG
is obtained. The basic blocks with an in-degree of 0 are the entries of the program, and the
basic blocks with an out-degree of 0 are the exits of the program.

The construction algorithm of CFG is shown in Algorithm 1.

3. Construction of Program Dependency Graph (PDG)

The program dependency graph is obtained from the data dependency graph (DDG)
and the control dependency graph (CDG), where the data dependency graph describes the
constraint relationship between data, while the control dependency graph describes the
constraint relationship of statement execution.

Firstly, Algorithm 2 is used on the basis of CFG to construct a CDG based on the
forward dominance relationship of nodes.

Then, DDG is constructed based on all variables in the program and their relationships.
The construction process is shown in Algorithm 3.

Symmetry 2024, 16, 249 6 of 19

Algorithm 1: Program Control Flow Graph Construction Algorithm

Input: Gast = (V, E, root), program source code
Output: Gcfg = (V, E, entry, exit)
1. def buildCFG(Gast):
2. Initialize Gcfg;
3. for v in Gast:
4. if isConditionNode(v) then
5. branch(v, Gcfg);
6. if isSequentialNode(v) then
7. next(v, Gcfg);
8. if isReturnNode(v) then
9. sign(v, Gcfg);
10. if isJumpNode(v) then
11. target(v, Gcfg);
12. return Gcfg;

Algorithm 2: Control Dependency Graph Construction Algorithm

Input: Gcfg = (V, E, entry,exit)
Output: Gcdg = (V, E, entry)
1. def buildCDG(Gcfg):
2. Initialize Gcdg;
3. for v in Gcfg:
4. for each subsequent node vs of v:
5. if there are no loops on the path from v to vs:
6. add_directed_edges(vs, v, Gcdg);
7. if the path from v to vs contains one or more loops:
8. for the head node vl of innermost loop:
9. add_directed_edges(vl, v, Gcdg);
10. for each dominant subtree vd of v:
11. add_directed_edges(vd, v, Gcdg);
12. return Gcdg;

Algorithm 3: Data Dependency Graph Construction Algorithm

Input: Collection N of variables, constants, functions, and statement blocks
Output: Gddg = (V, E, var)
1. def buildDDG(N):
2. Initialize Gddg

3. for v in N:
4. for each input variable vx of v:
5. if vx not in Gddg:
6. add(vx, Gddg);
7. for all statement nodes vu before v:
8. if the output variable of vu contains vx:
9. add_directed_edges(vu, vx, Gddg);
10. for each output variable vy of v:
11. if vy not in Gddg:
12. add(vy, Gddg);
13. for all statement nodes vw after v:
14. if the input variable of vw contains vy:
15. add_directed_edges(vy, vw, Gddg);
16. return Gddg

Finally, the nodes in the CDG are traversed, which determine the basic relationship
between each statement represented by the nodes. Then, data dependency edges and

Symmetry 2024, 16, 249 7 of 19

control dependency edges are established based on the types of operands in the statement
nodes. Finally, PDG is obtained. The merging process is shown in Algorithm 4.

Algorithm 4: Program Dependency Graph Construction Algorithm

Input: Gcdg = (V, E, entry), Gddg = (V, E, var)
Output: Gpdg = (V, E, entry, exit)
1. def buildPDG(Gcdg, Gddg):
2. Initialize Gpdg;
3. for vB in Gcdg:
4. add(vB);
5. for each statement I in vB:
6. add(I, Gpdg);
7. for each operand O of I:
8. if O is variable:
9. add_data_dependency_edge(O, P, Gpdg);
10. if O is label:
11. add_control_denpendency_edge(O, vB, Gpdg);
12. for the out-edge E of vB:
13. if Q is a conditional branch or loop:
14. add_control_denpendency_edge(vB, O, Gpdg);
15. if Q is an unconditional branch:
16. add_control_denpendency_edge(vB, O, Gpdg);
17. For each successor R of Q and the successor S of vB:
18. add_control_denpendency_edge(R, S, Gpdg);
19. return Gpdg;

4. Construction of Function Level Execution Flow Graph (FEFG)

AST is generated based on functions, so we use AST to extract function calls. Then, the
PDG is combined to increase control and data dependencies between functions. Finally, a
complete low complexity program structure diagram is obtained. The construction process
is shown in Algorithm 5.

Algorithm 5: Function-level Execution Flow Graph Construction Algorithm

Input: Gast-unite = (V, E, root), Gpdg = (V, E, entry,exit)
Output: Gfefg = (V, E, entry, exit)
1. def buildFEFG(Gast-unite, Gpdg):
2. Initialize Gfefg;
3. for func in Gast-unite:
4. Gfefg [func]← set()
5. for func in Gpdg:
6. for each successor succ of func:
7. add_control_dependency_edge(Gfefg, func, succ);
8. for each predecessor pred of func:
9. add_data_dependency_edge(Gfefg, pred, func);
10. return Gfefg;

3.1.2. Construction of Benchmark Library

The construction of a benchmark library relies on the sequence of function calls during
program runtime. In order to determine the order of function calls and parameter transfer
methods, the acquisition of function call sequences requires the static analysis of the
function level execution flow graph (FEFG), and the reachability and data dependency
relationships between functions. Therefore, this article uses depth first search (DFS) [27] to
traverse FEFG and obtain the sequences of function calls.

Symmetry 2024, 16, 249 8 of 19

After obtaining the function call sequences, a sliding window fast measurement
mechanism is used to measure them partially, and the measurement results are stored as
benchmark values in the benchmark library, laying the foundation for the implementation
of dynamic credibility measurement evaluation in the program. The construction process
of the benchmark library is shown in Algorithm 6.

Algorithm 6: Measurement Algorithm for Function Call Sequences Based on Sliding Windows

Input: func_call_seq
Output: hashValue
1. Set window_ size;
2. Set sliding_step;
3. Initialize an empty window list win_ list;
4. Initialize a temporary window temp_ win;
5. for each function func in func_call_seq:
6. while size of temp_win is not equal to window_size:
7. add func to temp_win;
8. add temp_win to win_list;
9. slide temp_win;
10. repeat step7 to step9 until the func_call_ seq is traversed;
11. for each window w in win_list:
12. add hash value of w to hashValue;
13. return hashValue;

3.1.3. Dynamic Credibility Measurement of Function Call Sequence Based on
Sliding Windows

Quick measurements are carried out for each function call subsequence in each sliding
window, and then the measurement results are traversed and matched in the benchmark
library for security evaluation. If the match fails, the program behavior is considered
untrustworthy. The program will be terminated and an error message will be issued. If
the match succeeds, the address where the matching value is located in the benchmark
library is recorded as the base address for subsequent comparison, and the sliding window
continues to move forward. The function call sequence trust measurement evaluation
algorithm is shown in Algorithm 7.

