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znojil@ujf.cas.cz

2 Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62,
50003 Hradec Králové, Czech Republic

3 Institute of System Science, Durban University of Technology, Durban 4001, South Africa

Abstract: A unitary-evolution process leading to an ultimate collapse and to a complete loss of
observability alias quantum phase transition is studied. A specific solvable N−state model is con-
sidered, characterized by a non-stationary non-Hermitian Hamiltonian. Our analysis uses quantum
mechanics formulated in Schrödinger picture in which, in principle, only the knowledge of a complete
set of observables (i.e., operators Λj) enables one to guarantee the uniqueness of the related physical
Hilbert space (i.e., of its inner-product metric Θ). Nevertheless, for the sake of simplicity, we only
assume the knowledge of just a single input observable (viz., of the energy-representing Hamiltonian
H ≡ Λ1). Then, out of all of the eligible and Hamiltonian-dependent “Hermitizing” inner-product
metrics Θ = Θ(H), we pick up just the simplest possible candidate. Naturally, this slightly restricts
the scope of the theory, but in our present model, such a restriction is more than compensated for
by the possibility of an alternative, phenomenologically better motivated constraint by which the
time-dependence of the metric is required to be smooth. This opens a new model-building freedom
which, in fact, enables us to force the system to reach the collapse, i.e., a genuine quantum catastrophe
as a result of the mere conventional, strictly unitary evolution.

Keywords: unitary quantum solvable toy model; Hilbert-space anisotropy; eigenvalues of metric;
exceptional-point collapse

1. Introduction

In many standard and routine applications of quantum theory, the evolution in time is
prescribed in the so called Schrödinger representation [1] by the Schrödinger equation:

i∂τ |ψ(τ)≻ = h |ψ(τ)≻ (1)

where the state vector belongs to a physical Hilbert space of conventional textbooks, |ψ(τ)≻
∈ H(T). The Hamiltonian is usually assumed time-independent and self-adjoint in H(T).
Often, the theory is realized in the physical and, at the same time, user-friendly special space
H(T) = L2(Rd) of square-integrable coordinate-dependent functions ψ(x, τ) =≺ x|ψ(τ)≻
in d dimensions.

Under these assumptions, the evolution is unitary [2] and Equation (1) is formally solvable.

|ψ(τ)≻ = e−ihτ |ψ(0)≻ . (2)

The practical construction of the wave functions usually proceeds via an approximate or
exact diagonalization of h = h† [3]. The description of the evolution remains equally routine
for the time-dependent Hamiltonians h = h(τ). One may also move from the primary
Schrödinger representation to its equivalent Heisenberg-representation alternative. Via a

Symmetry 2024, 16, 353. https://doi.org/10.3390/sym16030353 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16030353
https://doi.org/10.3390/sym16030353
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-6076-0093
https://doi.org/10.3390/sym16030353
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16030353?type=check_update&version=2


Symmetry 2024, 16, 353 2 of 22

suitable unitary operator, one then obtains the Heisenberg-representation wave functions
which are required not to vary with time [1].

A more challenging theoretical as well as conceptual scenario emerges when the
Heisenberg-representation-inspired preconditioning of the wave-function ket-vector

|ψ(τ)≻ = Ω(τ) |ψ(τ)⟩ (3)

is chosen to be invertible but non-unitary [4], i.e., such that

Ω†(τ)Ω(τ) = Θ(τ) ̸= I . (4)

Then, the product Θ(τ) can be perceived as playing the role of a correct Hilbert-space
metric in an “amended” physical Hilbert space H(A) such that the ket-vectors |ψ⟩ ∈ H(A)

are simpler in comparison to their more conventional textbook avatars |ψ≻ ∈ H(T).
The latter assumption of an expected technical simplification is crucial because the

non-unitarity (4) of the mapping of Equation (3) (called, often, Dyson map) looks strongly
counterintuitive. Obviously, any deviation of the inner-product metric Θ from the conven-
tional unit operator of textbooks [1] changes thoroughly not only the phenomenological
context (i.e., the range of possible applications) but also the applicability of standard mathe-
matics (naturally, only too many construction methods only work when the metric is trivial,
Θ = I).

Incidentally, the extension of the range of possible applications paid off not only in
Dyson’s older study of ferromagnetism [4] but also in the variational many-body con-
text [5] and in the analyses of the bosonic excitations in nuclear physics [6]. At the same
time, the more or less purely numerical nature of the similar realistic applications also
enhanced the relevance and usefulness of multiple exactly solvable toy models (cf., e.g.,
reviews [7,8]). In particular, the recent rise in the emphasis on the possible emergence of
several not-quite-expected mathematical challenges [9] led to a certain reconfirmation of a
non-trivial methodical relevance of various matrix models living in a finite, N−dimensional
Hilbert space.

In our present paper, we intend to re-analyze a number of the related terminological,
methodical, and phenomenological open questions. In all of these settings, we place a
decisive emphasis on the deeply innovative possibility of having the metric manifestly time-
dependent. In such a context, the role of the solvability of the benchmark models becomes
particularly important, indeed. Having all of the necessary technical details relocated to
the dedicated sections below lets us only point out here, in the introduction, that, precisely,
the present combination of the time-dependence of the metric with the availability of the
exact, closed-form knowledge of its eigenvalues θn with n = 1, 2, . . . , N can be perceived as
one of the main new-physics-representing messages as delivered by our present paper.

For a very preliminary illustration of such a statement (with a deeper understanding
provided by the last three sections of the present paper), let us only point out that the
solvability of our model will really enable us to obtain insight not only into the (in fact,
not too surprising) mechanism of an “initial” smooth loss of the conventional isotropy
of the Hilbert space of conventional textbooks (see Figure 1) but also into the much less
expected quantitative picture of the ultimate stage of the “asymptotic degeneracy” collapse
(see Figure 2). One can expect, indeed, that the latter picture of the evolution process
during which the separate eigenvalues θn(τ) get ordered by their order of smallness might
carry a number of generic features. Enhancing, in this manner, our understanding of the
degeneracy processes which could be, after all, also relevant in multiple other areas of
physics (cf., e.g., [10] or [11] in this respect).
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Figure 1. The loss of isotropy of the six-dimensional toy-model Hilbert space as characterized by
the deviation of the inner product metric Θ from the identity operator I. The picture shows that at
the small times τ > 0 the loss of the degeneracy of the eigenvalues θ = θn(τ) of the metric can be
interpreted as approximately linear.
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Figure 2. The loss of observability of the quantum system in question (i.e., its fall in its ultimate
exceptional-point singularity at τ = 1) as reflected by the time-dependence of the eigenvalues
θ = θn(τ) of the inner-product metric Θ(τ) in our six-dimensional model. Up to a single exception,
all five of these eigenvalues vanish in the τ → 1 limit.

In most of the reviews of the state of the art (cf., e.g., [7–9]), the authors tried to
cover the whole new terrain of the theory on a rather abstract level. At the same time,
the simplification of the picture caused by the change of paradigms is usually mentioned
just marginally as an assumption or a tacit wish rather than as a rather difficult necessary
condition of a consequent practical and constructive implementation of the formalism.

In our present paper, we intend to pay more attention to the postulates of solvability
and simplification. Indeed, these features of the quantum models of interest represent one of
the not often emphasized keys to the applicability of the whole non-unitary-preconditioning
idea behind the Dyson-inspired mapping (3).

