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Abstract: The manuscript is an initiative to construct a full and exhaustive theory of analytical
multivariate functions in any complete Reinhardt domain by introducing the concept of L-index in
joint variables for these functions for a given continuous, non-negative, non-vanishing, vector-valued
mapping L defined in an interior of the domain with some behavior restrictions. The complete
Reinhardt domain is an example of a domain having a circular symmetry in each complex dimension.
Our results are based on the results obtained for such classes of holomorphic functions: entire
multivariate functions, as well as functions which are analytical in the unit ball, in the unit polydisc,
and in the Cartesian product of the complex plane and the unit disc. For a full exhaustion of the
domain, polydiscs with some radii and centers are used. Estimates of the maximum modulus for
partial derivatives of the functions belonging to the class are presented. The maximum is evaluated
at the skeleton of some polydiscs with any center and with some radii depending on the center and
the function L and, at most, it equals a some constant multiplied by the partial derivative modulus at
the center of the polydisc. Other obtained statements are similar to the described one.

Keywords: bounded L-index in joint variables; analytic function; partial derivative; maximum
modulus; complete Reinhardt domain; unit polydisc; local behavior; circular symmetry; unit ball;
multiple-circular domain

MSC: 32A15; 32A17

1. Introduction, Main Notations, and Definitions

The Reinhardt domain of holomoprhy [1–3] has attracted the attention of many investi-
gators in multidimensional complex analysis. This interest is generated by its geometric and
analytical properties and its universality because it overlaps the balls, the polydiscs, and the
Thullen domains [4] as the partial cases. Moreover, these cases are not biholomorphic equiv-
alent, but mathematicians [5] continue to find conditions proving that a pseudo-convex
Reinhardt domain is biholomorphic to the bounded balanced convex domains in Cn.

Therefore, the study of the Reinhardt domain allows us to discover a deep interplay
between them. An increasing number of papers on various types of Reinhardt domains [6],
on the Schwarz lemma [7], on the rigidity theorem [8], on Bohr radii [9,10], on Bergman
kernels [11], and on the bounds of all the coefficients of homogeneous expansions [12] for
the domain show the importance of this topic. A few recent papers [13,14] initiated an
intensive study of functions that are analytical in a complete Reinhardt domain by methods
of the Wiman–Valiron theory. We will take most of our notations from those papers: Rn

and Cn have the typical meanings in complex analysis, i.e, they are the real and complex
n-dimensional vector spaces, respectively. The notation An(G), (n ∈ N) means the class of
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an analytic multivariate function f that is defined in a complete Reinhardt domain G ⊂ Cn

and that admits such a representation by the following multiple power series:

F(z) = f (z1, . . . , zn) =
+∞

∑
∥J∥=0

aJzJ , (1)

with the convergence domain G, where zJ = zj1
1 zj2

2 . . . zjn
n for z = (z1, z2, . . . , zn) ∈ G,

J = (j1, . . . , jn) ∈ Zn
+, ∥J∥ = ∑n

s=1 js, N = {1, 2, 3, . . .}, and Z+ = N∪ {0}.
For the domainG ⊂ Cn, we denote |G| := {(r1, r2, . . . , rn) : rj = |zj| for j ∈ {1, 2, . . . , n},

z = (z1, z2, . . . , zn) ∈ G}.
Recent publications [3,10,13,14] show the growth of adaptations of one-dimensional

complex analytic methods to such a domain as the Reinhardt domain in multidimensional
complex analysis. Its increasing value is justified by its properties. In particular, the domain
of convergence of any multiple power series (1) has the following properties: a logarithmical
convexity, a completeness, and a circular symmetry (multiple-circularity). This means that
the domain is the logarithmically convex and complete Reinhardt domain with the center
at the origin. Moreover, any analytical function given in the complete Reinhardt domain
with the center at the origin can be developed in the multiple complex power series (1) in
the domain. Moreover, the Reinhardt domain has circular symmetry in each dimension
(see below, condition b) because it is a multiple-circular domain. Therefore, in view of these
facts, it is important to build a complete theory of analytical functions that have special
properties in this domain: growth estimates [15], boundedness of the partial logarithmic
derivative modulus, uniform distribution of zero points in some sense, and some regular
behavior expressed in the estimates of the maximum modulus by the minimum modulus
at a polydisc. On the other hand, among such classes of analytic functions, those with a
finite index occupy an important place. Additionally, these functions have applications in
the analytic theory of differential equations. There are known sufficient conditions that
preserve the finiteness of the index for entire solutions and analytical solutions in the unit
ball for a system of partial differential equations [16]. But the mentioned properties are
known for analytic functions in the unit ball and in the unit polydisc, as well as for entire
functions within a theory of functions with finite L-index in joint variables. We should
like to observe that this class of functions is very wide because, for every function (entire
or analytical in the unit ball) whose zero points have uniformly bounded multiplicities,
a mapping L can be constructed for which the primary holomorphic function has finite
L-index in joint variables.

A separate consideration of the properties of analytic functions in the ball and the
polydisc is inspiring and important because these domains are not conformally equivalent.
In view of these facts, it is important to construct a general theory for the Reinhardt domain
because the unit ball and the unit polydisc are partial cases of the domain.

The n-dimensional complex domain G is called the complete Reinhardt domain if:
(a) for every point z = (z1, . . . , zn) from this domain G and for each n-dimensional radius-
vector R = (r1, . . . , rn) ∈ [0, 1]n, the point-wise product Rz = (r1z1, . . . , rnzn) also belongs
to the domain G (it is a condition of completeness of the domain);
(b) for every point (z1, . . . , zn) ∈ G, its n-dimensional rotation also belongs to the do-
main, i.e., for all angles (θ1, . . . , θn) ∈ [0; 2π]n), the following component-wise rotation
(z1eiθ1 , . . . , zneiθn) falls into this domain G (it is a multiple-circular domain or condition of
multiple-circularity).

The domain G becomes a logarithmically convex domain if the image of the set G, ex-
cluding all coordinate hyperplanes zj = 0 under the mapping (log |z1|, log |z2|, . . . , log |zn|),
is a convex set in n-dimensional real space. There are known examples [17] of the complete
Reinhardt domain D that are not logarithmically convex. The most frequently considered
complete Reinhardt domains (n ≥ 2) are the following:
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Dn(R) :={z ∈ Cn : |z1| < r1, |z2| < r2, . . . , |zn| < rn},

R = (r1, r2, . . . , rn) ∈ (0,+∞)n (polydisc with radii R and center at the origin),

Bn(r) := {z ∈ Cn : |z| :=
√
|z1|2 + . . . + |zn|2 < r} (ball with radius r and center at the origin),

Πn(r) := {z ∈ Cn : |z1|+ . . . + |zn| < r}, r > 0.

