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Abstract: The inherent negative impedance characteristics of a Constant Power Load (CPL) pose
a potential threat to the stability of the bus voltage in a DC microgrid consisting of a symmetrical
parallel boost converter. We suggest an adaptive feedback control technique using the input–output
exact feedback linearization theory for a boost converter integrated into a DC microgrid to improve
the stability of the DC bus voltage. This approach involves a transformation of the model into a
Brunovsky canonical form, effectively addressing the nonlinear challenges arising from the CPL and
the nonminimum phase characteristics of the boost converter. Subsequently, guided by the Lyapunov
approach, an adaptation law is established to fine-tune the controller’s gain vector, facilitating the
tracking of a predefined linearizing feedback control. We methodically create a method to choose the
gains of the adaptive controller in order to guarantee an adequate output response. We validate our
suggested controller’s performance using simulation.

Keywords: boost converter; constant power load; nonminimum phase; input–output feedback
linearization; adaptive control; Lyapunov theory

1. Introduction

Power system modeling and analysis are related to symmetry in the shift from con-
ventional power networks to smart grids. Because they enable impedance coupling in
electric source and load connections, electronic converters are frequently used in mod-
ern electronics. Asymmetrical electrical designs often increase unique features for better
overall performance.

In modern times, power electronic converters play a pivotal role in advanced electrical
systems for vehicles and DC microgrids, as documented in works such as [1–5]. Within
DC-distributed power systems, these converters are often connected in a cascaded manner.
Some of these converters serve as closely regulated loads, consuming constant power and
behaving as what are known as constant power loads (CPLs). These CPLs exhibit negative
incremental impedances, which can result in severe instability issues, posing a significant
challenge in the development of stabilizing controllers forsupplying DC-DC converters.

In the literature, you can find a multitude of controller designs for DC-DC converters
that provide power to CPLs. For instance, active damping techniques were introduced in [6],
while passive damping approaches were employed in [7–9] to counteract the destabilizing
effects of CPLs in DC-DC power converters.

References [10,11] provide passivity-based control solutions for a boost converter
that consider the load dynamics similar to a mainly constant power load. The passivity-
based controller derived from these works takes the form of a nonlinear inverse quadratic
proportional derivative (PD) controller [10,12]. An adaptive output feedback controller for
a boost converter is proposed in work [13] in order to rebuild the load conductance and
inductor current.
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However, it is essential to acknowledge that passivity-based control exhibits a notable
drawback: It is limited to systems with a relative degree of one and weakly minimum
phase systems, at the very least [14]. The authors of [10] difficulty that the unstable internal
dynamics of the boost converter present stability challenges for the suggested passivity-
based controller. Moreover, controllers derived from PD principles are susceptible to issues
related to noise.

An alternative approach, as presented in [11], introduces passivity-based control with
interconnection. Nonetheless, this implementation has its own limitation; it is organized
for a specific operating point of the constant power load [15]. In summary, passivity-
based control exhibits limited noise suppression primarily because of the presence of a
differentiator, and it tends to respond slowly [15]. On the other hand, references [16–20]
provide alternative nonlinear control methods, including sliding mode control, synergetic-
based control, current mode control, and model predictive control. Sliding mode control,
owing to its straightforward implementation and robustness, finds extensive applications
and has been employed in the stabilization of DC-DC converters and the mitigation of
instabilities caused by constant power loads (CPLs) [15,21,22]. Nonetheless, a significant
drawback of sliding mode control is the phenomenon known as “chattering” and variable
switching frequencies, which can impact the filtering requirements of the DC-DC boost
converter. Furthermore, sliding mode control is a form of inversion control that necessitates
the internal dynamics to possess stability.

In [23], synergetic based regulation is used; however, a disadvantage of this approach
is that it is highly susceptible to noise of high frequencies. In [16], current mode control has
been studied with an emphasis on system stability analysis in a small-signal setting.

Model predictive control has also been explored for the stabilization of multi-converter
systems supplying CPLs, representing a relatively new avenue for researchers with many
challenges yet to be fully addressed [20].