Algorithm 7: Trust Measurement Evaluation Algorithm for Function Call Sequences Based on
Sliding Windows

Input: Benchmark library, real-time measurement value
Output: Evaluation result
1. while the program is running do
2. get the real-time execution flow of function calls;
3. slide window forward;
4. generate metric-object using window;
5. measure each metric-object;
6. match metric-results in the benchmark library;
7. if match failed:
8. terminate the program;
9. return NOT_TRUSTED;
10. get address of metric-results;
11. continue program execution;
12. end while
13. return TRUSTED;

The storage address of the first measurement value in each function call path is used as
the address of that path. During dynamic matching, if the current matching value is found
in an execution path, then the function call sequence within the current window is part of
that execution path. The address where the matching value is located in the benchmark

Symmetry 2024, 16, 249 9 of 19

library is recorded, and used as the base address for subsequent comparison with the
benchmark values that follow along that path. The subsequent function call subsequences
will be compared within the subsequent windows along the path.

3.2. Trust Measurement Evaluation for System Call Sequences

Due to the uncertainty of program execution, a large and variable number of system
call sequences are generated at each time the program runs. If a matching method is used
to measure these system call sequences, a high false positive rate will occur. Therefore, the
uncertainty of program system call sequence behavior needs to be taken into account. Since
the maximum entropy is a probability statistical method used to solve uncertainty problems,
this paper models the behavior of the function interval based on the maximum entropy
principle, and computes the probability of the occurrence of key system call sequences.
Based on the probability distribution, whether a new system call sequence is trustworthy
can be judged, which effectively reduces the false positive rate and improves the accuracy
of measurement.

Therefore, compared with machine learning-related program behavior models, we
propose a maximum entropy-based system call model, which uses the function interval as
the unit of partition to divide the program into intervals and narrow down the range of
program behavior represented by the model. The features within each function interval
are represented independently of each other, which can improve the effectiveness of the
features and the model.

3.2.1. Maximum Entropy Model

Jaynes [28] proposed the maximum entropy theory in 1957, which is based on the
basic principle of establishing a statistical calculation model on known information factors.
By excluding the influence of unknown factors, the most uniform probability distribution
of known facts is obtained, and the deviation is minimized while maintaining uncertainty.
The maximum entropy theory achieves this goal by making optimal inferences about
unknown factors under known conditions, where entropy is used to measure uncertainty,
and maximum entropy corresponds to the prediction model under maximum uncertainty.

In the principle of maximum entropy, it is necessary to first define some characteristic
functions fi(x,y), where x represents the input variable and y represents the output variable.
These characteristic functions can be in any form, such as indicator functions, polynomial
functions, etc.

Then, some constraints need to be given, that is, the expectation EP(fi) of the feature
function fi(x,y) regarding the empirical distribution P(X, Y) is equal to the expectation
EP(fi) of the feature function fi(x,y) regarding the conditional distribution P(Y|X) and
empirical distribution P(X), as shown in Formulas (1)–(3).

EP(fi) = EP(fi) (1)

EP(fi) = ∑
x, y

P(x, y) fi(x, y) (2)

EP(fi) = ∑
x, y

P(x, y)P(y|x) f i(x, y) (3)

Next, the objective function is defined, which is the conditional entropy on the condi-
tional probability distribution P(Y|X), as shown in Formula (4). This objective function
can be understood as maximizing the uncertainty or entropy of the system.

H(P) = −∑
x,y

P(x)P(y|x)logP(y|x) (4)

The solution of the maximum entropy model can be achieved through the Lagrange
Multiplier Method, as shown in Formulas (5) and (6).

Symmetry 2024, 16, 249 10 of 19

L(P, λ) = H(P)−∑
i

λi

(
∑
y

P(y | x) fi(x, y)− E[fi(x, y)]

)
(5)

Then, the derivative of L(P, λ) over P(y|x) can be found, and be made equal to 0, and
then the optimal solution is obtained.

P(y|x) = 1
Z(x)

exp

(
∑

i
λi fi(x, y)

)
(6)

where Z(x) is the normalization constant. The maximum entropy model is not unique;
it depends on the selection of the feature function fi(x,y) and the setting of constraint
conditions. Therefore, in practical applications, it is necessary to make reasonable feature
selection and constraint conditions based on specific problems.

3.2.2. System Call Credibility Measurement Model Based on Maximum Entropy

In this paper, the maximum entropy system call model is applied to the dynamic
credibility measurement evaluation of system calls within the function interval. The main
process is as follows:

(1) Feature extraction. Select appropriate features according to different tasks and re-
quirements, such as call frequency, call time, etc., and convert the original data into
feature vectors.

(2) Model training. Use the maximum entropy model to train the model and obtain a
model with high accuracy and strong generalization ability. Through training, the
probability distribution is obtained.

(3) Prediction and evaluation. Use the existing eigenvectors to predict the results of un-
known data, calculate its probability distribution, and evaluate the safety of the program.

Through the above processes, we design a system call model based on maximum
entropy for system calls within function intervals. The architecture is shown in Figure 3,
which is mainly divided into two parts:

Symmetry 2024, 16, x FOR PEER REVIEW 11 of 21

𝐿(𝑃, 𝜆) = 𝐻(𝑃) − 𝜆 𝑃(𝑦 ∣ 𝑥)𝑓 (𝑥, 𝑦) − 𝐸 𝑓 (𝑥, 𝑦) (5)

Then, the derivative of 𝐿(𝑃, 𝜆) over 𝑃(𝑦|𝑥) can be found, and be made equal to 0,
and then the optimal solution is obtained. 𝑃(𝑦|𝑥) = 1𝑍(𝑥) 𝑒𝑥𝑝 𝜆 𝑓 (𝑥, 𝑦) (6)

where Z(x) is the normalization constant. The maximum entropy model is not unique; it
depends on the selection of the feature function fi(x,y) and the setting of constraint condi-
tions. Therefore, in practical applications, it is necessary to make reasonable feature selec-
tion and constraint conditions based on specific problems.