The presentation of our considerations and results start in Section 2 where we summa-
rize a few basic concepts forming the theory. Subsequently, in Section 3, we point out that
in the context of rigorous mathematics, the theory itself is still in the stage of formal devel-
opment, characterized by the existence of a large number of open mathematical questions
and challenges (cf., e.g., [10–12]). In this sense, we decided to circumvent some of these
challenges in the spirit of the words of warning in reviews [5,12]. Thus, we just consider a
family of sufficiently innocent-looking benchmark models living in Hilbert spaces of an
arbitrary finite dimension N.

One of the phenomenologically most relevant benefits of such a choice of models
is discussed in Section 4. Its essence is emphasized to lie in the possibility of using the
well-known mathematical ambiguity and flexibility of the inner-product metric Θ for the
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purposes of the description of the quantum systems in an arbitrarily small vicinity of their
singularities representing certain forms of a quantum catastrophe.

In Section 5, we modify the paradigm and extend the dynamical framework of the
Schrödinger representation which is inherently stationary. We turn attention to a more
explicit study of the time-dependent aspects of our class of benchmark (and exactly solvable)
models. In this section, we emphasize that the dominant merit of our models lies in the
closed-form availability of non-stationary metrics Θ = Θ(τ).

The details of the construction are made explicit in Sections 6 and 7, in which we
present a mathematical core of our present message. A basic mathematical characteristic
of our class of models is shown to lie in the smoothness of the time-dependence of the
inner-product metrics Θ = Θ(τ) and, first of all, in the existence of these operators for
the times covering the whole interval connecting, in one extreme, the Hermitian quantum
mechanics (characterized by the trivial and fully isotropic metric and reached, in our units,
at τ = 0) with the other extreme of a “quantum catastrophic” alias “phase-transition” alias
“fully degenerate” collapse of the system in the τ → 1 limit in which the inner product
metric asymptotically and ultimately degenerates and ceases to exist.

A few concluding remarks are added in Sections 8 and 9.

2. An Outline of Theory

The conceptual consistency of the non-unitary Dyson’s mapping (3) is based on the
requirement of equivalence between the evaluations of the old and new inner products,

≺ψ1|ψ2≻ (= product in H(T)) = ⟨ψ1|Θ(τ)|ψ2⟩ (= product in H(A)) . (5)

The main reason why the non-unitarity Ω(τ) ̸= Ω†(τ) in Equation (3) is challenging is
that the survival of the requirement of equivalence of physics in H(T) and H(A) leads to
the apparently counterintuitive definition (5) of the inner product in H(A). Subsequently,
it is fairly difficult to resist the temptation of introducing another third, user-friendlier
Hilbert space H(F) in place of H(A). In it, one re-accepts the manifestly unphysical but
simpler-to-use metric Θ(F) = I which only has to be remembered as mathematically useful
and preferable even though manifestly unphysical.

In the case of the simplest, manifestly time-independent non-unitary mappings Ω,
the trick (5) and transition to the “three-Hilbert-space” (THS) representation of a given
quantum system proved particularly rewarding in applications, say, in nuclear physics [5,6].
The isospectrality of the mappings

h → H = Ω−1 hΩ (6)

of the Hamiltonians as induced by Equation (3) has been used to facilitate the practical
variational estimates of the bound state energies of certain heavy nuclei.

Later on, the THS formalism also found applications in relativistic quantum field
theory. Emphasis has been redirected to the study of systems exhibiting the parity times
time-reversal symmetry alias PT −symmetry of the Hamiltonian (cf., e.g., the dedicated
reviews [7,8] of extensive information and a detailed discussion).

Further, the growth of the scope of the theory has also been noticed and accepted in the
other parts of physics like, say, experimental optics [13]. Various unexpected consequences
of the generalization h → H have been found inspiring, especially when the researchers
managed to keep the evolution-generator PT −symmetric. This led to a new perception of
Maxwell equations (in the so-called paraxial approximation) and to the experiments using
metamaterials with anomalous refraction indices [14–16]).

A purely quantum theoretical as well as phenomenological appeal of the THS approach
re-emerges when one opens the Pandora’s box of time-dependent problems [17–26]. First
of all, it is necessary to imagine that the second Hilbert space becomes time-dependent in a
way mediated and carried by the time-dependence of its metric Θ = Θ(τ) [22,24].
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Thus, one has H(A) = H(A)(τ) and one must replace the time-evolution Schrödinger
Equation (1) valid in H(T) by its manifestly non-Hermitian analog [17,22].

i∂τ |ψ(τ)⟩ = G(τ) |ψ(τ)⟩ (7)

This version of the evolution equation may still be considered and solved in the unphysical
but user-friendlier Hilbert space H(F). In this case, it is only necessary to keep in mind that
the sophisticated non-Hermitian generator of evolution

G(τ) = H(τ| − Σ(τ) (8)

must be defined as composed of the observable Hamiltonian

H(τ) = Ω−1(τ) h(τ)Ω(τ)

and of another operator
Σ(τ) = i Ω−1(τ) [∂τΩ(τ)]

called the quantum Coriolis force [26]. Marginally, it may be added that both of these
components of the observable “instant energy” Hamiltonian H(τ) have, in general, complex
spectra [27].

Obviously, a consistent version of the formalism requires a cancelation of the non-
Hermiticities as carried by G(τ) and Σ(τ). The latter cancelation is still absent in the systems
with trivial G(τ) = 0. In [21], incidentally, such an option (simplifying the Schrödingerian
Equation (7) and reminding us of the Heisenberg representation) was extended to also
cover the non-vanishing but still simplified, viz., time-independent constant-operator
Schrödingerian generators G(τ) = G(0) ̸= 0. Nevertheless, in the fully general version of
the formalism, one cannot rely on similar simplifications.

In particular, the changes in the physical inner product in H(A)(τ) need not be slow.
Hence, the Coriolis-force operator Σ(τ) treated as a difference between H(τ) and G(τ)
need not be small, either. This might make the adiabatic approximation more or less
useless [28,29]. At the same time, we are often forced to assume the validity of the adiabatic
approximation for practical purposes. This is the situation in which one needs a methodical
guidance mediated, typically, by the exactly solvable examples. Via their deeper analyses,
one can identify the dynamical regimes in which Σ(τ) can be kept small.

A family of models characterized by an explicit, closed-form knowledge of the relevant
operators is introduced and described in what follows, therefore.

3. Benchmark Model

One of the most immediate consequences of relations (5) and (6) is that the self-adjointness
of h(τ) can equivalently be re-expressed as the metric-dependent quasi-Hermiticity [12] of
H(τ) in H(F):

H†(τ)Θ(τ) = Θ(τ)H(τ)] . (9)

An analogous relation is also required to be satisfied by any other candidate Λ(τ) of an
observable.

For example, in our recent paper [30] devoted to a very specific technical problem in
quantum cosmology, we had to consider an analogous quasi-Hermiticity constraint

Λ†(τ)Θ(τ) = Θ(τ)Λ(τ)

in which the operator Λ(τ) did not represent the non-stationary Hamiltonian (i.e., an instant
energy) but rather another observable quantity which, incidentally, happened to be a
measurable (and time-dependent) radius of the Universe.

In light of Dieudonné’s critical analysis [12], the authors of review [5] point out and
strongly recommend that all of the eligible candidates of an observable (also including, natu-
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rally, the energy-representing Hamiltonian) should be, preferably, represented by operators
which are, in the friendly Hilbert space H(F) of a mathematical preference, bounded.

