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Abstract: The LHCb collaboration has recently announced the discovery of two hidden-charm
pentaquark states with strange quark content, Pcs(4338) and Pcs(4459); its analysis points towards
having both hadrons’ isospins equal to zero and spin-parity quantum numbers 1

2
−

and 3
2
−

, respec-
tively. Herein, we perform a systematical investigation of the qqscc̄ (q = u, d) system by means
of a chiral quark model, along with a highly accurate computational method, the Gaussian expan-
sion approach combined with the complex scaling technique. Baryon–meson configurations in
both singlet- and hidden-color channels are considered. The Pcs(4338) and Pcs(4459) signals can be
well identified as molecular bound states with dominant components ΛJ/ψ (60%) and ΞcD (23%)

for the lowest-energy case and ΞcD∗ (72%) for the highest-energy one. In addition, it seems that
some narrow resonances can also be found in each allowed I(JP) channel in the energy region of
4.6–5.5 GeV, except for the 1( 1

2
−
) channel where a shallow bound state with dominant Ξ∗

c D∗ structure
is obtained at 4673 MeV with binding energy EB = −3 MeV. These exotic states are expected to be
confirmed in future high-energy experiments.

Keywords: quantum chromodynamics; quark models

1. Introduction

During the past few years, some hadrons with five-quark content (pentaquarks) have
been reported experimentally. In particular, the hidden-charm pentaquark candidate
Pc(4380)+ was the first to be announced by the LHCb collaboration in 2015 [1]. After that,
three more pentaquark states, with equal minimum quark content of qqqcc̄ (q = u, d),
Pc(4312)+, Pc(4440)+ and Pc(4457)+, were reported by the same collaboration in 2019 [2].
Additionally, progress in hidden-charm pentaquarks with strangeness has also been made
by the LHCb collaboration since 2020. By using pp collision data, a ΛJ/ψ structure, which
is labeled as Pcs(4459), was reported in Ξ−

b → J/ψΛK− decays [3]. The mass and width of
this hidden-charm pentaquark candidate with strange quark content are 4458.8 ± 2.9+4.7

−1.1
MeV and 17.3 ± 6.5+8.0

−5.7 MeV, respectively. In 2022, another strange pentaquark candidate,
Pcs(4338), was observed with high significance in B− → J/ψΛ p̄ decays [4]. Its experimental
mass and width are 4338.2 ± 0.7 ± 0.4 MeV and 7.0 ± 1.2 ± 1.3 MeV. The spin-parity values
of these two exotic states, Pcs(4338) and Pcs(4459), are preferably 1

2
−

and 3
2
−

, respectively.
These facts have triggered an enormous amount of theoretical investigations; concerning

the hidden-charm pentaquark candidates with strangeness, one may mention, for instance,
the works performed within effective field theories [5–10], using QCD sum rules [11–15] or
based on phenomenological quark models [16–23], generally establishing that the Pcs(4338)
state can be identified as a ΞcD̄(∗) molecular structure whereas the Pcs(4459) state seems
better for being a Ξ(′ ,∗)

c D̄(∗) hadron molecule. However, mixed configurations [24,25],
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compact structure analysis [26,27] and triangle singularities [28] could also explain the
nature of the mentioned Pcs states. In addition, several additional exotic states in the
hidden-charm pentaquark sector with strange quark content are theoretically proposed in
Refs. [29–32]. In addition, the electromagnetic properties of the mentioned pentaquarks
are calculated in Refs. [33–36]. The production and decay properties are also studied in
Refs. [37–44].

Within the chiral quark model approach [45,46], supplemented by employing a highly
accurate computational method on few-body problems, i.e., the combination of the Gaus-
sian expansion method (GEM) [47] and the complex scaling method (CSM) [48], the S-wave
hidden-charm pentaquarks with strangeness, having spin-parity 1

2
−

, 3
2
−

and 5
2
−

, in the
isoscalar and -vector sectors, are systematically investigated. This theoretical framework
has already been successfully applied in various multiquark systems. A thorough re-
view of our results can be found in Ref. [49] (see also related references cited therein);
moreover, since then, we have continued studying charmonium- and bottomonium-like
tetraquarks [50]; singly, doubly and fully heavy tetraquarks [51]; and hidden-charm and
-bottom doubly and fully heavy pentaquarks [52]. Therefore, it is also a natural extension of
our theoretical investigation to incorporate the analysis of pentaquark systems with strange
quark content, beginning with the hidden-charm pentaquarks with strangeness motivated
by the recently reported Pcs signals.

We arrange the present work in the following parts. In Section 2, the chiral quark
model, pentaquark wave functions, GEM and CSM are briefly presented and discussed.
Section 3 is devoted to the analysis and discussion of the obtained results. Finally, a sum-
mary is presented in Section 4.

2. Theoretical Framework

A thorough review of the theoretical formalism can be found in Ref. [49]. We shall then
focus here on the most relevant features of the phenomenological model and the numerical
method concerning the hidden-charm pentaquarks with strangeness qqscc̄ (q = u, d).