3.2.2. System Call Credibility Measurement Model Based on Maximum Entropy
In this paper, the maximum entropy system call model is applied to the dynamic

credibility measurement evaluation of system calls within the function interval. The main
process is as follows:
(1) Feature extraction. Select appropriate features according to different tasks and re-

quirements, such as call frequency, call time, etc., and convert the original data into
feature vectors.

(2) Model training. Use the maximum entropy model to train the model and obtain a
model with high accuracy and strong generalization ability. Through training, the
probability distribution is obtained.

(3) Prediction and evaluation. Use the existing eigenvectors to predict the results of un-
known data, calculate its probability distribution, and evaluate the safety of the pro-
gram.
Through the above processes, we design a system call model based on maximum

entropy for system calls within function intervals. The architecture is shown in Figure 3,
which is mainly divided into two parts:

Figure 3. Architecture of interval system call model based on maximum entropy. Figure 3. Architecture of interval system call model based on maximum entropy.

(1) Training sample simplification: It mainly simplifies the training data, divides the
behavior intervals by function, obtains the key system calls and system calls with
high security in the interval, and obtains the training samples of the maximum
entropy model.

Symmetry 2024, 16, 249 11 of 19

(2) Model training: The training system trains the training samples, counts the behavior
probability, extracts the characteristics of the maximum entropy model, establishes
the system call model in the interval based on the maximum entropy, and stores it in
the behavior database.

Based on the above model architecture, this paper proposes an algorithm for construct-
ing a system call model based on maximum entropy. The variables and symbol meanings
used in Algorithm 8 for constructing a maximum entropy model are shown in Table 1.

Table 1. Variable and symbol meanings.

Variables and Symbols Meanings

D training dataset
xi input vector of the i-th sample
yi true output of the i-th sample

fj(x,y)
a specific feature function that represents a feature function that

satisfies the constraint condition hj(y) when the input is x and
classified as y

hj(y) constraint function that represents the value of the j-th feature when
the input is x and classified as y

wj weight of the j-th feature
φ(x,y) feature vector of input vector x and classification y
P(y|x) conditional probability of being classified as y given input x

Z(x) normalization factor used to ensure that the sum of probability values
equals 1

Ep(hj) expected value of feature function hj(y) under the current model
Es(hj) expected value of feature function hj(y) given the training dataset D

λ regularization parameter used to prevent overfitting

Based on the model architecture and the variable and symbol definitions in the above
model, the maximum entropy system call model algorithm is designed according to
Algorithm 8.

Algorithm 8: Construction Algorithm for the Maximum Entropy System Call Model

Input: training dataset D = {(x1, y1), (x2, y2), ..., (xm, ym)}
feature function f (X) =

{
f1(X), f2(X), ..., f j(X)

}
Output: the maximum entropy system call model P(y|x)
1. Set hj(y) and fj(x,y) based on f (X)
2. Initialize w;
3. for each sample s(x, y):
4. φ(x,y)← convert_to_feature_vector(s);
5. for each input x:

6. Z(x)← ∑y exp
[
∑j wjhj(y)

]
;

7. for each input x and its corresponding true value y:
8. H(y|x)←−∑y P(y|x)logP(y|x);
9. Hs(Y)←−∑y∈Y

[
1
m ∑m

i=1 I(yi = y)
]
log
[

1
m ∑m

i=1 I(yi = y)
]
;

10. for each feature function hj(y):
11. Ep(hj)← ∑x,y p(x)P(y|x)hj(y);
12. Es(hj)← ∑x,y∈D hj(y)p(x, y);

13. wj ← wj +
1
λ log

Es(hj)
Ep(hj)

;

14. Exit the iteration when the change in the weight vector is less than the threshold value.

15. P(y|x)← 1
Z(x) exp

[
∑j wjhj(y)

]
;

16. return the model P(y|x);

Symmetry 2024, 16, 249 12 of 19

To determine the conditional probability distribution of the maximum entropy system
call model, the normalization factor, conditional entropy, empirical entropy, and expected
value are required to be determined. The weight parameter λ of the feature function is
then determined using the Improved Iterative Scaling (IIS) method [29]. The weight is
iterated until it is smaller than the set threshold value. Then, the conditional probability
distribution is computed. For each system call sequence, various features are extracted.
After completing the feature extraction, a feature space based on the preprocessed data is
constructed. For the first sequence, the feature space includes the frequency of four system
calls, namely, open, read, write, and close, as well as the time interval and combination
method between adjacent system calls. The model parameters are calculated, and then the
maximum entropy algorithm is used based on the system call model within the interval to
optimize the model parameters.

This article uses the maximum entropy system call sequence model to determine the
credibility of program behavior within a function interval based on the probability of key
system call sequences appearing. When measuring system call behavior within a function
interval, behavior characteristics can be identified and extracted by collecting program
behavior information during runtime. So the feature functions and constraint functions are
determined, and the credibility of system calls are judged based on probability values, as
shown in Figure 4.

Symmetry 2024, 16, x FOR PEER REVIEW 13 of 21

9: Hs(Y) ← − ∑ ∑ 𝐼(𝑦 = 𝑦) 𝑙𝑜𝑔 ∑ 𝐼(𝑦 = 𝑦)∈ ;

10: for each feature function hj(y):
11: Ep(hj) ← ∑ 𝑝(𝑥)𝑃(𝑦|𝑥)ℎ (𝑦), ;
12: Es(hj) ← ∑ ℎ (𝑦)𝑝(𝑥, 𝑦), ∈ ;

13: wj ← 𝑤 + 𝑙𝑜𝑔 ;

14: Exit the iteration when the change in the weight vector is less than the threshold
value.

15: P(y|x) ← () 𝑒𝑥𝑝 ∑ 𝑤 ℎ (𝑦) ;

16: return the model P(y|x);

To determine the conditional probability distribution of the maximum entropy sys-
tem call model, the normalization factor, conditional entropy, empirical entropy, and ex-
pected value are required to be determined. The weight parameter λ of the feature func-
tion is then determined using the Improved Iterative Scaling (IIS) method [29]. The weight
is iterated until it is smaller than the set threshold value. Then, the conditional probability
distribution is computed. For each system call sequence, various features are extracted.
After completing the feature extraction, a feature space based on the preprocessed data is
constructed. For the first sequence, the feature space includes the frequency of four system
calls, namely, open, read, write, and close, as well as the time interval and combination
method between adjacent system calls. The model parameters are calculated, and then the
maximum entropy algorithm is used based on the system call model within the interval
to optimize the model parameters.