In our present paper, we follow the recommendation.

3.1. Bounded-Operator Hamiltonians

In the context of prevailing model-building practice, the constraint of boundedness
appeared desirable [31–33]. At the same time, unfortunately, many useful and popular
Hamiltonians are differential operators which are unbounded [34,35]. In this light, we
decided to accept the constraint and to replace, in one of our related papers [36], the most
common harmonic-oscillator ordinary-differential Hamiltonian by its truncated and shifted
N−dimensional diagonal-matrix equidistant-spectrum analog.

H(N)
(LHO)

=


−(N − 1) 0 . . . 0

0 −(N − 3)
. . .

...
...

. . . . . . 0
0 . . . 0 +(N − 1)

 . (10)

In parallel, the methodical and pedagogical role of the most popular anharmonic-oscillator-
like Hermiticity-violating interactions [37,38] was transferred to the off-diagonal elements
of certain real and, say, tridiagonal non-Hermitian N by N multiparametric matrices.

H(N)
(AHO)

=



1 − N g1 0 0 . . . 0
− g1 3 − N g2 0 . . . 0

0 − g2 5 − N
. . . . . .

...

0 0 − g3
. . . gN−2 0

...
...

. . . . . . N − 3 gN−1
0 0 . . . 0 − gN−1 N − 1


. (11)

This enabled us to simplify the proofs of the required reality of the bound-state spectra.
For models (11), we managed to reduce these proofs to a virtually elementary spectral-
continuity or spectral-inertia argument, applicable at the not-too-large couplings gj at least.

After an additional up-down symmetrization of the above matrix, i.e., after the choice
of gN−1 = g1 and gN−2 = g2, etc., we arrived at the final form of our benchmark toy-
model Hamiltonian.

H(N)
(PT) =



1 − N g1 0 0 . . . 0
− g1 3 − N g2 0 . . . 0

0 − g2 5 − N
. . . . . .

...

0 0 − g3
. . . g2 0

...
...

. . . . . . N − 3 g1
0 0 . . . 0 − g1 N − 1


. (12)

After such a choice of the class of models, we also managed to parallelize the phenomenolog-
ically relevant parity times of the time reversal symmetry of multiple common differential-
operator toy-model Hamiltonians by a formally analogous PT −symmetry as imposed
upon our matrices (12). This build-up of analogy merely required the specification of T
as the transposition plus sign reversal. The parity-simulating indefinite square root of the
unit matrix then appeared to be represented by an antidiagonal N by N matrix P with
non-vanishing elements Pj,N−j+1 = 1, j = 1, 2, . . . , N.

In our paper [36], we turned attention to one of the methodically most welcome
features of the PT −symmetric and J = [N/2]−parametric benchmark Hamiltonian (12),
viz., to the availability of the amazingly elementary geometric form of boundary ∂D of
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the J−dimensional compact domain D of the real parameters gj for which the spectrum

of H(N)
(PT) remains real. For our models (12), this boundary (or, in the language of physics,

the horizon of the bound-state stability of the system) has been shown to acquire, at any
matrix dimension N, the same generic geometric form of the surface of a smoothly deformed
hypercube with protruded edges and vertices (cf. also [39] for more details).

3.2. Fall in Instability

Initially, the family of our present toy models (12) was developed with the purpose
of having a tractable sample of a quantum analog of a classical concept of an evolution
singularity called, in Thom’s popular terminology [40,41], a “catastrophe”. This aim of the
study was made explicit in our paper [42]. In place of our present variable τ measuring
the time during the fall of the system into its degenerate singularity, we used a different
variable λ = 1 − τ2, in terms of which some of the formulae appeared simpler.

Indeed, we revealed that there exists a certain specific λ−parametrization of the
couplings gj = gj(λ) in (12) such that

• The two-by-two matrix H(2)
(PT)(λ) appears useful as a benchmark model of an energy-

bifurcation scenario in which

E0 = −
√

λ, E1 = +
√

λ , (13)

i.e., in which the spectrum is real iff λ ≥ λ0 = 0 and in which the whole spectrum
becomes completely degenerate iff λ = 0 while it finally gets purely imaginary iff
λ < 0;

• The three-by-three matrix H(3)
(PT)(λ) has been found to serve as a benchmark model of

a new energy-trifurcation quantum catastrophe in which

E0 = −2
√

λ, E1 = 0, E2 = +2
√

λ . (14)

Again, the spectrum proved completely degenerate iff λ = 0. Up to the exceptional
λ−independent real-level E[N/2] = 0 emerging at any odd N, the rest of the spectrum
was, again, purely real or imaginary iff λ ≥ 0 or λ < 0, respectively;

• The four-by-four matrix H(4)
(PT)(λ) with spectrum

E0 = −3
√

λ, E1 = −
√

λ, E2 =
√

λ, E3 = 3
√

λ , (15)

then found an analogous interpretation of a benchmark quantum model admitting an
energy-quadrifurcation.

Analogous quantum-catastrophic (QC) features have constructively been guaranteed
to hold for a special λ−dependence of model (12) at any integer N ≥ 2 (see more details in
Section 4 below).

In what follows, these observations will inspire and enable us to simulate, at any N,
the QC history starting at a conventional Hermitian N−level oscillator Hamiltonian at
τ = 0. In the opposite “asymptotic” extreme with τ → 1, the system is found to collapse
into a complete (i.e., N−tuple) energy-level degeneracy.

4. QC Singularity

We see below that during the whole evolution process, our model is such that its
nontrivial Hilbert-space metric Θ(N)(τ) can be calculated in closed form. This will enable
us to attribute the phenomenon of the QC collapse to a manifest interplay between the ad
hoc time-dependence of the Hamiltonian and the equally ad hoc time-dependence of the
Hilbert-space physical inner-product metric.
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4.1. Parametrization

One of the simplest forms of the above-mentioned λ−parametrizations of the cou-
plings in Hamiltonians (12) is given by the formula which proposed in [36]:

g(PT)
n (λ) =

√
n(N − n)(1 − λ) , n = 1, 2, . . . , N − 1 . (16)

The merit of this parametrization is that, in the entire interval of λ ∈ (0, 1) (or, formally,
even of λ ∈ (0, ∞)), it guarantees the reality of the energy spectrum. The second merit
of the λ−parametrization (16) lies in the fact that the boundary value of λ = 0 strictly
separates the stable dynamical quantum regime (with λ > 0 yielding the real, “observable”
N−plet of bound state energies) from the half-axis of λ < 0 (for which the system ceases to
be observable).

In the algebraic terminology of the study in [36] and of the older literature [43–45],
one encounters the so-called Kato’s exceptional point (EP) of the N−th order at λ = 0.
In [36], we restricted our attention to the models with small λs, therefore. We found that
Equation (16) may be further reparametrized in terms of another time variable t which
has been found to measure a recovery from the QC singularity in a broader physical
multiparametric domain D,

λ → λn(t) = t + t2 + . . . + tJ−1 + GntJ n = 1, 2, . . . , N , J = [N/2] . (17)

The alternative time-parameter t ∈ (0, ∞) appeared suitable for our having the Hamiltonian
H(N)
(PT) more comfortably tractable near its EP alias QC singularity.