In theory, feedback linearization has the potential to offset any degree of constant
power load (CPL) and achieve system stabilization in a comprehensive, large-signal context,
as supported by references [15,24]. Feedback linearization typically revolves around the
pursuit of a nonlinear feedback mechanism that, when applied, effectively nullifies the
system’s inherent nonlinearity. This, in turn, allows for the application of conventional
linear control techniques in controller design [21]. However, the application of feedback
linearization is conventionally restricted to nonminimum phase systems. In the case of a
nonminimum phase boost converter, this limitation can be overcome by circumventing
the minimum phase requirement through the application of an input-state linearization
approach instead of input_output linearization, as discussed in [25].

It is important to note, however, that input-state linearization has a major limitation in
that it is not the best option for output tracking control unless there is a way to describe
the reference states in terms of the reference output trajectory. An alternative method for
controlling nonminimum phase boost converters involves the regulation of the output
voltage by indirectly regulating the inductor current, as proposed in [26]. The issue with
indirect regulation lies in its inability to shape the output response effectively. The response
of the output voltage follows the open-loop dynamics, leading to slower response times and
potential overshooting or undershooting. Moreover, this method exhibits high sensitivity to
changes in circuit parameters and variations in the load, as highlighted in references [27,28].
An alternative approach to regulating nonminimum phase systems involves redefining the
output in a way that transforms the system, with respect to this redefined output, into a
minimum-phase system, as suggested in [29–32].

In [33], exact linearization is used as an output redefinition technique to control the DCDC
boost converter. It achieves this by redefining the system’s output as a linear combination of
inductor current and output current, effectively converting it into a minimum phase system.
However, a notable drawback is the presence of significant output voltage errors in steady-
state. Additionally, precise knowledge of the load resistance is required when calculating the
reference current, and this parameter can vary, potentially complicating implementation for
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constant power loads (CPLs). Furthermore, the system is susceptible to transitioning between
minimum and nonminimum phase states during transient conditions, which may share
similar limitations with non direct voltage control. The use of voltage mode control in [34]
and a loop-cancellation technique in [24] are two examples of active damping methodologies
that use feedback linearization. But, the way it is described in [24] uses a highly noise-
sensitive differentiator block and a reciprocal block, both of which can be difficult to apply.
Furthermore, by adding a new state to the system’s modeling, this approach makes the
system more complex. In [34], the authors employ an active damping method to establish
small-signal stability. It is important to mention that the strategies outlined in [24,34] do not
modify the internal dynamics of the system, which leads to a system that is band-limited
and, as a result, responds more slowly. Stable Shortest Horizon FCS-MPC Output Voltage
Control in Nonminimum Phase Boost-Type Converters Based on Input-State Linearization is
an alternate method that is introduced in [35].

However, in order to ensure proper system functioning, a short-horizon FCS-MPC
controller based on input-state linearization is suggested. This implementation must
address the issue of the unstable internal dynamic.

Additional research exploring input-output feedback linearization methods can be
found in references [24,36–38]. In [24,36], the stabilization of a boost converter is achieved
for a combination load comprising a constant power load and a resistive load.

The authors in [39] use a full-order feedback controller for applying feedback lineariza-
tion using coordinate transformation for a system that is solely CPL-driven.

The previous literature review shows that the origin instability issues introduced by a
boost converter with a CPL can be traced to the nonminimum phase behavior. It has been
found that nonminimum phase behavior imposes limits on the control performance, and
the stability of dynamical systems is difficult to control.

It is evident that there is no universal solution to these challenges, and further research
is essential in this domain.

In order to address the challenges outlined above, this paper introduces an innovative
adaptive feedback nonlinear control approach. This approach combines the Input–Output Ex-
act Feedback Linearization technique with the Lyapunov approach to control a nonminimum
phase boost converter system that supplies power to a constant power load (CPL).

The method we propose involves a redefinition of the output by introducing a current
signal into the node voltage. This transformation converts the system model into a canonical
Brunovsky form. Our approach focuses on adjusting the gain vector of a nonlinear adaptive
controller as the control procedure unfolds. We aim to update this gain vector through a
suitable adaptation law, enabling the adaptive control to closely follow a predetermined
input_output feedback linearizing controller. By employing the principles of Lyapunov
theory, we establish that the desired trajectory can be effectively tracked by the output signal.