This article uses the maximum entropy system call sequence model to determine the
credibility of program behavior within a function interval based on the probability of key
system call sequences appearing. When measuring system call behavior within a function
interval, behavior characteristics can be identified and extracted by collecting program
behavior information during runtime. So the feature functions and constraint functions
are determined, and the credibility of system calls are judged based on probability values,
as shown in Figure 4.

feature
recognition

program
behavior model

trusted
measurement

evaluation

execution flow
information

feature
extraction

information processing

evaluation
results

feature
judgment

Figure 4. Process of credibility evaluation for system calls within the interval based on maximum
entropy.

In the evaluation of system call credibility metrics within the function interval, the
main process includes feature recognition, feature extraction, feature judgment, and trust-
worthiness metric evaluation. By analyzing and processing the system call behavior in the
function interval, the credibility of program behavior can be accurately evaluated.

Figure 4. Process of credibility evaluation for system calls within the interval based on maximum
entropy.

In the evaluation of system call credibility metrics within the function interval, the
main process includes feature recognition, feature extraction, feature judgment, and trust-
worthiness metric evaluation. By analyzing and processing the system call behavior in the
function interval, the credibility of program behavior can be accurately evaluated.

In the credibility measurement evaluation, the feature recognition phase will read
the system call behavior template of the process in the program interval behavior library
according to the number of the process to be measured, and screen the program-related
features as alternative features. The template mainly contains information such as the
division of function intervals, the behavior characteristics of system calls within function
intervals, and the corresponding entropy value.

In the feature extraction phase, the credibility metric will select the behavior features
of the process to be measured in this running process from the alternative features, and
establish a feature list. The list includes two parts: feature representation and feature
occurrence frequency.

In the feature determination phase, the trust measurement part classifies the features
and determines whether the system call behavior in the interval is abnormal by judging
the features. Specifically, the probability of the current feature is calculated to determine
whether the probability exceeds the probability threshold. If the probability exceeds the
threshold, it is considered that the feature determination fails; otherwise, the feature
determination will continue.

Symmetry 2024, 16, 249 13 of 19

In the credibility measurement evaluation stage, the credibility measurement eval-
uation module will collect the results of feature determination, and determine the final
credibility measurement results of system call behavior in the current function interval
based on the results of system call behavior determination in the function interval, so as to
obtain the determination of program credibility.

Based on the above process, the maximum entropy-based system call credibility
measurement evaluation algorithm designed in this article is shown in Algorithm 9.

Algorithm 9: Maximum Entropy-Based System Call Credibility Measurement
Evaluation Algorithm

Input: the feature set F = { f1(X), f2(X), . . ., fn(X)}, the new function interval system call sequence F′

Output: the credibility measure score of F
1. for each feature fi(X):
2. Di ← calculate_occurrence_frequency();
3. DSi ← calculate_standard_occurrence_frequency();
4. for each feature fi(X):
5. pi ← Di/|F|;
6. pSi ← DSi/|S|;
7. wi ← log(pi/pSi) ;
8. define feature vector X = (x1, x2, . . ., xn), xi represents the frequency of the i-th feature in F′.
9. calculate the occurrence frequency of each feature in F′ to obtain the vector x.
10. for F′:

11. H(F’)←−
n
∑

i=1
pi×logpi;

12. Hmax ←−
n
∑

i=1
wi×xi;

13. score← 1 − (H(F′)/Hmax);
14. return score;

4. Experimental Verification

In order to validate the method proposed in this article, we designed and implemented
a program behavior dynamic credibility measurement evaluation system, which mainly
includes a behavior dynamic monitoring module, a behavior organization module, and a
credibility measurement evaluation module. Among them, the dynamic monitoring mod-
ule obtains program behavior call information during program execution. The behavior
organization module converts the program behavior information obtained from the behav-
ior dynamic monitoring module into the format required by the credibility measurement
evaluation module. The credibility measurement module is a key module for measuring
program behavior during dynamic runtime, which is responsible for evaluating the cred-
ibility of application layer function call behavior information and system call behavior
information. By testing the effectiveness and performance of the model, and comparing it
with the current influential C-FLAT scheme in the field of trusted measurement in industrial
control scenarios for attack detection, we analyzed the practical value of this system.

4.1. Evaluation of Model Effectiveness

This article evaluates the effectiveness of the model by measuring the error between
predicted and true values. Specifically, two indicators are used: Mean Absolute Deviation
(MAD) and Mean Absolute Percentage Error (MAPE). MAD is an indicator that measures
the average absolute error between the predicted and actual values of a behavioral model,
and can effectively reflect the accuracy of the model. MAPE is used to represent the
unbiasedness of behavior. In the process of establishing a behavioral model, both of these
indicators are of great significance and can help evaluate the accuracy and reliability of the
model. The calculation method is shown in Formulas (7) and (8).

Symmetry 2024, 16, 249 14 of 19

MAD =
1
N

s

∑
t=1

et (7)

MAPE =
1
N

s

∑
t=1

∣∣∣∣ et

dt

∣∣∣∣(×100%) (8)

where et is the prediction error of state t, et = dt− dt. dt is the predicted value of state t, dt is
the actual value of state t, and N is the total number of times the experiment was conducted.

This article uses the experimental sample database VX Heaven [30] to test the effec-
tiveness of the Var-gram model [31], Dyck model [32], FSA model [31], and our model.
The Var-gram model is a text generation model based on n-grams, which uses a variable
length context window to integrate information from multiple windows through weighted
averaging. The Dyck model is a text classification model based on a sequence of parenthe-
ses, which treats various parentheses in the text as nodes and constructs a tree structure to
represent the syntactic structure of the text. The FSA model is a formal language computing
model that consists of three important elements: a set of states, a transition function, and
a set of accepting states. The state set includes all possible states, the transition function
defines the transition rules between states, and the accepting state set indicates which states
are terminating or acceptable.

This article uses generative model to learn from sample data and ultimately generates
behavioral data for experimentation. The state monitoring number l is set. The sequence
differences are compared between the behavior sequence obtained by the expected behavior
model and the benchmark sequence of the sample. And the accuracy and reliability of the
behavior model can be evaluated. In this article, N is set to 20 and l is set to 1000, which
means setting up 1000 random collection points and conducting 20 experiments. Firstly,
the MAD values in two scenarios are compared, and s states from 1000 states are extracted
as program behavior state detection points to collect model information (20 ≤ s ≤ 1100).
The comparative experimental results of MAD under different monitoring states are shown
in Figure 5.