4.2. Time-Dependent Metric

At small ts, the evolution can be interpreted as the motion of the system away from
QC towards a stable and less anisotropic dynamical regime. Parametrization (17) proves
useful, first of all, at the very short times t ≪ 1 at which it effectively rescales and magnifies
the interior of D in the vicinity of EP. Simultaneously, such an ad hoc change of scale does
not lower the number of degrees of freedom—one could still work with as many as J
alternative coupling constants Gn ≥ 0.

A trivial selection of special couplings Gn = 0 realizes a one-parametric, simplified
but still instructive reduction of the picture of the dynamics. After the hypothetical start of
evolution at the λ = 0 singularity, one ultimately reaches a manifestly Hermitian regime at
λ = 1. In this sense, parameter λ = λ(t) ∈ (0, 1) measures the recovery.

At any fixed value of N and for any suitable Hamiltonian, the physics varies with
the inner product (5). The reconstruction of all of the eligible metrics Θ may be found
summarized in our dedicated work [46]. It can be summarized as starting from the
Schrödinger equation:[

H(N)
(PT)

]†
|ψ(N)

n ⟩⟩ = E(N)
n |ψ(N)

n ⟩⟩ , n = 0, 1, . . . , N − 1 (18)

where we replace Hamiltonian H(N)
(PT) by its Hermitian conjugate in H(F). The complete

solution of the new equation opens the way towards the reconstruction of any metric from
its spectral representation.

Θ(N)
(⃗κ)

(t) =
N

∑
n=1

|ψ
(N)
n (t)⟩⟩ κn ⟨⟨ψ(N)

n (t)| . (19)

All of the parameters κn > 0 are freely variable. This is an ambiguity which reflects
the absence of exhaustive information about the physics behind the quantum system in
question (cf., e.g., Ref. [5] for explanation).
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In Refs. [46,47], we discuss the general recipe from a more formal point of view by
which multiple suitable metrics Θ may always be assigned to a given Hamiltonian H via
Equation (19). We emphasize there that the construction is always ambiguous. Now, it is
worth adding that the sufficiency of the solution of the auxiliary conjugate Schrödinger
Equation (18) has to be perceived as another serendipitous merit of the models living in
finite dimensions N < ∞.

4.3. Two-by-Two Example

Let us pick up N = 2 and study formula (19) in more detail. Firstly, let us change the
variable, t → r = r(t) =

√
t > 0, yielding

[
H(N)
(PT)

]†
=

[
−1 −

√
1 − r2

√
1 − r2 1

]
. (20)

In terms of the pair of abbreviations u =
√

1 − r and vs. =
√

1 + r, we may then calculate
the maximal and minimal eigenvalues E+ = r and E− = −r of (20) as well as the related
respective real eigenvectors

|ψ+⟩⟩ = [
√

1 − r,−
√

1 + r]T = [u,−v]T , (21)

|ψ−⟩⟩ = [
√

1 + r,−
√

1 − r]T = [v,−u]T (22)

where the superscript T denotes transposition.
It remains for us to insert vectors (21) and (22) in the spectral expansion of the metric.

Once we fix an inessential overall factor and denote κ+ = sin α and κ− = cos α with
0 < α < π/2, we obtain the general N = 2 metric-operator matrix

Θ = Θ(2)
[α]

(r2) =

[
1 + r cos 2α −

√
1 − r2

−
√

1 − r2 1 − r cos 2α

]
. (23)

Its elementary form facilitates the direct determination of its eigenvalues:

θ± = 1 ±
√

1 − r2 sin2 2α . (24)

One easily verifies that the requirement of the necessary positivity of these eigenvalues is
trivially satisfied at any square-root time r =

√
t, such that 0 < r < 1.

We may conclude that the standard probabilistic interpretation of our time-dependent
N = 2 THS QC quantum model is determined not only by its one-parametric Hamilto-
nian (20) but also by the specification of the concrete value of variable α. Via Equation (23),
this choice selects one of the eligible inner products (5). This makes the Hilbert space
of states fully defined and unique, with an asymmetry alias anisotropy of its geometry
measurable simply by the difference 1 − r2 sin2 2α.

5. Anisotropy

Any energy-representing input Hamiltonian H(τ) admits many alternative, nonequiv-
alent predictions of the results of measurements [5]. Formally, this is caused by the existence
of multiple Hamiltonian-independent parameters as sampled by α in Equation (23) at N = 2.
The ambiguity must be removed via additional, physics-based constraints.

The situation becomes slightly different near the QC degeneracy because the EP-
related confluence of the energy levels already implies that a consistent picture of reality
and, in particular, the necessary regular inner-product metric ceases to be positive definite.

A universal remedy does not exist because a small increase/decrease of time may
cause a large change in the metric in general. In what follows, we exclude such a formally
admissible non-perturbative behavior of Θ(τ) as unphysical.
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5.1. Metrics as Functions of Time τ

In our older paper [42], we constructed the well-behaved, extrapolation-friendly
metrics up to N = 3 or, in an implicit form (19), up to N = 5. The choice of parameters κ⃗
was dictated by a half-intuitive requirement of simplicity. Vague as such a recipe might have
been, it found an independent support in a similarity of formulae at several Hilbert-space
dimensions. The success of such a choice of parameters also motivated our present study.

Our present strategy is based on a change of philosophy. In place of studying just a
vicinity of QC using a small EP-unfolding time t (alias τ ⪅ 1), we search for an explicit
description of the QC-emergence process in the entire interval of τ ∈ (0, 1). Thus, the time
variable τ replaces the not-too-suitable time-like parameter λ(t) of Equation (17)), running
in an opposite direction, i.e., from the τ = 0 instant (at which our Hamiltonian is diagonal)
to the QC limit of τ → 1 (in which our Hamiltonian becomes non-diagonalizable and
merely Jordan-block representable).

The choice of the new “time of collapse” variable τ =
√

1 − λ enables us to treat the
fall of our system into its singularity as a process which starts long before the catastrophe.
In the final QC limit τ → 1, the time-dependent vectors |ψn⟩⟩ of Equation (18) can then be
perceived as getting mutually parallel. The operator (19) itself degenerates to a singular
but particularly elementary matrix of rank one, of course.

A disadvantage of the replacement of t or λ(t) by τ might be that the construction of
the metric appears easier at small λ. Fortunately, near the opposite extreme of τ = 0, the
transition t → τ simplifies the Hamiltonians themselves.

H(2)(τ) =

[
−1 τ
− τ 1

]
, H(3)(τ) =

 −2
√

2 τ 0
−
√

2 τ 0
√

2 τ

0 −
√

2 τ 2

 ,

H(4)(τ) =


−3

√
3 τ 0 0

−
√

3 τ −1 2 τ 0
0 −2 τ 1

√
3 τ

0 0 −
√

3 τ 3

 , . . . . (25)

One is led to a replacement of expansion (19) by a less subtle, brute-force technique,
rendered possible by the tridiagonal-matrix form of Hamiltonians (25).

Such an idea as well as the resulting method of construction of the metric Θ(N)(τ)
proved productive and facilitated, e.g., the analysis of a cosmological physical problem
in [30]. Recently, we revealed that although the operator R(N)(τ) of an observable as used in
paper [30] is PT −asymmetric and different from our present PT −symmetric Hamiltonian
of Equation (12), the difference only concerns the main diagonals and the (real) eigenvalues
of these matrices. After a deeper inspection of the two respective linear-algebraic forms of
the corresponding Dieudonné’s quasi-Hermiticity constraints (represented, in our present
case, by Equation (9)), one reveals that in both of these cases the metric Θ itself becomes
independent of the difference in the diagonals. Hence, without an unnecessary repetition
of too many details of the proof, we may immediately formulate the following result.