The polydisc Dn(R) with radius R and center at the origin is contained in the Reinhardt
domain G for every point w = (w1, . . . , wn) taken from the domain G, where the radii R
are evaluated by the component-wise modulus of the point w, i.e., R = (|w1|, . . . , |wn|).

We also need the following standard notations from the theory of holomorphic func-
tions with finite index in all variables (see, for example, [15,16,18–20]). In particular, R+

means the non-negative real semi-axis, 0= (0, . . . , 0) is the n-dimensional zero vector, 1
is the n-dimensional vector whose every component equals 1, 1j is the n-dimensional
unit vector whose j-th component equals 1, and all other components are zeros. For
two n-dimensional real (or, particularly, integer) vectors A = (a1, . . . , an) ∈ Rn and
B = (b1, . . . , bn) ∈ Rn, the following formal notations are used in the text: the component-
wise product AB = (a1b1, · · · , anbn), the component-wise quotient A/B = (a1/b1, . . . , an/bn),
and the vector exponentiation AB = ab1

1 ab2
2 · . . . · abn

n . We do not violate the existence of these
expressions. Under the norm ∥A∥ of the integer vector A, we understand the sum of all
its components, and all vector inequalities are understood as coordinate inequalities. This
concerns the inequalities A < B, A ≤ B, and so on. For the non-negative integer vector
K = (k1, . . . , kn) ∈ Zn

+, we define the vector factorial K! as the product of all component
factorials. The arithmetic operations as addition, scalar multiplication, and conjugation for
points from the n-dimensional complex space are given component-wise. For z ∈ Cn and
w ∈ Cn, we define:

⟨z, w⟩ = z1w1 + · · ·+ znwn,

where wk is the complex conjugate of wk. The open polydisc with radii R and center z0 is
defined as the Cartesian product of open discs |zj − z0

j | < rj in all j ∈ {1, . . . , n}, and it is

denoted by Dn(z0, R), while the polydisc skeleton {z ∈ Cn : |zj − z0
j | = rj, j ∈ {1, . . . , n}}

is written by Tn(z0, R). Sometimes, we use the notation Dn[z0, R] for the closed polydisc
{z ∈ Cn : |zj − z0

j | ≤ rj, j = 1, . . . , n}, while Dn means the unit polydisc with center at

origin, and D is a usual open unit disc. In addition, Bn(z0, r) stands for the n-dimensional
complex open ball with radius r and center z0, and its topological boundary is a sphere
Sn(z0, r). Similarly, Bn[z0, r] indicates the n-dimensional complex closed ball with radius
r and center z0, and, finally, Bn means the open unit ball with its center at the origin.
Obviously, the equality D = D1 = B1 is valid.

For n-dimensional non-negative integer vector J = (j1, j2, . . . , jn), we will denote the
J-th order partial derivatives of an analytic in G ⊆ Cn function H as follows:

H(J)(z) =
∂∥J∥H

∂zJ (z) =
∂j1+j2+···+jn H

∂zj1
1 ∂zj2

2 . . . ∂zjn
n
(z1, z2, . . . , zn).

By G, we denote the closure of the complete Reinhardt domain G and ∂G = G \
G. We suppose that an auxiliary mapping L(z) = (l1(z), l2(z), . . . , ln(z)) satisfies the
following conditions:

(1) for any j ∈ {1, 2, . . . , n}, the j-th component lj : G → R+ of the mapping L has a
continuity in all points from G;

(2) for any j ∈ {1, 2, . . . , n}, the value of the j-th component lj at every point z from

the Reinhardt domain G is greater than β
infR̂jz∈∂G,

r>1

(r|zj |)−|zj |
, i.e.,
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lj(z) >
β

infR̂jz∈∂G,
r>1

(r|zj|)− |zj|
(2)

for some real β > 1. Here, R̂j = (1, . . . , 1, r︸︷︷︸
j-th item

, 1 . . . , 1). At the same time, if the set

{zR̂j : r > 1} is unbounded for a given z ∈ G, then we will only require that the condition
lj(z) > 0 be fulfilled. We will assume lj(z) > 0 in the case when infR̂jz∈G\G,

r>1

r|zj| = +∞.

Such a case is possible, for example, if G = C×D. Examples of analytic functions in C×D
are the deformed exponential function [21,22] and the partial theta function [23–25].

For simplicity, we also write B = (0, β] and Bn = (0, β]n, where the constant β is
defined by the mapping L, and Bn is obtained as the Cartesian product of the left-open
interval B.

Remark 1. Suppose that G is a given complete Reinhardt domain. If S ∈ Bn is a set of radii and
z0 = (z0

1, . . . , z0
n) is a point belonging to the domain G, then the polydisc Dn

[
z0, S

L(z0)

]
is a subset

of the domain G. Indeed, for each j ∈ {1, . . . , n}, we have:

|zj| ≤ |zj − z0
j |+ |z0

j | ≤
rj

lj(z0)
+ |z0

j | <
rj

β

 inf
R̂jz0∈∂G,

r>1

(r|z0
j |)− |z0

j |

+ |z0
j | <

< inf
R̂jz0∈∂G,

r>1

(r|z0
j |).

In other words, |zj| < r|z0
j | for z0 ∈ G and some r > 1. But, G is a complete domain, so the point

z also lies within the domain G.

Below we suppose everywhere that G ⊂ Cn is the complete Reinhardt domain, and
we will not repeat this assumption in the following assertions and definitions.

A multivariate holomorphic function H ∈ An(G) is called a function with bounded
(finite) L-index (in joint variables) if, for some non-negative integer n0, the following inequality
holds for every order J of partial derivatives in the whole domain G:

|H(J)(z)|
J!LJ(z)

≤ max

{
|H(K)(z)|
K!LK(z)

: K ∈ Zn
+, ∥K∥ ≤ n0

}
. (3)

The least corresponding number n0 is the L-index in joint variables for the function H,
and N(H, L,G) = n0 stands for the index. If the Reinhardt domain G matches with
n-dimensional complex space Cn, and if the mapping L identically equals 1, then it is a
definition of an entire multivariate function of a bounded index [19,20,26,27]. These authors
did not use the refinement “in joint variables”. In addition, if n = 1 and L = l, then it
becomes the definition of the entire function of a single complex variable with bounded
l-index [28], and if, finally, l = 1, then we obtain the definition of the entire function having
a bounded (finite) index [29].