Symmetry 2024, 16, x FOR PEER REVIEW 16 of 21

Figure 5. Comparison of MAD under different monitoring states.

According to the results, it can be seen that when the number of state detection points
s is small, the MAD value of our model is significantly better than the other three models.
For example, when s = 20, the MAD value of our model is 10.49% lower than that of the
FSA model. When s > 300, the curve of our model is relatively flat, with MAD values tend-
ing towards 0.125 and consistently lower than FSA�s 0.14, indicating that our model has
better accuracy. When s > 600, the two curves of our model and the FSA model gradually
approach, indicating that when the obtained program behavior states reach a certain num-
ber, the performance of the model tends to stabilize.

Similarly, s states were selected from 1000 states to collect information from the
model, with 20 ≤ s ≤ 1100. A total of 20 calculations were conducted to verify the unbiased
nature of the model. The Var gram model, FSA model, and Dyck model were compared.
The experimental results of the MAPE comparison under different monitoring states are
shown in Figure 6.

Figure 6. Comparison of MAPE under different monitoring states.

The comparison results of MAPE indicate that our model tends to flatten compared
to the FSA model, and the MAPE value of our model is 17.14% lower than that of the FSA

0 200 400 600 800 1000
0.12

0.14

0.16

0.18

0.20

0.22

M
AD

monitoring states

 Var-gram
 Dyck
 FSA
 Our model

0 200 400 600 800 1000
12

14

16

18

20

22

24

M
AP

E

monitoring states

 Var-gram
 Dyck
 FSA
 Our model

Figure 5. Comparison of MAD under different monitoring states.

According to the results, it can be seen that when the number of state detection points
s is small, the MAD value of our model is significantly better than the other three models.
For example, when s = 20, the MAD value of our model is 10.49% lower than that of the
FSA model. When s > 300, the curve of our model is relatively flat, with MAD values
tending towards 0.125 and consistently lower than FSA’s 0.14, indicating that our model

Symmetry 2024, 16, 249 15 of 19

has better accuracy. When s > 600, the two curves of our model and the FSA model
gradually approach, indicating that when the obtained program behavior states reach a
certain number, the performance of the model tends to stabilize.

Similarly, s states were selected from 1000 states to collect information from the model,
with 20 ≤ s ≤ 1100. A total of 20 calculations were conducted to verify the unbiased nature
of the model. The Var gram model, FSA model, and Dyck model were compared. The
experimental results of the MAPE comparison under different monitoring states are shown
in Figure 6.

Symmetry 2024, 16, x FOR PEER REVIEW 16 of 21

Figure 5. Comparison of MAD under different monitoring states.

According to the results, it can be seen that when the number of state detection points
s is small, the MAD value of our model is significantly better than the other three models.
For example, when s = 20, the MAD value of our model is 10.49% lower than that of the
FSA model. When s > 300, the curve of our model is relatively flat, with MAD values tend-
ing towards 0.125 and consistently lower than FSA�s 0.14, indicating that our model has
better accuracy. When s > 600, the two curves of our model and the FSA model gradually
approach, indicating that when the obtained program behavior states reach a certain num-
ber, the performance of the model tends to stabilize.

Similarly, s states were selected from 1000 states to collect information from the
model, with 20 ≤ s ≤ 1100. A total of 20 calculations were conducted to verify the unbiased
nature of the model. The Var gram model, FSA model, and Dyck model were compared.
The experimental results of the MAPE comparison under different monitoring states are
shown in Figure 6.

Figure 6. Comparison of MAPE under different monitoring states.

The comparison results of MAPE indicate that our model tends to flatten compared
to the FSA model, and the MAPE value of our model is 17.14% lower than that of the FSA

0 200 400 600 800 1000
0.12

0.14

0.16

0.18

0.20

0.22

M
AD

monitoring states

 Var-gram
 Dyck
 FSA
 Our model

0 200 400 600 800 1000
12

14

16

18

20

22

24

M
AP

E

monitoring states

 Var-gram
 Dyck
 FSA
 Our model

Figure 6. Comparison of MAPE under different monitoring states.

The comparison results of MAPE indicate that our model tends to flatten compared to
the FSA model, and the MAPE value of our model is 17.14% lower than that of the FSA
model. When n > 400, the MAPE values of our model are all less than 13 and gradually
tend to 12, while the MAPE values of the other models are all greater than 14. Therefore,
our model has better unbiasedness.

4.2. Comparative Experiment on Attack Detection

This section compares the dynamic credibility measurement mechanism based on func-
tion partition in this paper with the C-FLAT scheme [24], which has certain influence in the
field of trust measurement in industrial control scenarios, and analyzes its practical value.

This experiment uses the sample database VX Heaven [30] to compare the detection of
three types of attacks, namely, ROP attack, mimicry attack, and code injection attack, by both
our system and the C-FLAT method, and records the time when the two methods detect the
attacks separately. This paper downloads various types of malicious software samples from
the sample library, modifies some code according to the attack method, and compiles and
runs the malicious code for testing. A ROP attack constructs ROP attack code in the sample
using techniques such as memory overlay and pointer replacement. A mimicry attack
involves adding or replacing instruction parameters and exchanging instruction order in
the code instruction sequence. A code injection attack changes conditional judgments, loop
structures, or jump statements in the code.

The experiments show that our system and the C-FLAT method can detect both ROP
attacks and code injection attacks. As for mimicry attacks, the C-FLAT scheme can partially
detect them, but cannot completely prevent this type of attack. That is because after the
program is mutated by a mimicry attack, some malicious codes’ control flow still conforms
to the detection rules of C-FLAT, which can bypass the detection of C-FLAT. Our method
separates function call flow and system call flow for detection, and considers both control

Symmetry 2024, 16, 249 16 of 19

flow and data flow during the calling process. Therefore, our method can effectively
prevent mimicry attacks compared to the C-FLAT.

The performance test results are shown in Figure 7.

Symmetry 2024, 16, x FOR PEER REVIEW 17 of 21

model. When n > 400, the MAPE values of our model are all less than 13 and gradually
tend to 12, while the MAPE values of the other models are all greater than 14. Therefore,
our model has better unbiasedness.

4.2. Comparative Experiment on Attack Detection
This section compares the dynamic credibility measurement mechanism based on

function partition in this paper with the C-FLAT scheme [24], which has certain influence
in the field of trust measurement in industrial control scenarios, and analyzes its practical
value.