By taking the boost converter with a CPL as our control subject, we thoroughly analyze
the design steps of our proposed control strategy. Ultimately, we validate the effectiveness
of our proposed controller through simulations.

The paper is structured as follows: Section 2 introduces the establishment of the affine
nonlinear model for the boost converter with a constant power load in a DC microgrid.
Section 3 delves into a discussion on the zero dynamic stability of the system under varying
output functions, all based on the input_output feedback linearizing controller technique.
In Section 4, we put forth the nonlinear adaptive strategy and present proof of the global
asymptotic stability of the closed-loop system, drawing upon the principles of Lyapunov
stability theory. Simulation results are reported in Section 5. Finally, in Section 6, we
provide our concluding remarks.

2. System Description and Modeling
2.1. System Description

A typical DC microgrid configuration is seen in Figure 1 [13]. Through a DC-DC
converter, the DC source supplies the necessary voltage for the DC bus, and several



Symmetry 2024, 16, 352 4 of 15

electronic loads attached to the DC bus, such as the controlled rectifier or the inverter, can
be regarded as CPLs. In order to guarantee the appropriate operation of the different loads,
the bus voltage supplies a constant power to the CPLs as well as a constant voltage for the
resistive load.
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Figure 1. DC microgrid system configuration.

The DC bus voltage may fluctuate, and, possibly, the entire DC microgrid may become
unstable due to the CPL’s negative impedance characteristics, variations in the load, and
changes in the distributed power source. A condensed DC distribution system is displayed
in Figure 2. The resistive load and the CPL are linked in parallel to the DC bus in the
system, which is powered by the distributed power supply through a boost converter.
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Where E is the distributed power supply’s total input voltage, Lfil is its filter inductor,
Cf is its filter capacitor, R is its total resistive load, Vbus is its bus voltage, IL f il is the filter
inductor current, PCPL is its lumped constant power load, Io is its output current, Dd is its
diode, and Qs is its switching device. IP = PCPL/Vbus, where IP is the instantaneous value of
the CPL’s input current, gives the voltage current characteristics of a CPL.

2.2. Modeling System

As shown in Figure 2, assuming that the system operates in Continuous Current Mode
(CCM), state space averaging is used to create the average model of the boost converter
with a CPL, which can be expressed by the following equations:

dIL f il
dt = − Vbus

L f il
+ E

L f il
+ Vbus

L f il
d

dVbus
dt = − Vbus

RC f
+

IL f il
C f

− Pbus
C f VC

−
IL f il
C f

d
(1)

where d is the duty cycle.

Let
[
x1 x2

]T
=
[

IL f il Vbus

]T
and u = d, then the Equation (1) can be rewritten as follows:

dx1
dt = − x2

L f il
+ E

L f il
+ x2

L f il
u

dx2
dt = − x2

RC f
+ x1

C f
− PCPL

C f x2
− x1

C f
u

(2)

The following dynamical form is used to write the model (2) that represents the
dynamics of a DC distribution system:{ .

x = f (x) + g(x) u
y = h(x)

(3)

With f (x) =

[
− x2

L f il
+ E

L f il

− x2
RC f

+ x1
C f

− PCPL
C f x2

]
and g(x) =

[ x2
L f il

− x1
C f

]
.

3. System Analysis and Problem Formulation
3.1. System Analysis

With respect to the nonlinear affine model presented in (2), if the two conditions
listed below satisfy [13], there is without any question a set of output functions h(x) that
correspond to the achievement of the following linearization criteria: the total number of
orders r equals the number of dimensions n of the system at x = x0, and the relative order
of this system has a definition.

(i). The rank of the matrix
[

g(x) ad f g(x) . . . adn−2
f g(x) adn−1

f g(x)
]

is constant and
equal to n for any x near x0.

(ii). The vector field set
[

g(x) ad f g(x) . . . adn−2
f g(x)

]
is involutory at x = x0.