To achieve substantial results, we assume that the mapping L does not vary locally as
soon as possible. With the phrase “the mapping does not vary locally as soon as possible”,
we understand that every component of the vector-valued mapping L has such a property
that the following supremum describing the local variation

λj(R) = sup
z,w∈G

{
lj(z)
lj(w)

: |zk − wk| ≤
rk

min{lk(z), lk(w)} , k ∈ {1, . . . , n}
}

(4)
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is finite at least for one set of n radii R belonging to the domain Bn constructed as the
Cartesian product of the half-open interval (0, β]. The class of these mapping L : G → Rn

+

satisfying (2) and (4) is denoted by Q(G). It is easy to see that a validity of inequality (4)
for some R from the domain Bn yields the validity of the same inequality for all values R
from the same domain.

Example 1. Let us consider the inequality (2) for different cases of G.
If G = Dn (unit polydisc), then infR̂jz∈∂Dn ,

r>1

(r|zj|) = 1 because R̂jz ∈ ∂Dn is equivalent to

|rzj| = 1. Thus, we obtain such a condition for the polydisc lj(z) >
β

1−|zj |
. It completely matches

with a condition on the function L in paper [30]. This paper is an introductory paper on the term
of bounded L-index in joint variables for the function class whose domain of holomorphy is the
unit polydisc.

If G = Bn (i.e., the complete multiple-circular domain is the ball with unit radii) and
n ≥ 2, then infR̂jz∈Bn\Bn ,

r>1

(r|zj|) =
√

1 − ∑n
s=1,s ̸=j |zs|2 because R̂jz ∈ ∂Bn is equivalent to

|rzj| =
√

1 − ∑n
s=1,s ̸=j |zs|2. Thus, we obtain such a condition lj(z) > β√

1−∑n
s=1,s ̸=j |zs |2−|zj |

for

the ball. We prove that (
1 −

n

∑
s=1,s ̸=j

|zs|2
)1/2

− |zj| ≥
1 −

√
∑n

s=1 |zs|2√
n

for |z| < 1. Denoting |zj| = r1 and ∑n
s=1,s ̸=j |zs|2 = r2

2, we rewrite the last inequality as√
1 − r2

2 − r1 ≥ 1−
√

r2
1+r2

2√
n . Since n ≥ 2, it is sufficient to prove

√
1 − r2

2 − r1 ≥ 1−
√

r2
1+r2

2√
2

for r2
1 + r2

2 ≤ 1, r1 ≥ 0, r2 ≥ 0, or
√

1 − r2
2 − r1 −

1−
√

r2
1+r2

2√
2

≥ 0. Introducing the function

h(r1, r2) =
√

1 − r2
2 − r1 −

1−
√

r2
1+r2

2√
2

and using optimization methods, it can be proved that

min
r2

1+r2
2≤1

r1≥0,r2≥0

h(r1, r2) = 0.

In other words, we have

lj(z) >
β√

1 − ∑n
s=1,s ̸=i |zs|2 − |zj|

≥ β
√

n
(1 − |z|) .

The right-hand side is the function used for conditions by the function L in paper [15], where
holomorphic functions having the unit ball as the domain of holomorphy within the theory of
bounded L-index in joint variables were investigated. In other words, condition (2) is no harder in
the case of the unit ball than the standard condition lj(z) >

β
√

n
1−|z| , which appeared in paper [15]. But

the condition (2) is universal for all complete Reinhardt domains. Besides the unit polydisc above,
it completely matches with a condition by the mapping of L defined in the Cartesian product of a
complex plane and the unit disc, i.e., C×D. Some results are known on the finiteness of L-index in
joint variables for analytic functions whose domain of holomorphy is the specified Cartesian product.

If n = 1, then G1 = B1 = D1, and the case is considered above for the polydisc.
If G = Πn(1), then infR̂jz∈∂Πn(1),

r>1

(r|zj|) = 1 − ∑n
s=1,s ̸=i |zs|. Hence, lj(z) >

β
1−∑n

s=1 |zs | .

2. Behavior on Polydiscs of Mixed Derivatives of Holomorphic Functions

The analogues of the following theorem are fundamental to the theory of functions
with finite index for various classes of holomorphic functions. For entire multivariate
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complex-valued functions, this was deduced by F. Nuray and R. Patterson in [18]. This
is a starting point to establish more usable criteria providing finiteness of the index for
various function classes. They characterize the maximum modulus of mixed derivatives
on a polydisc or logarithmic derivative modulus in each variable separately, outside some
exceptional sets (see [15,31,32]). The orders of partial derivatives are uniformly bounded by
some positive integer depending only on the radii of the polydiscs, the analytical function,
and the auxiliary function. In fact, the amount depends only on behavior characteristic of
the vector-valued function L and the value of L-index in joint variables. In this section, we
also considered the replacement of the maximum modulus of partial derivatives by some
fraction that matches with the Taylor–Maclaurin coefficient for multiple power series if the
mapping L identically equals a vector consisting only of units.

Theorem 1. Let G be a complete multiple-circular domain; the mapping L belongs to the class
Q(G). The joint L-index for a function H belonging to the class An(G) is finite if and only if,
for any vector-radius R taken from the Cartesian product Bn, it is possible to find such a positive
integer n0 and a positive real d0 that, for every point z0 within the domain G, there exists a mixed
derivative order K0 (n-dimensional positive integer vector), whose height ∥K0∥ does not exceed the
integer n0, and

max

{
|H(k1,...,kn)(z)|

k1! · · · kn!(L(z))(k1,...,kn)
: k1 + · · ·+ kn ≤ n0, z ∈ Dn

[
z0,

R
L(z0)

]}
≤ d0

|H(K0)(z0)|
K0!LK0(z0)

. (5)

Proof. We will start with the proof of necessity. Let H be a holomorphic function in
the complete Reinhardt domain G. Assume that N = N(H, L,G) < ∞, i.e., the analytic
functions’ class with finite L-index in joint variables, at least, contains the function H. For
every radii R chosen from the Cartesian product Bn, we set

q = q(R) = q(r1, r2, . . . , rn) = 1 +

[
(2N + 2)(r1 + r2 + . . . rn)

n

∏
j=1

(λj(R))2N+1

]
.