This experiment uses the sample database VX Heaven [30] to compare the detection
of three types of attacks, namely, ROP attack, mimicry attack, and code injection attack,
by both our system and the C-FLAT method, and records the time when the two methods
detect the attacks separately. This paper downloads various types of malicious software
samples from the sample library, modifies some code according to the attack method, and
compiles and runs the malicious code for testing. A ROP attack constructs ROP attack code
in the sample using techniques such as memory overlay and pointer replacement. A mim-
icry attack involves adding or replacing instruction parameters and exchanging instruc-
tion order in the code instruction sequence. A code injection attack changes conditional
judgments, loop structures, or jump statements in the code.

The experiments show that our system and the C-FLAT method can detect both ROP
attacks and code injection attacks. As for mimicry attacks, the C-FLAT scheme can par-
tially detect them, but cannot completely prevent this type of attack. That is because after
the program is mutated by a mimicry attack, some malicious codes� control flow still con-
forms to the detection rules of C-FLAT, which can bypass the detection of C-FLAT. Our
method separates function call flow and system call flow for detection, and considers both
control flow and data flow during the calling process. Therefore, our method can effec-
tively prevent mimicry attacks compared to the C-FLAT.

The performance test results are shown in Figure 7.

Figure 7. Comparison results with C-FLAT.

The experimental results show that in the detection of ROP attacks, our system�s de-
tection efficiency is 40% higher than that of the C-FLAT method. In the detection of mim-
icry attacks, our system�s detection efficiency is 48% higher than that of the C-FLAT
method. In the detection of code injection attacks, our system�s detection efficiency is 10%
higher than that of the C-FLAT method. That is due to the sliding window execution se-
quence measurement method used in this paper, combined with the benchmark library

ROP Attack Mimicry Attack Code Injection Attack
1.5

2.0

2.5

3.0

3.5

4.0

tim
e/

s

 C-FLAT
 our method

Figure 7. Comparison results with C-FLAT.

The experimental results show that in the detection of ROP attacks, our system’s
detection efficiency is 40% higher than that of the C-FLAT method. In the detection of
mimicry attacks, our system’s detection efficiency is 48% higher than that of the C-FLAT
method. In the detection of code injection attacks, our system’s detection efficiency is
10% higher than that of the C-FLAT method. That is due to the sliding window execution
sequence measurement method used in this paper, combined with the benchmark library
for comparative evaluation, which improves the timeliness of attack detection. Based on
the maximum entropy system call model, the program behavior is evaluated by probability
distribution, which can reduce the classification discussion of different system calls and
reduce the time for credibility measurement evaluation. Therefore, our system’s detection
efficiency for these three types of attacks is higher than that of the C-FLAT method using
full path measurement.

4.3. Evaluation of Model Performance

In dynamic credibility measurement, it is necessary to perform a series of operations
on the program being measured during runtime, such as dynamic collection, sequence
processing, baseline querying, and credibility evaluation. These operations will bring
latency to the system operation, and the level of latency directly affects whether the
system can be used in industrial control scenarios. In order to test the performance of the
system, this article sets timers on the key components of the dynamic credibility evaluation
prototype system to calculate the average execution delay of each measurement stage.
Under two schemes based on n-gram [33] and our method, 1000 dynamic credibility
measures were performed on the same sample program, and the total average latency of
the credibility evaluation system was obtained. The test results are shown in Figure 8.

Through the analysis of experimental data, it can be seen that there are differences in
the impact of credibility measurement evaluation systems based on different behavioral
models on latency. During the dynamic collection process, the n-gram model and our
model take almost the same amount of time. In the process of behavioral organization, due
to the requirement of filtering the system call sequence, our model takes more time than
the n-gram model. In the benchmark query process, due to the use of the sliding window
execution sequence measurement method (window size set to 6), the window moves a
distance of 5 per unit time, while the n-gram model based scheme moves a distance of 1 per

Symmetry 2024, 16, 249 17 of 19

unit time, so our scheme is faster. In the credibility evaluation process, due to the use of an
entropy-based system call model to measure and evaluate the key system call sequences
within the function interval, the time used is lower than that of the n-gram model. Finally,
by calculating the total latency of the two schemes, it can be seen that our system has a
lower latency throughout the dynamic credibility evaluation process, indicating that this
model has greater potential for the design of efficient credibility measurement schemes.

Symmetry 2024, 16, x FOR PEER REVIEW 18 of 21

for comparative evaluation, which improves the timeliness of attack detection. Based on
the maximum entropy system call model, the program behavior is evaluated by probabil-
ity distribution, which can reduce the classification discussion of different system calls
and reduce the time for credibility measurement evaluation. Therefore, our system�s de-
tection efficiency for these three types of attacks is higher than that of the C-FLAT method
using full path measurement.

4.3. Evaluation of Model Performance
In dynamic credibility measurement, it is necessary to perform a series of operations

on the program being measured during runtime, such as dynamic collection, sequence
processing, baseline querying, and credibility evaluation. These operations will bring la-
tency to the system operation, and the level of latency directly affects whether the system
can be used in industrial control scenarios. In order to test the performance of the system,
this article sets timers on the key components of the dynamic credibility evaluation pro-
totype system to calculate the average execution delay of each measurement stage. Under
two schemes based on n-gram [33] and our method, 1000 dynamic credibility measures
were performed on the same sample program, and the total average latency of the credi-
bility evaluation system was obtained. The test results are shown in Figure 8.

Figure 8. Comparison of dynamic credibility measurement latency.

Through the analysis of experimental data, it can be seen that there are differences in
the impact of credibility measurement evaluation systems based on different behavioral
models on latency. During the dynamic collection process, the n-gram model and our
model take almost the same amount of time. In the process of behavioral organization,
due to the requirement of filtering the system call sequence, our model takes more time
than the n-gram model. In the benchmark query process, due to the use of the sliding
window execution sequence measurement method (window size set to 6), the window
moves a distance of 5 per unit time, while the n-gram model based scheme moves a dis-
tance of 1 per unit time, so our scheme is faster. In the credibility evaluation process, due
to the use of an entropy-based system call model to measure and evaluate the key system
call sequences within the function interval, the time used is lower than that of the n-gram
model. Finally, by calculating the total latency of the two schemes, it can be seen that our
system has a lower latency throughout the dynamic credibility evaluation process, indi-
cating that this model has greater potential for the design of efficient credibility measure-
ment schemes.

dynamic
collection

sequence
processing

baseline
querying

credibility
evaluation

total latency

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

tim
e/

s
 n-gram
 our system

Figure 8. Comparison of dynamic credibility measurement latency.