A function f (x) is required in order to accurately linearize the degree of connection
r of the provided system on an open set of x = x0 into a controlled linear Brunovsky
canonical form [19]. Here, denotes the Lie bracket ad f g(x) of the vector fields g(x) and f (x),
respectively.

If the system (2) does not succeed in satisfying all of the linearization criteria (i) and (ii),
it will develop unstable zero dynamics and turn into a nonminimum phase system.

3.2. Problem Formulation

The concept of input_output feedback linearization has been well-established in the
literature on nonlinear control systems [13].
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The output (y) of a Single Input Single Output nonlinear system (3) is differentiated
until the control input (u) appears in the resultant equation in order to apply input_output
feedback linearization to the system. The relative degree (r) is equivalent to how often the
output is differentiated. The dynamics of a nonlinear system may be divided into an internal
subsystem (n–r dimension unobservable) and an exterior linear subsystem (input_output
of r dimension) when a coordinate transform is used. The system’s order is represented by
‘n’ in this case. With linear state feedback control, the linear subsystem is stabilized. When
the states of the linear subsystem are at rest, the dynamics of the unobservable subsystem,
also known as zero dynamics, describe the internal dynamics [5,13].

If we use the capacitor voltage as the output function, then y = x2. The nonlinear
system (2) has a relative degree of r = 1, which is lower than the system’s order n = 2.

The dynamics of the system (2) are, therefore, split into an internal, unobservable
component and an input_output component. The boost converter with the CPL model will
be changed to the normal form by utilizing the change of state transformation as follows:

T(x) =

[
ξ(x)
z(x)

]
(4)

In order to resolve the following equation, an expression of the dynamic compensator
z(x) is determined in accordance with the input_output feedback linearization theory [19]:

Lgz(x) = 0 (5)

Equation (6), which reads as follows, translates to a potential resolution to this issue:

z(x) =
C f

2
x2

2 +
L f il

2
x2

1 (6)

Consequently, the following is the system’s internal dynamic equation:

.
z(x) = −

(
PCPL +

ξ2

R

)
+ E

(
−

C f

2
ξ2 +

L f il

2
z
) 1

2

(7)

Allowing for ξ = 0, the system’s zero dynamics are as follows:

.
z(x) = −PCPL + E

( L f il

2
z
) 1

2

(8)

The Jacobian matrix and an equilibrium point may both be determined using the

formulas Y =
L f il P2

CPL
2E2 and ∂

.
z

∂z = E2

(2zL f il)
1
2

, respectively, as shown in Equation (8). Since

the eigenvalue of Equation (8) at the Y is equal to λ = E2

PCPL L f il
and is situated in the right

half of the complex plane, the zero dynamics given in Equation (6) is unstable. As a result,
when the capacitor voltage serves as the system output feedback value, the system is a
nonminimum phase.

4. Nonlinear Adaptative Feedback Controller

As can be shown from the analysis above, an unstable boost converter system with
unstable internal dynamics cannot have input_output feedback linearization applied except,
as was said in Section 3.2, by stabilizing the internal dynamics.

In order to comply with the constraints of input_output feedback linearization, we
redefine the output function h(x).

As a result of the analysis above, h(x) may be thought of as the following:

y =
1
2

(
C f x2

2 + L f il x2
1

)
(9)
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The control variable (u) is subjected to the concepts of precise input-output feedback lin-
earization and Lyapunov stability theory in order to stabilize the zero dynamics (6) and create a
control structure that enables asymptotic output tracking. Therefore, by adjusting the inductor
current and capacitor voltage, the stability of the bus voltage may be indirectly managed.

Our main objective is to design a Lyapunov controller that, due to its performance in
output tracking, mimics a predefined input_output linearizing controller.