Theorem 1. The metrics Θ(N)(τ) compatible with Hamiltonians (25) may be sought in the finite-
sum form

Θ(N)(τ) =
N

∑
j=1

(−τ)j−1M(N)(j) (26)
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with sparse-matrix coefficients

M(N)(1) =


α11(1) 0 . . . 0

0 α12(1)
. . .

...
...

. . . . . . 0
0 . . . 0 α1N(1)

 , (27)

M(N)(2) =



0 α11(2) 0 . . . . . . 0
α21(2) 0 α12(2) 0 . . . 0

0 α22(2) 0 α13(2)
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 α2,N−2(2) 0 α1,N−1(2)
0 . . . . . . 0 α2,N−1(2) 0


, (28)

M(N)(3) =



0 0 α11(3) 0 . . . . . . 0
0 α21(3) 0 α12(3) 0 . . . 0

α31(3) 0 α22(3) 0 α13(3)
. . .

...

0 α32(3)
. . . . . . . . . . . . 0

0
. . . . . . 0 α2,N−3(3) 0 α1,N−2(3)

... . . . 0 α3,N−3(3) 0 α2,N−2(3) 0
0 . . . . . . 0 α3,N−2(3) 0 0


, . . . . (29)

Proof. It follows from the observation that at any k = 1, 2, . . . , N, the set of all of the
non-vanishing elements of matrix M(N)(k) may be compressed and arranged into an
auxiliary k by (N − k + 1)−dimensional array:

α(k) =


α11(k) α12(k) α13(k) . . . α1,N−k+1(k)
α21(k) α22(k) α23(k) . . . α2,N−k+1(k)

...
...

...
...

αk1(k) αk2(k) αk3(k) . . . αk,N−k+1(k)

 . (30)

with α11(k) = M(N)
1k (k), etc. This reduces the proof to the inspection of the set of N2

Dieudonnés linear algebraic compatibility relations written in the matrix form

H†Θ = Θ H (31)

not all of which are independent (cf. Ref. [46] for details).

5.2. Onset of the Process of Degeneracy

From the point of view of potential applications of formula (26), it is important
that at the beginning of the fall into instability (i.e., at the far-from-QC instant τ = 0),
the Hamiltonians (25) will all coincide with the respective truncated and diagonal (i.e.,
Hermitian) harmonic-oscillator-like matrices. In this picture, the spectrum of energies
E(N)

n (τ) remains real but shrinks with the growth of the innovated time τ. In the limit
τ → 1, i.e., at the very end of the fall of the system into QC singularity, the spectrum
becomes completely degenerate, E(N)

n (1) = 0, n = 0, 1, , . . . , N − 1.
In the latter limit, the Hamiltonian (i.e., matrix H(N)(1)) ceases to be diagonalizable

and loses its standard physical tractability and interpretation. Conversely, from the point of
view of physics, the description of the evolution as generated by H(N)(τ) changes at τ = 1,
requiring an introduction of some new degrees of freedom beyond this instant, i.e., at τ > 1.
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The study of such a discontinuous switch to a new form of Hamiltonian at later times lies
beyond the scope of the present paper. Interested readers may consult, e.g., a dedicated
study [36]. Beyond the framework of quantum theory, examples of such an EP-mediated
phase transition may be found, e.g., in magnetohydrodynamics [48].

Temporarily, let us now return, in the context of interpretations, to the times of
recovery t or λ(t). In these variables, the motion beyond the end-of-the-interval λ(t) = 1
appears much less exotic. Typically, the energies would not feel the change at all (cf.,
e.g., Equations (13), (14) or (15)). Still, the values of λ = λ(outer) > 1 remain mathematically
less interesting because in the “outer” interval of parameters, our Hamiltonian matrices
become Hermitian. Thus, it is natural to require that in the extrapolated dynamical regime,
the metric remains constant and trivial: Θ(outer) ≡ I. In other words, we propose to match
the non-Hermitian and Hermitian dynamical regimes strictly at λ(t) = 1, with

lim
τ→0

Θ(N)(τ) = I . (32)

One of the consequences of such a discontinuation of the model may be seen in the
subsequent most natural reinterpretation of the point of matching λ(t) = 1: the process
of the QC degeneracy is expected to proceed only at λ(t) < 1. The optimal QC-related
metrics should then be required to be continuous just at the relevant times τ ∈ (0, 1), i.e., in
particular, up to the very instant of the EP degeneracy.

5.3. Example: N = 2

A deeper phenomenological meaning of requirement (32) may be most immediately
illustrated via the N = 2 model. Recalling the set of all metrics (23), we notice that they
are numbered by the single optional real variable α. It is easy to see that each deviation of
this parameter from its unique, anisotropy-minimizing and extrapolation-friendly value as
deduced from formula (24) would necessarily violate constraint (32).

The existence of the closed formula for the spectrum enables us to see that the influence
of α changes from very weak (in the QC vicinity, i.e., at t ≪ 1) to very strong (near
the Hermitian dynamical regime where λ(t) = 1). The extrapolation-friendly choice of
α = π/4 in [42] or [47] appears exceptional. Solely for this choice of the free parameter, the
difference between the eigenvalues of the metric will strictly vanish at λ(t) = 1. We may
just repeat that for the value of α = π/4, the τ = 0 instant really carries the meaning of a
Hermitian onset of the fall into QC singularity.

Once we preserve the latter exceptional choice of the parameter α = π/4 at all times
τ ∈ (0, 1), the difference between the two eigenvalues of the N = 2 metric (measuring a
Hilbert-space anisotropy) always remains minimized (cf. Equation (24)). In this formulation,
the selection of a “minimal Hilbert-space anisotropy” principle of [47] is certainly confirmed
as optimal.

6. Eigenvalues of the Metrics

In the spirit of the methodical project as outlined in [47], the uniqueness of the choice
of α = π/4 at N = 2 should be, mutatis mutandis, extended and amended to apply at any
N. Preliminarily, such an idea has been tested and found feasible as in Ref. [42] where
we recalled formula (19) and where we managed to evaluate, up to N = 5, the ketket-
eigenvectors |ψ(N)

n ⟩⟩ in closed form.
Now we intend to amend the recipe and to find and formulate a more general result.

Our task may be separated into two subtasks. In the first one (to be dealt with in this
section), the problem is reconsidered at a few smallest dimensions N. We reveal that a new
and promising guide to extrapolations in N can and should be sought in a certain, very
regular sparse-matrix pattern emerging in the formulae for the metrics Θ(N)(τ) [cf. also Eq.
Nr. (10) in [42] in this respect].

Secondly, in a genuine climax of our present constructive efforts (and in a way described
in Section 7), we find that the latter observation opens the way towards a remarkably efficient
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study and closed-form evaluation of the eigenvalues θ
(N)
n (τ) of the metrics. This very well

reflects both the anisotropy and asymptotic degeneracy of the physical Hilbert space and,
hence, carrying a perceivably more useful information about dynamics than the matrix
elements of the metric-operator N by N matrices Θ(N)(τ) themselves.

6.1. N = 2, Revisited

The explicit construction of metric Θ(N)(τ) via the auxiliary Schrödinger Equation (18)
is not too easy even at N = 2, i.e., for our first nontrivial QC-related Hamiltonian matrix.