Here, the square brackets [b] mean the integer part of the real number b, i.e., it is the floor
function. For every natural number p chosen from the finite set {0, 1, 2, . . . , q} and for every
point z0 = (z0

1, . . . , z0
n) lying in the complete multiple-circular domain G, we tag

Sp(z0, R) = Sp((z0
1, . . . , z0

n), (r1, . . . , rn)) =

= max

{
|H(k1,...,kn)(z1, . . . , zn)|

k1! · · · kn!L(k1,...,kn)(z1, . . . , zn)
: k1 + · · ·+ kn ≤ N, z ∈ Dn

[
z0,

p · (r1, . . . , rn)

qL(z0
1, . . . , z0

n)

]}
,

S∗
p(z

0, R) = max

{
|H(k1,...,kn)(z)|

k1! . . . kn!L(k1,...,kn)(z0)
: k1 + · · ·+ kn ≤ N, z ∈ Dn

[
z0,

pR
qL(z0)

]}
.

In these designations, the S∗
p(z0, R) differs on Sp(z0, R), the replacement value of mapping

L at arbitrary point z within the polydisc by the value of mapping L at the center of
the polydisc. We deduce estimate Sp(z0, R) by S∗

p(z0, R). By definitions of Sp(z0, R) and
S∗

p(z0, R), we get

Sp(z0, R) =max

{
|H(K)(z)|
K!LK(z)

LK(z0)

LK(z0)
: ∥K∥ ≤N, z ∈Dn

[
z0,

pR
qL(z0)

]}
≤

≤ S∗
p(z

0, R)max

{
n

∏
j=1

lN
j (z0)

lN
j (z)

: z ∈ Dn
[

z0,
pR

qL(z0)

]}
.
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But, since Dn
[
z0, pR

qL(z0)

]
⊂ Dn

[
z0, R

L(z0)

]
, by using definition (4), we obtain

Sp(z0, R) ≤S∗
p(z

0, R)
n

∏
j=1

(
max

{
lj(z0)

lj(z)
: z ∈ Dn

[
z0,

(r1, r2, . . . , rn)

L(z0)

]})N

≤

≤ S∗
p(z

0, R)
n

∏
j=1

(λj(R))N . (6)

Similarly, in view of (4), we establish the estimate S∗
p(z0, R) by Sp(z0, R):

S∗
p(z

0, R)=max

{
|H(K)(z)|
K!LK(z)

LK(z)
LK(z0)

: ∥K∥≤N, z ∈ Dn
[

z0,
pR

qL(z0)

]}
≤

≤max

{
|H(K)(z)|
K!LK(z)

(
Λ
( p

q
R
))K

: ∥K∥ ≤N, z ∈ Dn
[

z0,
pR

qL(z0)

]}
≤

≤Sp(z0, R)
n

∏
j=1

(λj(R))N . (7)

We chose the mixed derivative order K(p) and the point z(p) within the closed polydisc,
with center at point z0 and vector-radius p

q · R
L(z0)

, by the following conditions:

(1) the height of the n-dimensional positive integer vector ∥K(p)∥ = k(p)
1 + . . . + k(p)

n is
not greater than N;

(2) as a two-parametric maximum above the total points within a polydisc and above
a finite set of partial derivatives whose heights are bounded from above by N, the quantity
S∗

p(z0, R) is attained at z = z(p) and K = K(p), i.e., the order K(p) ∈ Zn
+ and the point

z(p) ∈ Dn
[
z0, pR

qL(z0)

]
satisfy the equality

S∗
p(z

0, R) =
|H(K(p))(z(p))|
K(p)!LK(p)

(z0)
. (8)

We will apply the multidimensional maximum modulus principle. By this principle, the
point z(p) must lie on the polydisc skeleton Tn(z0, pR

qL(z0)
). This means that the point z(p)

differs from the center z0 of the polydisc. We construct an intermediate point z̃(p) on a
line between two specified points: the center z0 of the polydisc and maximum point z(p)

on the polydisc skeleton. The j-th coordinate of the point z̃(p) is evaluated by the rule:
z̃(p)

j = z0
j +

p−1
p (z(p)

j − z0
j ). For further transformations, it needs to estimate consecutive

distances between the points z0, z̃(p) and z(p). Making elementary calculations in each
coordinate, we establish for every j ∈ {1, 2, 3, . . . , n}:

|z̃(p)
j − z0

j | =
p − 1

p
|z(p)

j − z0
j | =

p − 1
p

prj

qlj(z0)
, (9)

|z̃(p)
j − z(p)

j | = |z0
j +

p − 1
p

(z(p)
j − z0

j )− z(p)
j | = 1

p
|z0

j − z(p)
j | =

=
1
p

prj

qlj(z0)
=

rj

qlj(z0)
. (10)

The coordinate-wise estimate (9) of distance shows that the intermediate point z̃(p) gets
into the closed polydisc Dn

[
z0, (p−1)R

q(R)L(z0)

]
, i.e., it lies within the polydisc with the same

center, and the vector-radius decreases by R
q(R)L(z0)

. Therefore, S∗
p−1(z

0, R) as the maximum
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of the expression |H(K(p))(z)|
K(p) !LK(p)

(z0)
above all points within the polydisc is greater than the value

|H(K(p))(z̃(p))|
K(p) !LK(p)

(z0)
, i.e., it exceeds the value at the specified point z̃(p) lying on the skeleton of the

same polydisc:

S∗
p−1(z

0, (r1, r2, . . . , rn)) ≥
|H(k(p)

1 ,...,k(p)
n )(z̃(p)

1 , . . . , z̃(p)
n )|

k(p)
1 ! · · · k(p)

n !l
k(p)

1
1 (z0) · · · lk(p)

n
n (z0)

.

The last inequality and definition of z̃(p) in equality (8) together imply such an upper
estimate of difference between consecutive quantities S∗

p(z0, R) and S∗
p−1(z

0, R):

0 ≤ S∗
p(z

0, (r1, r2, . . . , rn))− S∗
p−1(z

0, (r1, r2, . . . , rn)) ≤

≤
|H(k(p)

1 ,...,k(p)
n )(z(p)

1 , . . . , z(p)
n )| − |H(k(p)

1 ,...,k(p)
n )(z̃(p)

1 , . . . , z̃(p)
n )|

k(p)
1 ! · · · k(p)

n !l
k(p)

1
1 (z0) · · · lk(p)

n
n (z0)

.

Connecting the points z(p) and z̃(p) by a parametric line z̃(p)+ t(z(p)− z̃(p)) for t ∈ [0, 1] and

replacing the difference |H(k(p)
1 ,...,k(p)

n )(z(p)
1 , . . . , z(p)

n )| − |H(k(p)
1 ,...,k(p)

n )(z̃(p)
1 , . . . , z̃(p)

n )| with an
integral along the line, we deduce:

0 ≤ S∗
p(z

0, (r1, r2, . . . , rn))− S∗
p−1(z

0, (r1, r2, . . . , rn)) ≤

≤ 1

K(p)!LK(p)
(z0)

∫ 1

0

d
dt
|H(K(p))(tz(p) + (1 − t)z̃(p))|dt.