First of all, we derive the output y = 1
2

(
C f x2

2 + L f il x2
1

)
to the relative degree

.
y = C f x2

(
− x2

RC f
+ x1

C f
− P

C f x2
− x1

C f
u
)

+ L f il x1

(
− x2

L f il
+ E

L f il
+ x2

L f il
u
)

= − x2
2

R − PCPL + Ex1
= L f h(x)

..
y = 2 x2

R

(
− x2

RC f
+ x1

C f
− PCPL

C f x2
− x1

C f
u
)

+ E
(
− x2

L f il
+ E

L f il
+ x2

L f il
u
)

= E(E − x2)
L f il

− 2 x2
RC f

(
x1 − x2

R − PCPL
x2

)
+
(

E
L f il

+ 2x1x2
RC f

)
u

= L2
f h(x) + LgL f (x)u

(10)

The order of the system (2) corresponds to the relative degree r = 2 in the relationship.
The boost converter with the CPL model will be changed to the normal form by

utilizing the change of state transformation as follows:

T(x) =

 ξ1(x)

ξ2(x)

 =

 1
2

(
C f x2

2 + L f il x2
1

)
− x2

2
R − PCPL + Ex1

 (11)

The nonlinear system (2) may be made linear in Brunovsky canonical form by applying
the coordinate transformation (11) as shown below:{ .

ξ1 = ξ2.
ξ2 = L2

f h(x) + LgL f h(x)uIol = v
(12)

where ξ2 and ξ1 are state variables of converted linear systems (12) and the relationship
between the new control variable v and the existing nonlinear boost converter system’s
control variable u is as follows:

uIol(x) =

−E(E − x2)
L f il

+ 2 x2
RC f

(
x1 − x2

R − PCPL
x2

)
+ v(

E
L f il

+ 2x1x2
RC f

) (13)

The tracking error and its first derivative are defined as follows using the Lyapunov
design idea: {

e1 = ξ1 − ξre f

e2 = ξ2 −
.
ξre f

(14)

where ξre f is the reference trajectory using the state transformation (11) and the linearized
feedback control (13), the system (12) is written as follows:{ .

e1 = e2
.
e2 = L2

f h(x) + LgL1
f h(x) uIOL −

..
ξre f

(15)

and we choose an input–output linearizing controller:

uIol =
1

LgL1
f h(x)

(
−L2

f h(x) +
..
ξre f + k1e1 + k2e2

)
(16)
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With K =
[
k1 k2

]T , the closed-loop system can be written as
.
e = Ace:[ .

e1.
e2

]
=

[
0 1

−k1 −k2

] [
e1
e2

]
(17)

Should K be a Hurwitz vector, that is, all the roots of the polynomial P(s) = s2 + k2s + k1
have negative real parts, then the error is stable at the origin.

To perform this, we choose an input_output linearizing controller:

uIol(x) =
R C f L f il

EC f R + 2 L f il x1x2

(
−E(E − x2)

L f il
+

2 x2

RC f

(
x1 − x2

R
− PCPL

x2

)
+

..
ξre f − 3e1 − 4.3 e2

)
(18)

Consequently, the closed-loop system is made linear, and one has the following:[ .
e1.
e2

]
=

[
0 1
−3 −4.3

] [
e1
e2

]
(19)

However, it is possible that nonlinear controllers do better overall than linear con-
trollers at regulating nonlinear systems. The implementation of the nonlinear component,
in addition to the requirement for precise knowledge of the system model, is one of the key
limitations of the input_output linearizing controller. Here, we propose the creation of an
adaptive feedback controller as a solution to this issue.

The following adaptive feedback controller analytical formulation is taken into consid-
eration: {

uIol = ΓTe(t)
ΓT =

[
Γ1 Γ2

] (20)

in which Γ is adjusted so that we have in the limit

uAdaptative = Γ̃Te(t) = uIol (21)

The ideal gain vector is indicated by an asterisk in Γ̃. The following equation is created
by replacing off ũAdaptative in Equation (12):

.
ξ2 = L2

f h(x) + LgL f h(x)uAdaptative (22)

The following is a rewrite of this equation:

.
ξ2 =

..
ξre f − 3e1 − 4.3e2 −

EC f R + 2 L f il x1x2

RC f L f il

(
uIol − uAdaptative

)
(23)

As a result, we obtain the following:{ .
e1 = e2
.
e2 = − 3 e1 − 4.3 e2 +

EC f R +2 L f il x1x2
RC f L f il

[(
Γ̃ − Γ

)]T[
e1 e2

]T (24)