H(2)(τ) =

[
−1 τ
−τ 1

]
. (33)

The efficiency of this construction remains comparable with the brute-force solution of
Equation (31) (cf. Section 3 above). Nevertheless, it still makes sense to re-derive metric
Θ(2) by the amended method for the pedagogical purposes.

We may start from the real-matrix ansatz

Θ(2)
(⃗κ)

(τ) =

[
a b
b d

]
(34)

with the subscripted vector κ⃗ containing two arbitrary positive components. Next, we fix
an overall multiplication constant by setting the determinant equal to one. This enables us
to put b = sinh ν and choose ε = ±1 in a = ε cosh ν exp ϱ and d = ε cosh ν exp(−ϱ).

Both of the new parameters ν and ϱ are assumed real. The metric must be positive so
that we may only use ε = 1. Finally, we check that the matrix constraint (31) degenerates to
the single, time-reparametrization item

τ = − tanh ν

cosh ϱ
. (35)

Our conclusion is that for any given τ ∈ (0, 1), we may choose any real ϱ ∈ (0, ϱmax) (note
that this is the parameter which makes the main diagonal of the metric asymmetric).

This choice enables us to evaluate ν = ν(τ, ϱ) from the latter Equation (this implies that
at a fixed time, the value of ϱmax must be such that cosh ϱmax = 1/τ). Summarizing, we may
set α11(1) = cosh ν exp ϱ, α12(1) = cosh ν exp(−ϱ) and α11(2) = sinh ν in Equation (26) at
N = 2. The resulting eigenvalues of the metric

θ± = cosh ν cosh ϱ ±
√

cosh2 ν cosh2 ϱ − 1 (36)

are both, by construction, positive.
At the very start of the fall of the system into the catastrophe, i.e., at τ = 0, one has

ϱmax(0) = ∞ so that there is no upper bound imposed upon ϱ(0). Still, as long as one might
like to have the trivial, isotropic initial value of Θ(2)(0) ∼ I (implying the special choice of
ν(0) = 0 and ϱ(0) = 0), the resulting metric becomes, up to the above-mentioned irrelevant
overall multiplication factor, unique at τ = 0.

During the subsequent growth of τ < 1, the requirement of the minimization of the
anisotropy leads to the rule ϱ(τ) = 0 (cf. Equation (36)), so that the remaining variable
ν < 0 may now be interpreted as another version of the time of the QC degeneracy which
is just rescaled and, incidentally, inverted (cf. Equation (35)).

Once we return to the standard variables, we obtain our unique and minimally
anisotropic metric in the virtually trivial form

Θ(2) =

[
1 −τ
− τ 1

]
= I − τ J .
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From this formula, we may deduce the special, minimally anisotropic version of eigenvalues
in the form compatible with their more strongly anisotropic generalization (24).

6.2. N = 3

Whenever one tries to move to the higher matrix dimensions N, one encounters the
technical problem of an increase in the multitude of parameters. In the first nontrivial case
with N = 3, let us first follow the N = 2 guidance (cf. the ultimate choice of ϱ = 0 in the
preceding paragraph 6.1) and let us omit the discussion of the metrics with an asymmetric
form of their main diagonal.

Once we also keep ignoring the other, irrelevant though still existing, overall factor,
we are, after some straightforward manipulations, using Equation (31), left with the last
free parameter g in the metric.

Θ(3)(τ) =


1 −

√
2gτ gτ2

−
√

2gτ 2 g − 1 + gτ2 −
√

2gτ

gτ2 −
√

2gτ 1

 . (37)

Among its three readily obtainable eigenvalues,

θ1 = gτ2 + g −
√

4 g2τ2 + g2 − 2 g + 1 , θ2 = 1 − gτ2 , θ3 = gτ2 + g +
√

4 g2τ2 + g2 − 2 g + 1 (38)

the middle one (with an inverted-parabola dependence on τ) remains positive for the
parameters g < 1/τ2.

The change of sign of the remaining two eigenvalues takes place at the curves g = 1/τ2

and g = 1/(2 − τ2) in the g − τ plane. As a consequence, the correct and unique choice of
the parameter is g = 1, again yielding the unique metric

Θ(3) = I − τ

 0
√

2 0√
2 0

√
2

0
√

2 0

+ τ2 J (39)

with the expected τ−dependence of the eigenvalues as given by Equation (38).

6.3. N = 4

In the next step of our constructive considerations, we go beyond the formulae derived
in older papers. We succeed because the N = 3 formula (39) already offers a hint. Thus,
making use of the analogy and performing an extrapolation, it proves sufficient to verify
that the following tentative candidate for the metric

Θ(4) =


1 −

√
3τ

√
3τ2 −τ3

−
√

3τ 1 + 2 τ2 −2 τ − τ3
√

3τ2
√

3τ2 −2 τ − τ3 1 + 2 τ2 −
√

3τ

− τ3
√

3τ2 −
√

3τ 1

 (40)

obeys all the necessary and sufficient requirements. They include the validity of the
Dieudonné’s Equation (31) as well as the feasibility of evaluation of the τ−dependent
eigenvalues of the candidate for the metric. We immediately see that they behave as
they should:

{θ1, . . . , θ4} =
{

1 − 3 τ + 3 τ2 − τ3, 1 − τ − τ2 + τ3, 1 + 3 τ + 3 τ2 + τ3, 1 + τ − τ2 − τ3
}

. (41)

Their correct QC behaviour at τ = 1 really deserves an explicit graphical display as
provided by Figure 3.
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Figure 3. Eigenvalues (41) of the N = 4 metric (40) as functions of time τ.

7. Extrapolations
7.1. Metrics between N = 5 and N = 7

We may now combine the results of the preceding section with the contents of
Theorem 1. Using an elementary insertion in Equation (31), we may easily prove that
in the expansions (26) of the metrics with minimal anisotropy, the diagonal-matrix coeffi-
cients (27) may be defined, at all N, by the elementary formula

α1n(1) = 1 , n = 1, 2, . . . , N .

Similarly, the closed formula is also available for the antidiagonal coefficients in M(N)(N):

αn1(N) = 1 , n = 1, 2, . . . , N .

Next, the bidiagonal matrix coefficients (28) may be defined, at all N, by the slightly less
elementary general formula:

α1n(2) = α2n(2) =
√

n(N − n) , n = 1, 2, . . . , N − 1 .

Due to the easily verified symmetry, the analogous formula exists for the coefficients in
M(N)(N − 1):

αn1(N − 1) = αn2(N − 1) =
√

n(N − n) , n = 1, 2, . . . , N − 1 .

Up to now, unfortunately, we do not succeed in an extension of these observations to the
tridiagonal sparse matrix coefficients (29), etc. Nevertheless, we believe that the task is not
impossible. This belief seems supported by Theorem 1, i.e., by the reducibility of the N
by N matrices M(N)(k) with k = 3, 4, . . . to the respective auxiliary k by N − k + 1 arrays
containing the non-vanishing matrix elements αjm(k) of M(N)(k).