Further, we evaluate the derivative in the parameter t. For such a goal, we use the derivative
from the modulus of a function that is less than the modulus of the derivative of the function,
i.e., |ϕ(t)|′ ≤ |ϕ′(t)| for every t, excluding zeros, of the function ϕ. These transformations
generate the following estimate:

0 ≤ S∗
p(z

0, (r1, r2, . . . , rn))− S∗
p−1(z

0, (r1, r2, . . . , rn)) ≤

≤ 1

K(p)!LK(p)
(z0)

∫ 1

0

n

∑
j=1

|z(p)
j − z̃(p)

j |
∣∣∣H(K(p)+1j)(tz(p) + (1 − t)z̃(p))

∣∣∣dt.

Hence, by the mean value theorem, we can replace the sum under the integral in the real
parametric variable t by a value at some point t∗ belonging to the interval [0, 1]:

0 ≤ S∗
p(z

0, (r1, r2, . . . , rn))− S∗
p−1(z

0, (r1, r2, . . . , rn)) ≤

≤ 1

K(p)!LK(p)
(z0)

n

∑
j=1

|z(p)
j − z̃(p)

j |
∣∣∣H(K(p)+1j)(t∗z(p) + (1 − t∗)z̃(p))

∣∣∣, (11)

where the point tz(p)+(1− t)z̃(p) is contained in the polydisc Dn(z0, pR
qL(z0)

). For every point

z within the domain Dn(z0, pR
qL(z0)

), and for each partial derivative order J = (j1, j2, . . . , jn)
whose height ∥J∥ = j1 + j2 + · · ·+ jn is less than the joint L-index increased by 1, by using
(4), we deduce that:
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|H(j1,...,jn)(z1, . . . , zn)|
j1! · · · jn!LJ(z1, . . . , zn)

LJ(z1, . . . , zn)

LJ(z0
1, . . . , z0

n)
≤

≤ (Λ(R))J max

{
|H(k1,...,kn)(z1, . . . , zn)|

k1! · · · kn!LK(z1, . . . , zn)
: ∥K∥ = k1 + k2 + · · ·+ kn ≤ N

}
≤

≤
n

∏
j=1

(λj(R))2N+1 max

{
|H(k1,...,kn)(z1, . . . , zn)|

k1! · · · kn!LK(z0)
: ∥K∥ ≤ N

}
≤

≤
n

∏
j=1

(λj(R))2N+1S∗
p(z

0, R).

Here, Λ(R) = (λ1(R), . . . , λn(R)). Above, we estimate the fraction LJ(z1,...,zn)

LJ(z0
1,...,z0

n)
by the

(Λ(R))J . This is possible because the mapping L belongs to the class Q(G).
Now, we successively apply the last inequality to (11), substituting the distance esti-

mate (10) and the expression from the definition of q(R). It yields:

0 ≤ S∗
p(z

0, (r1, r2, . . . , rn))− S∗
p−1(z

0, (r1, r2, . . . , rn)) ≤

≤ S∗
p(z

0, (r1, r2, . . . , rn))
n

∏
j=1

(λj(R))2N+1
n

∑
j=1

(k(p)
j + 1)lj(z0)|z(p)

j − z̃(p)
j | =

=
n

∏
j=1

(λj(r1, r2, . . . , rn))
2N+1 S∗

p(z0, (r1, r2, . . . , rn))

q(r1, r2, . . . , rn)

n

∑
j=1

(k(p)
j + 1)rj ≤

≤
n

∏
j=1

(λj(r1, r2, . . . , rn))
2N+1 S∗

p(z0, R)
q(R)

(N + 1)∥R∥ ≤ 1
2

S∗
p(z

0, (r1, r2, . . . , rn)).

Combining the start and the end of our considerations above, we conclude that:

S∗
p(z

0, (r1, r2, . . . , rn))− S∗
p−1(z

0, (r1, r2, . . . , rn)) ≤
1
2

S∗
p(z

0, (r1, r2, . . . , rn)).

After simplification and reducing similar summands, this inequality transforms into the
following: S∗

p(z0, (r1, r2, . . . , rn)) ≤ 2S∗
p−1(z

0, (r1, r2, . . . , rn)). Applying successively the
estimate Sp(z0, (r1, r2, . . . , rn)) by S∗

p(z0, (r1, r2, . . . , rn)), the last inequality and the con-
verse estimate S∗

p(z0, (r1, r2, . . . , rn)) by Sp(z0, (r1, r2, . . . , rn)) (we take them from (6)–(7)),
one has:

Sp(z0, (r1, r2, . . . , rn))≤2
n

∏
j=1

(λj(r1, r2, . . . , rn))
NS∗

p−1(z
0, (r1, r2, . . . , rn))≤

≤ 2
n

∏
j=1

(λj(R))2NSp−1(z0, (r1, r2, . . . , rn)). (12)

Therefore, successively applying the inequality (12) firstly for p = q, then for p = q − 1,
and finally for p = 1, we obtain:
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max

{
|H(k1,...,kn)(z)|

k1! · · · kn!LK(z)
: k1+· · ·+kn ≤N, z ∈ Dn

[
z0,

p
q
· R

L(z0)

]}
= Sq(z0, (r1, r2, . . . , rn)) ≤

≤ 2
n

∏
j=1

(λj(r1, r2, . . . , rn))
2NSq−1(z0, (r1, r2, . . . , rn)) ≤ . . . ≤

≤ (2
n

∏
j=1

(λj(r1, r2, . . . , rn))
2N)qS0(z0, R) =

= (2
n

∏
j=1

(λj(r1, r2, . . . , rn))
2N)q max

{
|H(k1,...,kn)(z0)|

k1! . . . kn!LK(z0)
: k1 + · · ·+ kn ≤ N

}
. (13)

If we compare estimate (13) and inequality (5) among themselves, then we see that this
form of necessity condition is valid with such a parameter

d0 = 2q(R)(λ1(R) · λ2(R) · · · λn(R))2Nq(R)

and with some partial derivative order K0 (non-negative integer n-dimensional vector),
for which its height is less than N, i.e., it does not exceed the joint L-index. We chose the
parameter K0 as the vector, at which the maximum of the fraction

|H(k1,...,kn)(z0)|
k1! . . . kn!lk1

1 (z0) · · · lkn
n (z0)

is attained above a finite set of all possible partial derivative orders (k1, . . . , kn) whose
height k1 + ·+ kn is less than the joint L-index. It completely finishes the proof of necessity
for condition (5).