If we define A =

[
0 0
−3 −4.3

]
and B =

[
0

EC f R +2 L f il x1x2
RC f L f il

]
As a result, the closed-loop system (24) below is obtained:

[ .
e1.
e2

]
︸︷︷︸

.
e

=

[
0 0
−3 −4.3

]
︸ ︷︷ ︸

A

[
e1
e2

]
︸︷︷︸

e

+

[
0

EC f R +2 L f il x1x2
RC f L f il

]
︸ ︷︷ ︸

B

(Γ̃1 − Γ1

)(
Γ̃2 − Γ2

)T

︸ ︷︷ ︸
(Γ̃ − Γ) T

[
e1
e2

]
︸︷︷︸

e

(25)



Symmetry 2024, 16, 352 9 of 15

It should be demonstrated that because is Hurwitz stable, there exists a positive
definite matrix for any positive definite matrix that fulfills the next Lyapunov equation:

A T P + P A = − Q (26)

We use a Lyapunov candidate function with respect to system (25):

V( e , Γ) = eT P e +
1
γ

(
Γ̃ − Γ

)
T
(

Γ̃ − Γ
)

(27)

By adjusting Γ so that, the adaptive feedback controller uAdaptative = ΓT e (t) is thus
effectively specified,  Γ = γ

t∫
0

e (t)T P B e (t) dt

Γ ⟩ 0
(28)

As a result, the output of the adaptive feedback controller may be expressed as follows:

uAdaptative = Γ1

(
ξ1 − ξ1re f

)
+ Γ2

( .
ξ1 −

.
ξ1re f

)
(29)

where

Γ1 = 0.56
RC f L f il

EC f R + 2 L f il x1x2

t∫
0

(
7.34

(
ξ1 − ξ1re f

)2
+ 10.32

(
ξ1 − ξ1re f

) ( .
ξ1 −

.
ξ1re f

))
dt

and

Γ2 = 0.45
RC f L f il

EC f R + 2 L f il x1x2

t∫
0

(
8.64

(
ξ1 − ξ1re f

) ( .
ξ1 −

.
ξ1re f

)
+ 9.44

( .
ξ1 −

.
ξ1re f

)2
)

dt

The adaptative feedback controller in (29) is utilized to validate the system represented
in (12), and the closed-loop system (25) is Lyapunov stable. Along the trajectories of (25),
the time derivative of

.
V( e , Γ) is provided with

.
V( e , Γ) = eT (A T P + P A

)
e + 2 eT P B

(
Γ̃ − Γ

)T
e − 2

γ

(
Γ̃ − Γ

)T .
Γ

= − eT Q e − 2
(

Γ̃ − Γ
)T (

Γ̃
γ − eT P B

) (30)

if we select
.
Γ = γeT P B, then

.
V( e , Γ) = − eT Q e < δmin(Q) ∥e∥2 (31)

where δmin(Q) is lowest eigenvalue of Q.
Once the system (12) reaches global stability, the suggested adaptive feedback con-

troller’s design is complete. The parameters Γ1, Γ2, and γ values can be changed to enhance
the system’s dynamic quality. Figure 3 displays the control block diagram for it.

Remarks

According to the working principle and actual working conditions of the boost con-
verter with a CPL, the variation in the inductance of the filter, capacitor, and load is limited.
The adaptive controller proposed above has an advantage in that knowledge of external
disturbances is not necessary to build the controller. This control method guarantees
robustness. To this end, the proposed control algorithm is designed with the control ob-
jective of enabling the system to accurately track the target value under the influence of
unknown disturbances.



Symmetry 2024, 16, 352 10 of 15

Symmetry 2024, 16, x FOR PEER REVIEW 11 of 17 
 

 

( ) ( ) ( ) ( )

( )

2, 2

2

T TT T T

TT T

V e e A P P A e e P B e

e Qe e P B

γ

γ

Γ = + + Γ − Γ − Γ − Γ Γ

 Γ= − − Γ − Γ − 
 

   


 (30)

if we select Te PBγΓ= , then 

( ) ( ) 2, T
minV e e Qe Q eδΓ =− <  (31)

where ( )min Qδ  is lowest eigenvalue of Q. 
Once the system (12) reaches global stability, the suggested adaptive feedback con-

troller’s design is complete. The parameters 1Γ , 2Γ , and γ  values can be changed to 
enhance the system’s dynamic quality. Figure 3 displays the control block diagram for it. 