The first missing set of coefficients occurs at N = 5. Its values,

α11(3) = α13(3) = α31(3) = α33(3) =
√

6 ,

α12(3) = α21(3) = α23(3) = α32(3) = 3 , α22(3) = 4 .

should be better rewritten in the compact form of an array:

α(3) =


√

6 3
√

6
3 4 3√
6 3

√
6

 , N = 5 . (42)
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It makes sense to complemented this result by the next N = 6 formula:

α11(3) = α14(3) = α31(3) = α34(3) =
√

10 , α21(3) = α24(3) = 4 ,

α12(3) = α13(3) = α32(3) = α33(3) = 3
√

2 , α22(3) = α23(3) = 6

which we derived using the brute-force construction based on Equation (31). It, again,
deserves a compact presentation as an array:

α(3) =


√

10 3
√

2 3
√

2
√

10
4 6 6 4√
10 3

√
2 3

√
2

√
10

 , N = 6 . (43)

The closed form of the latter result indicates that there might exist a not-too-complicated
extrapolation recipe, with the help of which we would be able to determine the unique,
minimally anisotropic metric at any dimension N. This belief seems further supported
by the regularity and apparent extrapolation-friendliness of the next two sparse-matrix
“missing” coefficients

M(7)(3) =



0 0
√

15 0 0 0 0
0 5 0

√
30 0 0 0√

15 0 8 0 6 0 0
0

√
30 0 9 0

√
30 0

0 0 6 0 8 0
√

15
0 0 0

√
30 0 5 0

0 0 0 0
√

15 0 0


and

M(7)(4) =



0 0 0 2
√

5 0 0 0
0 0 2

√
10 0 2

√
10 0 0

0 2
√

10 0 6
√

3 0 2
√

10 0
2
√

5 0 6
√

3 0 6
√

3 0 2
√

5
0 2

√
10 0 6

√
3 0 2

√
10 0

0 0 2
√

10 0 2
√

10 0 0
0 0 0 2

√
5 0 0 0


.

They were obtained, with the assistance of the computerized symbolic manipulations,
by the brute-force solution of the set of 49 linear algebraic Equations (31).

7.2. Eigenvalues at Arbitrary N

In the above-described constructions of the N by N matrices of metric Θ(N), we do
not manage to find, unfortunately, any obvious general extrapolation tendency or pattern.
For this reason, we turn attention from matrices to the perceivably simpler-to-display
N−plets of their eigenvalues θ

(N)
n (τ). At the first few values of N, we perform the brute-

force calculations. We meet the ultimate success, which may be given the following form
of proposition.

Proposition 2. The time-dependent eigenvalues of Θ(N)(τ) may be written in the form of polynomials:

θ
(N)
n (τ) =

N

∑
k=1

C(N)
nk τk−1 (44)

where the numerically evaluated values of the coefficients C(N)
nk may be found listed, up to N = 8,

in the Pascal-like schemes of Tables 1–4.
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Table 1. Pascal triangle for coefficients C(N)
1n in Equation (44).

N

1 1
2 1 1
3 1 2 1
4 1 3 3 1
5 1 4 6 4 1
6 1 5 10 10 5 1
7 1 6 15 20 15 6 1
8 1 7 21 35 35 21 7 1
... . . .

Table 2. Pascal-like triangle for coefficients C(N)
2n in Equation (44).

N

2 1 −1
3 1 0 −1
4 1 1 −1 −1
5 1 2 0 −2 −1
6 1 3 2 −2 −3 −1
7 1 4 5 0 −5 −4 −1
8 1 5 9 5 −5 −9 −5 −1
... . . .

Table 3. Pascal-like triangle for coefficients C(N)
3n in Equation (44).

N

3 1 −2 1
4 1 −1 −1 1
5 1 0 −2 0 1
6 1 1 −2 −2 1 1
7 1 2 −1 −4 −1 2 1
8 1 3 1 −5 −5 1 3 1
... . . .

Table 4. Pascal-like triangle for coefficients C(N)
4n in Equation (44).

N

4 1 −3 3 −1
5 1 −2 0 2 −1
6 1 −1 −2 2 1 −1
7 1 0 −3 0 3 0 −1
8 1 1 −3 −3 3 3 −1 −1
... . . .

After a cursory inspection of the latter four Tables 1–4, one immediately finds, in all
of them, regularities resembling the well-known Pascal triangle. The analogy is almost
perfect. It enables us to reveal the extrapolation pattern and to specify the recurrences for
coefficients which all appear solvable in terms of binomial coefficients. In other words,
the closed-form eigenvalues (44) of the metrics are obtained for any time τ and for any
matrix dimension N. This is another important result of our present paper which may
be presented, due to the existence of its close parallel as presented in Ref. [30], without a
detailed proof.
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Theorem 3. The time-dependent eigenvalues of metrics Θ(N)(τ) of Equation (26) are given by formula

θ
(N)
k (τ) =

N

∑
m=1

C(N)
km τm−1 , k = 1, 2, . . . , N

where C(N)
1n =

(
N − 1
n − 1

)
, C(N)

2n =

(
N − 2
n − 1

)
−

(
N − 2
n − 2

)
and, in general,

C(N)
kn =

k

∑
p=1

(−1)p−1
(

k − 1
p − 1

)(
N − k
n − p

)
, k, n = 1, 2, . . . , N .

Proof. This is straightforward and proceeds by mathematical induction.

8. Discussion
8.1. Unbounded Differential-Operator Hamiltonians

In the current literature, the merits and applicability of the THS formalism are most
often illustrated by the replacement of the most common harmonic or anharmonic oscillator
by the Bender’s and Boettcher’s [49] family of non-Hermitian power-law-interaction models
H(BB)(δ) = p2 + iδ x2+δ which are characterized just by the single real exponent δ ≥ 0.
From a historical perspective, such a choice is surprising but well motivated by the needs of
the development of quantum field theory (cf., e.g., [50]) and/or of perturbation expansion
methods [51–54].

The use of nontrivial and, in general, manifestly Hamiltonian-dependent Hilbert-
space-metric operators may be perceived as an important innovation of the model-building
in quantum theory. Nevertheless, whenever accepted as a sound theoretical tool in physics,
its mathematical consistency must always be carefully re-examined. In this sense, the proof
of the non-existence of the metric operator for the most popular and phenomenologically
highly relevant H(BB)(δ) [55] makes the study of this particular Hamiltonian far from being
completed. Hence, the illustration purposes are, in the eyes of mathematicians, much better
served by the bounded-operator Hamiltonians [5] as sampled in our paper.

This being said, it is still possible to conclude that in comparison with the conven-
tional quantum theory using selfadjoint operators, the question of the interpretation of the
Bender’s and Boettcher’s unbounded-Hamiltonian models, albeit still open [56], remains
inspiring. Especially in the light of the abstract mathematical comments by Dieudonné [12]
who pointed out that not only the necessary ad hoc specification but even the very proof of
existence of the correct physical Hilbert space of states may be a highly nontrivial question.

8.2. Quantum Catastrophe as an EP-Related Concept

The classical Thom’s concept of a “catastrophe” [40] is based on the idea that in a
certain dynamical regime, an infinitesimal change in one or more relevant parameters
leads to an abrupt change in the behavior of the system. In Ref. [42], we conjecture that a
quantum analog of such a singularity can be represented by Kato’s [43] EP singularity at
which a multiplet of quantum bound-state energies merges and ceases to be observable.