Let us move on to the sufficiency proof for the same restriction, i.e., the maximum
modulus estimate (5) in the polydiscs for the expressions containing the partial derivatives,
the vector factorial, and the vector K-th degree of the mapping L. Assume that, for every
real vector-radius R = (r1, r2, . . . , rn) ∈ Bn, we can find an upper estimate of index n0
belonging to the set of positive integer numbers and positive real multiplier d0 greater than
1 such that, for any point z0 = (z0

1, z0
2, . . . , z0

n) from the domain G, it is possible to fit the
partial derivative order K0 ∈ Zn

+ with its height less than the upper estimate of index n0
and for which the sufficiency condition (5) holds.

For further goals, we need an integral Cauchy’s formula for analytic multivariate
function written by an integral on the polydisc skeleton as follows. For any point z0 ∈ G,
for every partial derivative order K ∈ Zn

+, and for every partial derivative order S ∈ Zn
+,

the following equality must be satisfied:

H(k1+s1,...,kn+sn)(z0)

s1! · · · sn!
= (2πi)−n

∫
Tn
(

z0, R
L(z0)

) H(k1,...,kn)(z)
(z1 − z0

1)
s1+1 · · · (zn − z0

n)sn+1
dz.

Therefore, we apply (5) to the right-hand side of the integral Cauchy’s formula:
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|H(k1+s1,...,kn+sn)(z0)|
s1! . . . sn!

≤ (2π)−n
∫
Tn
(

z0, R
L(z0)

) |H(k1+...+kn)(z)|
|z1 − z0

1|s1+1 . . . |zn − z0
n|sn+1

|dz| ≤

≤
∫
Tn
(

z0, R
L(z0)

) |H(K)(z)| LS+1(z0)

(2π)nRS+1 |dz| ≤

≤
∫
Tn
(

z0, R
L(z0)

) |H(K0)(z0)|
K!d0 ∏n

j=1 λn0
j (R)LS+K+1(z0)

(2π)nk0
1! · · · k0

n!r1
s1+1 · · · rnsn+1(L(z0

1, . . . , z0
n))K0 |dz| =

= |H(k0
1,...,k0

n)(z0
1, . . . , z0

n)|
K!d0 ∏n

j=1 λn0
j (R)LS+K(z0

1, . . . , z0
n)

k0
1! · · · k0

n!r1
s1 · · · rnsn(L(z0

1, . . . , z0
n))K0 .

After multiplication of the last expression by the fraction S!
(K+S)!L(z0)

, it creates an estimate
that implies:

|H(k1+s1,...,kn+sn)(z0)|
(K + S)!LS+K(z0)

≤
∏n

j=1 λn0
j (R)p0K!S!

(K + S)!RS
|H(K0)(z0)|
K0!LK0(z0)

. (14)

Obviously, s! ≤ (k+s)!
k! = (k + 1)(k + 2) · · · (k + s) for all natural numbers k, s, so

K!S!
(K + S)!

=
s1!

(k1 + 1)(k1 + 2) · . . . · (k1 + s1)
· · · sn!

(kn + 1)(kn + 2) · · · (kn + sn)
≤ 1.

The j-th component rj of radius-vector R is chosen from the half-open interval (1, β], where
β is given by condition (2) on the mapping L. Combining this choice in each dimension
up to n, we construct the radius-vector R = (r1, . . . , rn), which belongs to the Cartesian
product Bn of the specified half-closed interval. Since RS = rs1

1 · · · rsn
n increases for the

chosen radius-vector R as s1 + s2 + . . . + sn → ∞, the multiplier
d0 ∏n

j=1 λ
n0
j (R)

RS in (14) is
tending to zero as ∥S∥ → +∞. This implicitly confirms an existence of s0 such that, for all
S ∈ Zn

+, ∥S∥ ≥ s0, the next right-hand side multiplier

p0
k1! · · · kn!s1! · · · sn! ∏n

j=1 λn0
j (r1, . . . , rn)

rs1
1 · · · rsn

n (k1 + s1)! · · · (kn + sn)!

concerning |H(K0)(z0)|
K0!LK0 (z0)

at the end of (14) also belongs to the segment [0, 1]. After replacement

of the multiplier by inequality (14), it yields

|H(k1+s1,...,kn+sn)(z0)|
lk1+s1
1 (z0) · · · lkn+sn

n (z0)(k1 + s1)! . . . (kn + sn)!
≤ |H(k0

1,...,k0
n)(z0)|

k0
1! · · · k0

n!LK0(z0)
.

This means that, for every z0 and J ∈ Zn
+,

|H(J)(z0)|
J!

L−J(z0) ≤ max

{
|H(K)(z0)|

K!
L−K(z0) : k1 + · · ·+ kn ≤ s0 + n0

}
,

where the natural numbers s0 and n0 do not depend on z0. Therefore, for the analytic in
the complete multiple-circular domain function H, its joint L-index must be finite, and it is
bounded from above by the sum s0 + n0.

Theorem 2. Let G be a complete Reinhardt domain; the mapping L belongs to the class Q(G).
In order that a holomorphic function H ∈ An(G) might be of finite L-index in joint variables, it
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is necessary that, for every radius-vector R ∈ Bn, there exists an upper estimate of joint index
n0 ∈ Z+, and there exists the uniform estimate d ≥ 1 of the quotient of the maximum modulus of the
partial derivative on a polydisc by the value of the modulus at the center of the polydisc. Additionally,
for every point z0 from the complete multiple-circular domain, one can find the partial derivative
order K0 (as an n-dimensional non-negative integer vector), whose height ∥K0∥ = k0

1 + · · · k0
n is

less than n0 and

max
{
|H(K0)(z)| : z ∈ Dn

[
z0, R/L(z0)

]}
≤ d|H(K0)(z0)|, (15)

and it is sufficient that, for each radius-vector R ∈ Bn, there exists n0 ∈ Z+ and d ≥ 1 such that,
for all z0 ∈ G and for every j ∈ {1, . . . , n}, one can find the partial derivative in the j-th variable
K0

j = (0, . . . , 0, k0
j︸︷︷︸

j-th place

, 0, . . . , 0), whose order k0
j is less than n0 and whose maximum modulus of

the K0
j -th order partial derivative of the function H within the polydisc with the center z0 and the

radius R/L(z0) is not greater than the value of the modulus of the derivative at the center of the
polydisc, i.e.,

max
{
|H(K0

j )(z)| : z ∈ Dn
[

z0,
R

L(z0)

]}
≤ d|H(K0

j )(z0)|. (16)

Proof. Analyzing the proof of Theorem 1, we can discover that the inequality (5) is satisfied
for some partial derivative order K0. Rewriting (5) in the converse order and using a lower
estimate concerning the behavior of the mapping L, we establish that we have:

d0

K0!
|H(K0)(z0)|

LK0(z0)
≥ max

{
|H(K0)(z)|
K0!LK0(z)

: z ∈ Dn
[
z0, R/L(z0)

]}
=

= max

{
|H(K0)(z)|

K0!
LK0

(z0)

LK0(z0)LK0(z)
: z ∈ Dn

[
z0, R/L(z0)

]}
≥

≥ max

{
|H(K0)(z)|

K0!
∏n

j=1 (λj(R))−n0

LK0(z0)
: z ∈ Dn

[
z0, R/L(z0)

]}
.