( )
( )

1

2

x
x

ξ
ξ
 
 
 

( )2 2
2 1

1
2 f fily C x L x= +( ) ( )1 1 2 2Adaptativeu e t e t=Γ + Γ ξ

refξ
+

−

Adaptatived u=

( )T x

 
Figure 3. Adaptive feedback control block diagram. 

Remarks 
According to the working principle and actual working conditions of the boost con-

verter with a CPL, the variation in the inductance of the filter, capacitor, and load is lim-
ited. The adaptive controller proposed above has an advantage in that knowledge of ex-
ternal disturbances is not necessary to build the controller. This control method guaran-
tees robustness. To this end, the proposed control algorithm is designed with the control 
objective of enabling the system to accurately track the target value under the influence of 
unknown disturbances. 

5. Simulation Results 
Using the MATLAB/Simulink platform, a system simulation model was created in 

this study to evaluate the effects of the nonlinear adaptive feedback control strategy, as 

Figure 3. Adaptive feedback control block diagram.

5. Simulation Results

Using the MATLAB/Simulink platform, a system simulation model was created in
this study to evaluate the effects of the nonlinear adaptive feedback control strategy, as
shown in Figure 3. Vin = 12 V, Vcref = 24 V, L = 1 mH, C = 100 µF, R = 50 Ω, fs = 50 kHz, and
PCPL = 10 W are the system’s simulation parameters.

5.1. Case 1

In the first case, the reference voltage remains constant (Vcref = 24 V). This scenario is
employed to elucidate the application of the proposed nonlinear adaptive feedback control
strategy for the DC-DC boost converter.

Figure 4 displays the dynamic response waveforms of the system. Notably, the
capacitor voltage stabilizes at the prescribed reference value of 24 V. The introduced control
strategy effectively attains its control objective, upholding system stability, enhancing
dynamic response speed, and fortifying resistance to interference.
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5.2. Case 2

The second case assesses the effectiveness of the proposed controller strategy when
subjected to abrupt changes in the input voltage.

In Figure 5, the dynamic response waveforms of the system depict the response to
step changes in Vin, transitioning from 12 V to 24 V at 0.06 s and from 24 V to 20 V at 0.12 s.
Notably, the DC bus voltage stabilizes precisely at the prescribed reference value of 24 V at
the instant of the input voltage shift.
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Upon close examination of Figure 5, it becomes evident that the adaptive feedback
control strategy introduced exhibits a distinct absence of oscillations and showcases signifi-
cantly reduced overshoot.

5.3. Case 3

The third case examines the proficiency of the adaptive feedback controller in tracking
a reference voltage that undergoes step changes. The reference voltage sequence includes a
transition to 24 V in the initial 0.06 s, a subsequent increase to 12 V in the following 0.12 s,
and then reverting to 34 V for the remaining duration.

As illustrated in Figure 6, the DC bus voltage stabilizes in line with the reference voltage
alterations, as directed by the adaptive feedback control strategy. Remarkably, the proposed
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control approach achieves a swifter response rate and shorter adjustment time for the system.
Consequently, it ensures heightened system stability and superior resistance to interference.

Symmetry 2024, 16, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 6. Output voltage, inductor current, and the adaptative feedback control signal for Case 3. 

5.4. Case 4 
In this case, we introduce step changes in the resistance as a variable of interest. Fig-

ure 7 provides a visual representation of the system’s dynamic response waveforms, 
where R initially stands at 50 Ω and then transitions to 100 Ω at 0.06 s. As depicted in 
Figure 7, the DC bus voltage is adeptly stabilized at the prescribed 24 V reference value 
through the employed adaptive control strategy. Furthermore, upon closer examination 
of Figure 7, it becomes evident that the adaptive parameters result in diminished over-
shoots for both the bus voltage and inductor current. 