In spite of the fact that one of the older reviews of the related theory (viz., Ref. [5])
already appeared in as early as 1992, an extension of its scope beyond the domain of
nuclear physics was not too quick. Fortunately, multiple extensions already do exist at
present, based on the innovations of the theory called PCT −symmetric [7] alias pseudo-
or quasi-Hermitian [8] or Krein-space self-adjoint [57]. In this context, the construction of
illustrative quantum catastrophes in [42] was facilitated by the availability of Hamiltonians
for which at least some of Kato’s EP singularities (which occurred, traditionally, just at
the complex, “unphysical” values of parameters) became experimentally accessible, in
principle at least [14,15].

In our present paper, we decided to re-analyze, therefore, some of the latter models,
with the emphasis put upon the open questions concerning a smooth transition from the
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classical to quantum dynamics. Our approach has been based on the use of the THS
formalism, with the aim of a further amendment of our understanding of the possible
definition and systematic description of a catastrophic evolution scenario in the language
of quantum theory.

8.3. Closed Formulae

Using a specific model, we managed to cover several methodical topics including not
only the ambiguity of the metric (i.e., of the necessary specification of one of the eligible
physical Hilbert spaces) but also its descriptive aspects and appeal. Thus, we paid attention
to the anisotropy of the alternative Hilbert-space geometries as well as to the constraints
imposed by the necessary positive-definiteness of the mathematically correct inner products
in these spaces.

We formulated several arguments in favor of our choice of the toy model. Firstly, it
enabled us to employ the methodical idea of [47]. Thus, we played with the free parameters
in order to minimize the anisotropy of the physical Hilbert-space metric Θ. Secondly, in the
context of the study on the EP degeneracy as initiated in [42], we found it useful to invert
the arrow of time. Thus, in place of the time t which starts at the EP singularity, we used
another time variable τ which runs in an opposite direction. This enabled us to set the initial
zero long before the fall of the system into its physical QC singularity. Thirdly, we found
it productive to start our analysis from the systems with the smallest level-multiplicities
N ≤ 4. Using the brute-force linear algebra methods, we managed to construct the fully
explicit matrices of the metrics which appeared (and were declared) optimal and unique.

Ultimately, the transparency and compact form of the results of the brute-force linear-
algebraic calculations opened the way towards extrapolations. Their use (followed by the
decisively facilitated formal proofs) finally enabled us to extend the validity of some of our
previous empirical small−N observations to arbitrary Hilbert-space dimensions N.

Against this background, the qualitative features of the QC process were shown to be
related to the explicit quantitative properties of our manifestly time-dependent physical
Hilbert-space metrics. Thus, in a climax of the story, the picture of the N−tuple QC
level-degeneracy scenario was given the form supported by the closed formulae reflecting,
via the eigenvalues of the metric, both the time-dependent anisotropy and asymptotic
degeneracy of the system in question.

9. Summary

We describe here a schematic sample of the realization of a genuine quantum catastro-
phe. Our basic requirement is that the evolution of our quantum system is standard and
unitary during a long but finite interval of time τ ∈ (0, 1). In the process, the dynamics are
assumed to be controlled by an ad hoc Hamiltonian H(N)(τ), with its time-dependence
adapted to our methodical purposes of the system’s reaching a collapse at τ = 1. Otherwise,
during all of the prehistory at times τ < 1, our toy model remains fully compatible with the
textbooks and, in particular, with the well-known Stone theorem [2]. Thus, our Hamiltonian
remains safely self-adjoint in the corresponding physical Hilbert space of states, of course.
In other words, the evolution remains unitary until τ = 1.

Our model is designed as evolving from its initial N−level state at an initial τ = 0
(at which time we even make our H(N)(0) to be diagonal) until the ultimate loss of its
observability in the final-stage limit of τ → 1. The phenomenon of collapse (i.e., of a
complete degeneracy and subsequent complexification of the entire energy spectrum at
τ > 1) is described non-numerically due to the PT −symmetry and exact solvability of
the model.

The collapse is controlled by an appropriate specification of the parameters in H(N)(τ)
as well as by a judicious parallel explicit specification of a time-dependent and unitarity-
guaranteeing Hilbert-space metric Θ(N)(τ). At time τ = 0 or τ < 0, the metric is chosen
as trivial, i.e., we have Θ(N)(0) = I representing a conventional textbook regime. In an
opposite extreme with τ → 1, the changes in the metric climax in its degeneracy.
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The model is shown to describe a fairly realistic N−level quantum system in which
N < ∞. Thus, both the Hamiltonian and the metric are just N by N matrices. At any
time τ and dimension N, the best insight into the evolution towards the ultimate quantum
catastrophe is provided, therefore, by the formulae giving the spectra of both of these
matrices H(N)(τ) and Θ(N)(τ) in a closed form.

During all of the τ ∈ (0, 1) histories of reaching the collapse, the metric is kept
minimally anisotropic, with the evolution towards collapse characterized by a steady
increase in its anisotropy. At the end of the process with τ → 1, the metric becomes singular
(i.e., just a matrix of rank one). In parallel, the end-point Hamiltonian H(N)(1) loses its
diagonalizability, having only a canonical representation in the Jordan-block form.

In the language of physics, the evolution in time is explained as proceeding from an
innocent-looking and safely Hermitian equidistant-energy-level onset prepared at an initial
time τ = 0 up to an ultimate collapse realized via a complete, N−tuple EP degeneracy of
the energy spectrum at the final QC time τ = 1.

Our paper offers a compact and consistent picture of the process through which the
not-quite-expected exact solvability of our toy model enables us to cover all times τ ∈ (0, 1).
We are able to describe the quantum-evolution fall of the system in the level-degeneracy
quantum catastrophe, and we are able to explain such a collapse as a consequence of an
unlimited growth of the anisotropy of the underlying time-dependent Hilbert space H(A).

We find it natural to characterize an optimal version of the latter process by a minimal
spread of the set of eigenvalues θ

(N)
n of the related physical inner-product metric Θ(N).

We decide to make such a metric unique via a minimization of the latter anisotropy-
representing spread, with an emphasis placed on the zero limit of the special measure
ρ = max(θ(N)

n − θ
(N)
m ) of the spread at the onset τ = 0 of the process.

We manage to match our metric smoothly to both of its extremes, i.e., not only to the
most common isotropic metric at τ = 0 but also to the asymptotically degenerate metric at
τ = 1. In between these two extremes, the operator (i.e., matrix) is kept smooth, nontrivial,
and optimal during all τ ∈ (0, 1). From the point of view of phenomenology, we arrive at a
benchmark quantum representation of the EP-related catastrophe in which the fall into the
degeneracy appears realized in finite time.

Our toy-model simulation of the catastrophe can be perceived as initiated by an
arbitrary conventional unitary-evolution prehistory at τ < 0. According to the general
principles of quantum theory, the states of the system during its EP-related degeneracy
at τ ∈ (0, 1) are assumed to be described differently by a THS wave function ψ which
evolves in time in a way that is thoroughly described in Ref. [18]. In our present paper, we
skip most of the related technical details and we restrict our attention to the description
of the interplay of time-dependence between pre-selected “non-Hermitian” benchmark
Hamiltonians H(N)(τ) and one of the eligible “Hermitizing” metric operators Θ(N)(τ).

Our choice of the latter operator can be characterized as truly exceptional: in the
context of mathematics, its form is shown to lead to a unique, minimally anisotropic
geometry of the physical Hilbert space of states. In the context of physics, we emphasize
that a decisive merit of the time-dependence of our inner-product metric should be seen in
the guaranty of the existence of this metric up to an arbitrarily small vicinity of the ultimate
catastrophic quantum collapse of the system.
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