4.4. Discussion

Firstly, this article uses the maximum entropy system call model for the dynamic
trustworthiness evaluation of system call sequences. Therefore, it is necessary to demon-
strate the effectiveness of the maximum entropy system call model through model accuracy
experiments. The experimental results of this article indicate that due to the Var-gram
model integrating information from multiple variable length windows through weighted
averaging, the information from a single window has a greater impact on the integrated
information, resulting in lower accuracy and unbiasedness of the model. The parentheses
in the text information of the Dyck model are nodes, and the node information is relatively
single, so its model accuracy and unbiasedness are also low. The FSA model considers each
program state and aggregates the states, using a transition function to represent the transi-
tion of program states. Therefore, it has higher accuracy and unbiasedness than the Var
gram model and the Dyck model. However, the FSA model requires a transition function
to calculate and judge the states, which is highly dependent on the transition function. Our
proposed model aims to make system calls and uses entropy to calculate the frequency of
system calls. Based on the probability distribution, the system call sequence is classified.
Therefore, compared to other models, our model has higher accuracy and unbiasedness.

Additionally, due to the use of the sliding window execution sequence measurement
method, combined with a benchmark library for comparison evaluation, the timeliness
of detecting attacks is improved. Based on the maximum entropy system call model,
program behavior is further evaluated through probability distribution, which reduces
the classification discussion of different system calls and reduces the time for trust metric
evaluation. Therefore, the detection efficiency of our system for these three types of attacks
is higher than that of the full path metric C-FLAT method.

5. Conclusions

Traditional security protection methods for industrial control terminals have coarse
detection granularity, and are unable to effectively detect and prevent attacks, lacking

Symmetry 2024, 16, 249 18 of 19

real-time responsiveness to attack events. Therefore, this paper proposes a mechanism of
program behavior trust measurement that includes a sliding window execution sequence
measurement method and a maximum entropy system call model based on the research
of the static analysis and dynamic measurement. Contrast experiments with a typical
industrial control terminal security protection technology C-FLAT scheme prove that our
system can detect malicious attacks more accurately and more quickly, and is more suitable
for terminal security protection in industrial control scenarios.

This article proposes a dynamic trustworthiness evaluation mechanism based on
program behavior, which mainly improves on code reuse attacks and mimetic attacks in
industrial control terminal applications. However, there are still some areas that can be
improved. First, the dynamic credibility evaluation mechanism proposed in this article
is based on the Linux operating system and provides an implementation method for
dynamically monitoring system call sequences in the Linux operating system. The next
step is to consider implementing it in multiple operating systems to enhance the portability
of this mechanism. In addition, the maximum entropy-based system call model proposed
in this article requires multiple iterations of historical data to obtain the optimal behavioral
model. This process is relatively time-consuming and requires high data volume. Further
optimization of the model is needed to improve its self-learning efficiency in the future.

Author Contributions: Conceptualization, S.W.; methodology, S.W., A.H. and S.L.; software, S.W.,
T.L. and S.L.; writing—original draft preparation, S.W. and S.L.; writing—review and editing, A.H.;
visualization, T.L.; supervision, A.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the Fundamental Research Funds for the Central Universi-
ties (No. 2242022k60005), Purple Mountain Laboratories for Network and Communication Security,
and National Science Foundation (No. 62233003).

Data Availability Statement: The dataset presented in this study is available on https://github.com/
opsxcq/mirror-vxheaven.org (accessed on 16 January 2024); For any other questions, please contact
the corresponding author of this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Tsochev, G.; Trifonov, R.; Nakov, O.; Manolov, S.; Pavlova, G. Cyber security: Threats and Challenges. In Proceedings of the 2020

International Conference Automatics and Informatics (ICAI), Varna, Bulgaria, 1–3 October 2020.
2. Ani, U.P.D.; Watson, J.M.; Green, B.; Craggs, B.; Nurse, J.R.C. Design considerations for building credible security testbeds:

Perspectives from industrial control system use cases. J. Cyber Secur. Technol. 2021, 5, 71–119. [CrossRef]
3. Zhang, L.; Meng, Y.; Yu, J.; Xiang, C.; Falk, B.; Zhu, H. Voiceprint Mimicry Attack Towards Speaker Verification System in Smart

Home. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9
July 2020.

4. Luo, B.; Xiang, F.; Sun, Z.; Yao, Y. BLE neighbor discovery parameter configuration for IoT applications. IEEE Access 2019, 7,
54097–54105. [CrossRef]

5. Khedker, U.; Sanyal, A.; Sathe, B. Data Flow Analysis: Theory and Practice; CRC Press: Boca Raton, FL, USA, 2017; pp. 59–99.
6. Aghakhani, H.; Gritti, F.; Mecca, F.; Lindorfer, M.; Ortolani, S.; Balzarotti, D.; Vigna, G.; Kruegel, C. When malware is packin’ heat:

Limits of machine learning classifiers based on static analysis features. In Proceedings of the Network and Distributed Systems
Security (NDSS) Symposium 2020, San Diego, CA, USA, 23–26 February 2020.

7. Shestakov, A.L. Dynamic measuring methods: A review. Acta IMEKO. 2019, 8, 64–76. [CrossRef]
8. Sailer, R.; Zhang, X.; Jaeger, T.; van Doorn, L. Design and implementation of a TCG-based integrity measurement architecture. In

Proceedings of the 13th USENIX Security Symposium 2004, San Diego, CA, USA, 9–13 August 2004; pp. 223–238.
9. Koruyeh, E.M.; Shirazi, S.H.A.; Khasawneh, K.N.; Song, C.; Abu-Ghazaleh, N. Speccfi: Mitigating spectre attacks using CFI

informed speculation. In Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21
May 2020; pp. 39–53.