Figure 6. Output voltage, inductor current, and the adaptative feedback control signal for Case 3.

5.4. Case 4

In this case, we introduce step changes in the resistance as a variable of interest.
Figure 7 provides a visual representation of the system’s dynamic response waveforms,
where R initially stands at 50 Ω and then transitions to 100 Ω at 0.06 s. As depicted in
Figure 7, the DC bus voltage is adeptly stabilized at the prescribed 24 V reference value
through the employed adaptive control strategy. Furthermore, upon closer examination of
Figure 7, it becomes evident that the adaptive parameters result in diminished overshoots
for both the bus voltage and inductor current.

Symmetry 2024, 16, x FOR PEER REVIEW 15 of 17 
 

 

 
Figure 7. Output voltage, inductor current, and the adaptative feedback control signal for Case 4. 

The simulation results substantiate the efficacy of the provided method and confirm 
that the boost converter can successfully control the boost converter with a CPL when it 
integrates the recommended output redefinition and control strategy. 

6. Conclusions 
In this research, we introduce a novel nonlinear adaptive feedback controller de-

signed for the regulation of a boost converter operating within a DC microgrid with a 
constant power load. Our approach is rooted in the principles of exact feedback lineariza-
tion and Lyapunov theory. 

Upon examining the stability of the zero dynamics of the system, it becomes evident 
that controlling the direct capacitor voltage leads to unstable zero dynamics, rendering 
the system a nonminimum phase system. We delve into the analysis and simulation of the 
nonminimum phase characteristics of the boost converter across various scenarios, includ-
ing input voltage variations, load resistance changes, and reference voltage adjustments. 

In forthcoming research, we plan to conduct a comprehensive comparative analysis 
of the proposed control strategy and other existing controllers. This analysis will encom-
pass aspects such as stability, tracking error, switching efficiency, harmonics reduction, 
current and voltage ripple, and more, all through a rigorous and systematic methodology. 

Our proposed control method effectively addresses the limitations of exact feedback 
linearization, notably its reliance on precise mathematical models and its inapplicability 
to unstable zero-dynamic systems. Additionally, our approach successfully resolves the 
instability issue induced by constant power loads, ensuring the stability of the DC bus 
voltage. 

It is worth noting that the nonlinear adaptive feedback control strategy introduced 
in this study has the potential for broader applicability to other converters with constant 
power loads, including DC-DC buck boost converters. 

Figure 7. Output voltage, inductor current, and the adaptative feedback control signal for Case 4.



Symmetry 2024, 16, 352 13 of 15

The simulation results substantiate the efficacy of the provided method and confirm
that the boost converter can successfully control the boost converter with a CPL when it
integrates the recommended output redefinition and control strategy.

6. Conclusions

In this research, we introduce a novel nonlinear adaptive feedback controller designed
for the regulation of a boost converter operating within a DC microgrid with a constant
power load. Our approach is rooted in the principles of exact feedback linearization and
Lyapunov theory.

Upon examining the stability of the zero dynamics of the system, it becomes evident
that controlling the direct capacitor voltage leads to unstable zero dynamics, rendering the
system a nonminimum phase system. We delve into the analysis and simulation of the non-
minimum phase characteristics of the boost converter across various scenarios, including
input voltage variations, load resistance changes, and reference voltage adjustments.

In forthcoming research, we plan to conduct a comprehensive comparative analysis of
the proposed control strategy and other existing controllers. This analysis will encompass
aspects such as stability, tracking error, switching efficiency, harmonics reduction, current
and voltage ripple, and more, all through a rigorous and systematic methodology.

Our proposed control method effectively addresses the limitations of exact feedback
linearization, notably its reliance on precise mathematical models and its inapplicability
to unstable zero-dynamic systems. Additionally, our approach successfully resolves the
instability issue induced by constant power loads, ensuring the stability of the DC bus voltage.

It is worth noting that the nonlinear adaptive feedback control strategy introduced
in this study has the potential for broader applicability to other converters with constant
power loads, including DC-DC buck boost converters.
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