Multiplying this estimate by the product ∏n
j=1 (λj(R))n0 , one has

d0 ∏n
j=1(λj(R))n0

K0!
|H(K0)(z0)|

LK0(z0)
≥

≥ max

{
|H(K0)(z)|
K0!LK0(z0)

: z ∈ Dn
[
z0, R/L(z0)

]}
. (17)

Putting d = d0 ∏n
j=1 (λj(R))n0 above, we transform estimate (17) into inequality (15).

The sentence finishes the proof of necessity for condition (15).
To justify the sufficiency of (16), we suppose that, for each radius-vector R ∈ Bn, one

can find the upper estimate of index n0 ∈ Z+ and d > 1 such that, for any point z0 from
the Reinhardt domain G and some K0

J ∈ Zn
+ with k0

j ≤ n0, inequality (16) holds.
As in the proof of the previous theorem, we again write the integral Cauchy’s formula

for an analytical function in the following form: for any point z0 ∈ G and each partial
derivative order S ∈ Zn

+:

H(K0
J+S)(z0)

S!
=

1
(2πi)n

∫
Tn(z0,R/L(z0))

H(K0
J )(z1, . . . , zn)

(z1 − z0
1)

s1+1 · · · (zn − z0
n)sn+1

dz.
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We take the modulus from both parts and select the left-hand side of the sufficiency
condition in each variable:

|H(K0
j +S)

(z0)|
S!

≤ (2π)−n
∫
Tn(z0,R/L(z0))

|H(K0
j )(z)|

|z − z0|S+1 |dz| ≤

≤ (2π)−n max{|H(K0
j )(z)| : z ∈ Dn

[
z0, R/L(z0)

]
}LS+1(z0)

RS+1 ×

×
∫
Tn(z0,R/L(z0))

|dz| = max{|H(K0
j )(z)| : z ∈ Dn

[
z0, R/L(z0)

]
}LS(z0)

RS .

In the last expression, we substitute the maximum possible values of the radius-vector
R = (β, . . . , β) and estimate the maximum modulus by the sufficiency condition (16) in
each variable:

|H(K0
j +S)

(z0)|
S!

≤ LS(z0)

β∥S∥ max{|H(K0
j )(z)| : z ∈ Dn

[
z0, R/L(z0)

]
} ≤

≤ dLS(z0)

β∥S∥ |H(K0
j )(z0)|. (18)

The partial derivative order S ∈ Zn
+ will be chosen such that s1 + . . . + sn ≥ s0 and such

that s0 is defined by the restriction d
βs0 ≤ 1. Therefore, (18) implies that, for all j ∈ {1, . . . , n}

and k0
j ≤ n0:

|H(K0
j +S)

(z0)|

LK0
j +S

(z0)(K0
j +S)!

≤ d
β∥S∥

S!K0
j !

(S + K0
j )!

|H(K0
j )(z0)|

LK0
j (z0)K0

j !
≤ |H(K0

j )(z0)|

LK0
j (z0)K0

j !
.

Consequently, joint L-index N(H, L,G) of the analytic function H in the Reinhardt domain
is not greater than the sum of n0 and s0.

Remark 2. We write a few considerations concerning estimate (15). It is a characterization property
of finiteness of the l-index for the univariate complex-valued holomorphic function [28,31,32].
However, for some time, it was unknown whether this condition is sufficient so that the L-index in
joint variables for a holomorphic function is uniform bounded above all points from the holomorphy
domain. At the present moment, there are examples of functions with finite L-index in joint
variables and unbounded l-index in each variable for any positive continuous function l. The
presented conditions (16) in each variable are a certain multidimensional counterpart for the
sufficient conditions.

Lemma 1. Assume that the mappings L1 and L2 belong to the class Q(G) and that, for every point
z ∈ G, the inequality 1 ≤ L1(z) ≤ L2(z) holds as a component-wise inequality. If the joint index
for an analytic function H ∈ An(G) is bounded for the lesser function L1,. i.e., N(F, L1,G) < +∞,
then the joint index for the analytic function H ∈ An(G) is also bounded for the greater func-
tion L2, i.e., N(F, L2,G) < +∞, and the joint index concerning the greater auxiliary function
does not exceed the joint index concerning the lesser auxiliary function increased by n times,
i.e., N(H, L2,G) ≤ nN(H, L1,G).

Proof. For simplicity of notation, we set N(H, L1,G) = n0. Using inequality (3) from the
definition of joint index, we write the appropriate expression for the function L2 and replace
it with the function L1:
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|H(j1,...,jn)(z)|
j1! · · · jn!LJ

2(z)
=

LJ
1(z)

LJ
2(z)

|H(j1,...,jn)(z)|
j1! · · · jn!LJ

1(z)
≤

≤
LJ

1(z)

LJ
2(z)

max

{
|H(k1,...,kn)(z)|

k1! · · · kn!LK
1 (z)

: k1 + · · ·+ kn ≤ n0

}
≤

≤
LJ

1(z)

LJ
2(z)

max

{
LK

2 (z)
LK

1 (z)
|H(k1,...,kn)(z)|

k1! · · · kn!LK
2 (z)

: k1 + · · ·+ kn ≤ n0

}
≤

≤ max
k1+···+kn≤n0

(
L1(z)
L2(z)

)J−K
max

{
|H(k1,...,kn)(z)|

k1! · · · kn!LK
2 (z)

: k1 + . . . + kn ≤ n0

}
.

Since 1 ≤ L1(z) ≤ L2(z), we can bound the expression maxk1+···+kn≤n0

(
L1(z)
L2(z)

)J−K
by one

from above. Then, for every j1 + · · ·+ jn ≥ n · n0:

|H(J)(z)|
J!LJ

2(z)
≤ max

{
|H(K)(z)|
K!LK

2 (z)
: K ∈ Zn

+, ∥K∥ ≤ n0

}
.