10. Jeong, S.; Hwang, J.; Kwon, H.; Shin, D. A CFI countermeasure against GOT overwrite attacks. IEEE Access 2020, 8, 36267–36280.
[CrossRef]

11. Feng, L.; Huang, J.; Hu, J.; Reddy, A. FastCFI: Real-time control-flow integrity using FPGA without code instrumentation. ACM
Trans. Des. Autom. Electron. Syst. TODAES 2021, 26, 1–39. [CrossRef]

https://github.com/opsxcq/mirror-vxheaven.org
https://github.com/opsxcq/mirror-vxheaven.org
https://doi.org/10.1080/23742917.2020.1843822
https://doi.org/10.1109/ACCESS.2019.2912493
https://doi.org/10.21014/acta_imeko.v8i1.568
https://doi.org/10.1109/ACCESS.2020.2975037
https://doi.org/10.1145/3458471

Symmetry 2024, 16, 249 19 of 19

12. Serra, G.; Fara, P.; Cicero, G.; Restuccia, F.; Biondi, A. PAC-PL: Enabling control-flow integrity with pointer authentication in
FPGA SoC platforms. In Proceedings of the 2022 IEEE 28th Real-Time and Embedded Technology and Applications Symposium
(RTAS), Milano, Italy, 3 May 2022; pp. 241–253.

13. She, C.; Chen, L.; Shi, G. TFCFI: Transparent Forward Fine-grained Control-Flow Integrity Protection. In Proceedings of the 2022
IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Wuhan, China,
28–30 October 2022; pp. 407–414.

14. Moghadam, V.E.; Prinetto, P.; Roascio, G. Real-Time Control-Flow Integrity for Multicore Mixed-Criticality IoT Systems. In
Proceedings of the 2022 IEEE European Test Symposium (ETS), Barcelona, Spain, 23–27 May 2022; pp. 1–4.

15. Li, Y.; Wang, M.; Zhang, C.; Chen, X.; Yang, S.; Liu, Y. Finding cracks in shields: On the security of control flow integrity
mechanisms. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual, 9–13
November 2020; pp. 1821–1835.

16. Abera, T.; Asokan, N.; Davi, L.; Ekberg, J.-E.; Nyman, T.; Paverd, A.; Sadeghi, A.R.; Tsudik, G. C-FLAT: Control-flow attestation
for embedded systems software. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security 2016. Vienna, Austria, 24–28 October 2016; pp. 743–754.

17. Hu, H.; Shinde, S.; Adrian, S.; Chua, Z.L.; Saxena, P.; Liang, Z. Data-Oriented Programming: On the Expressiveness of Non-control
Data Attacks. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (S&P), San Jose, CA, USA, 23–25 May 2016.

18. Canonical. Ubuntu Core—The Operating System Optimized for IoT and Edge; Canonical: Eatontown, NJ, USA, 2022.
19. Werner, M.; Unterluggauer, T.; Schaffenrath, D.; Mangard, S. Sponge-Based Control-Flow Protection for IoT Devices. In

Proceedings of the 2018 IEEE European Symposium on Security and Privacy (EuroS&P), London, UK, 24–26 April 2018.
20. Shahzad, R.K. Android malware detection using feature fusion and artificial data. In Proceedings of the 2018 IEEE 16th Intl Conf

on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on
Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech),
Athens, Greece, 12–15 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 702–709.

21. Cadar, C.; Sen, K. Symbolic execution for software testing: Three decades later. Commun. ACM 2013, 56, 82–90. [CrossRef]
22. Vishnyakov, A.; Fedotov, A.; Kuts, D.; Novikov, A.; Parygina, D.; Kobrin, E.; Logunova, V.; Belecky, P.; Kurmangaleev, S. Sydr:

Cutting edge dynamic symbolic execution. In Proceedings of the 2020 Ivannikov ISPRAS Open Conference (ISPRAS), Moscow,
Russia, 10–11 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 46–54.

23. Cadar, C.; Nowack, M. KLEE symbolic execution engine in 2019. Int. J. Softw. Tools Technol. Transf. 2021, 23, 867–870. [CrossRef]
24. Trabish, D.; Kapus, T.; Rinetzky, N.; Cadar, C. Past-sensitive pointer analysis for symbolic execution. In Proceedings of the 28th

ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering
2020, Virtual, 8–13 November 2020; pp. 197–208.

25. Poeplau, S.; Francillon, A. Symbolic execution with SymCC: Don’t interpret, compile! In Proceedings of the 29th USENIX
Conference on Security Symposium 2020, Boston, MA, USA, 12–14 August 2020; pp. 181–198.

26. Amer, E.; Zelinka, I. A dynamic Windows malware detection and prediction method based on contextual understanding of API
call sequence. Comput. Secur. 2020, 92, 101760. [CrossRef]

27. Moore, E.F. The Shortest Path Through a Maze. In Proceedings of the International Symposium on the Theory of Switching; Harvard
University Press: Cambridge, MA, USA, 1959.

28. Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620. [CrossRef]
29. Berger, A.L. The Improved Iterative Scaling Algorithm: A Gentle Introduction; CMU School of Computer Science: Pittsburgh, PA, USA,

1997.
30. Vxheaven. Org’s Website Mirror [EB/OL]. (2018–07–28). Available online: https://github.com/opsxcq/mirror-vxheaven.org

(accessed on 20 December 2023).
31. Lai, Y.; Liu, Z.; Ye, T. Software behaviour analysis method based on behaviour template. Int. J. Simul. Process Model. 2018, 13,

126–134. [CrossRef]
32. Chen, X.; Ding, H.; Fang, S.; Li, Z.; He, X. A Defect Detection Technology Based on Software Behavior Decision Tree. In

Proceedings of the 2017 International Conference on Computer Systems, Electronics and Control (ICCSEC), Dalian, China, 25–27
December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 717–724.

33. Xiao, X.; Zhang, S.; Mercaldo, F.; Hu, G.; Sangaiah, A.K. Android malware detection based on system call sequences and LSTM.
Multimed. Tools Appl. 2019, 78, 3979–3999. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1007/s10009-020-00570-3
https://doi.org/10.1016/j.cose.2020.101760
https://doi.org/10.1103/PhysRev.106.620
https://github.com/opsxcq/mirror-vxheaven.org
https://doi.org/10.1504/IJSPM.2018.091693
https://doi.org/10.1007/s11042-017-5104-0

	Introduction
	Analysis of the Current State of Research
	Research Content
	Function Call Sequence Trust Measurement Evaluation
	Construction of Function-Level Execution Flow Graph (FEFG)
	Construction of Benchmark Library
	Dynamic Credibility Measurement of Function Call Sequence Based on Sliding Windows

	Trust Measurement Evaluation for System Call Sequences
	Maximum Entropy Model
	System Call Credibility Measurement Model Based on Maximum Entropy

	Experimental Verification
	Evaluation of Model Effectiveness
	Comparative Experiment on Attack Detection
	Evaluation of Model Performance
	Discussion

	Conclusions
	References