The last inequality means finiteness of the joint L2-index for the holomorphic function H in
the whole complete multiple-circular domain, and N(H, L2,G) ≤ nN(H, L1,G).

Let us introduce the second auxiliary function L̃(z) = (l̃1(z), . . . , l̃n(z)). The notation
L ≍ L̃ stands for the existence of two n-dimensional positive real vectors Θ1 = (θ1,j, . . . , θ1,n)

and Θ2 = (θ2,j, . . . , θ2,n), for which θ1,j l̃j(z) ≤ lj(z) ≤ θ2,j l̃j(z) for every j ∈ {1, 2, 3, . . . , n}
in the whole Reinhardt domain concerning the variable z.

Theorem 3. Let L ∈ Q(G), L ≍ L̃, βΘ1 > 1. A function H belonging to the class An(G) of
analytic functions has bounded L̃-index in joint variables if and only if the function is of finite joint
L-index.

Proof. Using the definition of the auxiliary class Q(G), it can be checked that, if L ∈ Q(G)
and L ≍ L̃, then L̃ ∈ Q(G).

As above, for simplicity, we put N(H, L̃,G) = ñ0 as finite. Then, by Theorem 1 for
every radius-vector R̃ = (r̃1, . . . , r̃n) taken from the Cartesian product Bn, there must exist a
real d̃ ≥ 1 such that inequality (5) holds at all points z0 ∈ G chosen as centers of polydiscs of
domain exhaustion and some K0 dependent on z0 with the height less than ñ0. In addition,
we replace the auxiliary function L with L̃ and change the positive real radius-vector R by
R̃ in (5). Hence:

d̃
K0!

|H(K0)(z0)|
LK0(z0)

=
d̃

K0!
ΘK0

2 |H(K0)(z0)|
ΘK0

2 LK0(z0)
≥ d̃

ΘK0
2

|H(K0)(z0)|
L̃K0(z0)K0!

≥

≥ 1

ΘK0
2

max

{
|H(K)(z)|
K!L̃K(z)

: k1 + . . . + kn ≤ ñ0, z ∈ Dn
[
z0, R̃(L̃(z))−1

]}
≥

≥ 1

ΘK0
2

max

{
ΘK

1 |H(K)(z)|
K!LK(z)

: k1 + . . . + kn ≤ ñ0, z ∈ Dn
[
z0, Θ1R̃(L(z))−1

]}
≥

≥
min

0≤∥K∥≤n0
{ΘK

1 }

ΘK0
2

max

{
|H(K)(z)|
K!LK(z)

: k1 + . . . + kn ≤ ñ0, z∈Dn
[
z0, Θ1R̃(L̃(z))−1

]}
.

Again using Theorem 1 in the converse direction, we conclude that the function H is of
finite L-index in joint variables.
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Theorem 4. Let an auxiliary function L belong to Q(G). A function H from the class An(G) is
of finite joint L-index if and only if there exist a radius-vector R ∈ Bn, an upper estimate of index
n0 ∈ Z+, a uniform estimate d0 > 1 of local growth of the maximum modulus such that, for every
point z0 ∈ G and for some K0 ∈ Zn

+ with ∥K0∥ ≤ n0, inequality (5) holds.

Proof. The necessity of Theorem 1 is proved above for all possible values of radius-vector
from the Cartesian product Bn. In the present theorem, it is required for one radius-
vector. Therefore, it follows from the specified theorem. We will organize the proof of the
sufficiency by the schema of sufficiency proof from Theorem 1. The proof of Theorem 1
with R = (β, . . . , β) implies that N(H, L,G) < +∞.

Let us introduce the auxiliary new function L∗(z) = R0L(z)
R , where R0 = (β, . . . , β) and

where the parameter β is chosen by the property of the function L. We will try to justify
validity of (5) for any radius-vector if it is true for H, L, and some R = (r1, . . . , rn) ∈ Bn

with R ̸= R0; we obtain:

max

{
|H(K)(z)|

K!(L∗(z0))K : ∥K∥ ≤ n0, z ∈ Dn
[
z0, R0/L∗(z0)

]}
=

= max

{
|H(K)(z)|

K!(R0L(z)/R)K : ∥K∥ ≤ n0, z ∈ Dn
[
z0, R0/(R0L(z)/R)

]}
≤

≤ max

{
n∥K∥/2|H(K)(z)|

K!LK(z)
: ∥K∥ ≤ n0, z∈Dn

[
z0, R/L(z0)

]}
≤

≤ d0

K0!
nn0/2|H(K0)(z0)|

LK0(z0)
=

nn0/2β∥K0∥d0

RK0 K0!
|H(K0)(z0)|

(R0L(z)/R)K0 <

< nn0/2d0 max

{
β∥K0∥

RK0 : ∥K0∥ ≤ n0

}
|H(K0)(z0)|

K0!(L∗(z))K0 .

Therefore, (5) is satisfied for the holomorphic function H, the auxiliary mapping L∗, and
radius-vector R0 = (β, . . . , β). Further, we will apply Theorem 1 to the holomorphic
function H(z) and the following mapping: L∗(z) = R0/RL(z). This application leads us to
the conclusion that H has finite joint L∗-index. Then, we can refer to Theorem 3 to justify
the boundedness of joint L-index for the function H, which is analytic in the complete
multiple-circular domain.

3. Discussion

The obtained results are the basis for further investigations of analytic functions in
a complete Reinhardt domain by usage of the notion of L-index in joint variables. For
entire multivariate complex-valued functions and analytical functions in the unit ball,
there are known results describing estimates of partial logarithmic derivatives [15], value
distribution [20,33,34], and applications in analytic theory of systems of partial differential
equations [16,35,36]. The Reinhardt domain has the fine property of so-called circular
symmetry in differential geometry (or multiple-circularity in multidimensional complex
analysis). The property means that rotations by a circle in each variable do not move
points outside the Reinhardt domain. Taking this into account, we hope that most of the
known results for entire functions can be generalized for analytic functions in a complete
Reinhardt domain in the framework of the theory of functions having a bounded index.
Moreover, we do not know lower growth estimates for entire functions with finite L-index
in joint variables. Meanwhile, the symmetry and completeness of the Reinhardt domain
require new, more difficult, and powerful methods for investigations. In view of this, these
newly developed methods will allow us to solve the problems that are still unsolved for
n-dimensional complex space, such as the complete regular growth of entire functions of
several complex variables [37], lower growth estimates for this class of functions [15], index
estimates for solutions of infinite order linear differential equations [29], etc.
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