2.1. The Hamiltonian

The general form of the non-relativistic five-body Hamiltonian in the complex scaling
method can be written as

H(θ) =
5

∑
i=1

(
mi +

p⃗ 2
i

2mi

)
− TCM +

5

∑
j>i=1

V (⃗rijeiθ) , (1)

In Equation (1), TCM is the center-of-mass kinetic energy and the two-body potential,

V (⃗rijeiθ) = VCON (⃗rijeiθ) + VOGE (⃗rijeiθ) + Vχ (⃗rijeiθ) , (2)

which includes color-confining, one-gluon exchange and Goldstone–boson exchange inter-
actions. The complex scaling method (CSM) allows us to simultaneously consider bound,
resonance and scattering states, according to the so-called ABC theorem [53,54]. Within the
CSM, the coordinates that describe relative motion between quarks are transformed with a
complex rotation, r⃗ → r⃗ eiθ ; it should be understood that the same transformation applies
to the conjugate momentum of the corresponding relative coordinate [48]. Accordingly,
within the framework of complex range, the dynamics of a five-body system is determined
by solving a complex scaled Schrödinger equation:

[H(θ)− E(θ)]ΨJMJ (θ) = 0 , (3)

where the (complex) eigenvalue E can be assigned to three types of singularities: bound,
resonance and scattering states. Particularly, bound states and resonances are independent
of the rotated angle θ, with the first one placed on the real axis of the complex energy plane
and the second one located above the continuum threshold with a total decay width given
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by Γ = −2 Im(E). On the other hand, the scattering states depend on the rotated angle
and follow the path marked by its associated continuum threshold. In particular, Figure 1
presents a schematic distribution of the complex energies according to Ref. [48].

R e ( E )
I m ( E )

c o n t i n u u m
   s t a t e s

r e s o n a n c e

b o u n d  s t a t e s
s c a t t e r i n g  s t a t e s

Figure 1. Schematic complex energy distribution in the single-channel two-body system.

Some details about the different potential terms in Equation (2) and their physical
motivation come now. Firstly, color confinement should be encoded in the non-Abelian
character of Quantum Chromodynamics (QCD). Some studies of QCD on a lattice have
demonstrated that multi-gluon exchanges produce an attractive linearly rising potential
proportional to the distance between infinitely heavy quarks [55]. However, the sponta-
neous creation of light–quark pairs from the QCD vacuum may give rise to a breakup of
the color flux-tube at the same scale [55]. Our potential model tries to mimic these two
phenomenological observations by the following expression in the complex scaling method:

VCON (⃗rijeiθ ) =
[
−ac(1 − e−µcrijeiθ

) + ∆
]
(⃗λc

i · λ⃗c
j ) , (4)

where ac and µc are model parameters and λ⃗c denotes the SU(3) color the Gell-Mann matrix.
The potential of Equation (4) is linear at short inter-quark distances with an effective
confinement strength σ = −ac µc (⃗λc

i · λ⃗c
j ), while it becomes constant at large distances,

Vthr = (∆ − ac)(⃗λc
i · λ⃗c

j ).
The QCD perturbative effects are taken into account through one-gluon fluctuations

around the instanton vacuum. Then, the different terms of the potential derived from
the Lagrangian,

Lqqg = i
√

4παsψ̄γµGµ
c λcψ, (5)

contain central, tensor and spin–orbit contributions. For an S-wave pentaquark system,
we consider herein only the central one, expressed also with a complex transformation
r⃗ → r⃗eiθ ,

VOGE (⃗rijeiθ) =
1
4

αs (⃗λ
c
i · λ⃗c

j )

[
1

rijeiθ − 1
6mimj

(⃗σi · σ⃗j)
e−rijeiθ /r0(µ)

rijeiθr2
0(µ)

]
, (6)

where mi is the quark mass and σ⃗ denotes the Pauli matrices. The contact term has been
regularized as follows:

δ(⃗rijeiθ) ∼ 1
4πr2

0

e−rijeiθ /r0

rijeiθ , (7)

with r0(µij) = r̂0/µij depending on µij, the reduced mass of a quark–(anti-)quark pair.
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The wide energy range needed to provide a consistent description of mesons and
baryons, from light to heavy quark sectors, requires an effective scale-dependent strong
coupling constant [46]

αs(µij) =
α0

ln
(

µ2
ij+µ2

0

Λ2
0

) , (8)

where α0, µ0 and Λ0 are model parameters.
Dynamical chiral symmetry breaking is the mechanism responsible for making light

quarks, with very small current masses, acquire a dynamical, momentum-dependent mass
M(p), with M(0) ≈ 300 MeV for the u and d quarks, namely the constituent quark mass.
To preserve chiral invariance of the QCD, Lagrangian new interaction terms, given by
Goldstone boson exchanges, must appear.The central terms of the chiral quark–(anti-)quark
interaction Vχ (⃗rijeiθ) can be written as the following four parts:

Vπ

(⃗
rijeiθ

)
=

g2
ch

4π

m2
π

12mimj

Λ2
π

Λ2
π − m2

π
mπ

[
Y(mπrijeiθ)

− Λ3
π

m3
π

Y(Λπrijeiθ)

]
(⃗σi · σ⃗j)

3

∑
a=1

(⃗λa
i · λ⃗a

j ) , (9)

Vσ

(⃗
rijeiθ

)
= −

g2
ch

4π

Λ2
σ

Λ2
σ − m2

σ
mσ

[
Y(mσrijeiθ)

− Λσ

mσ
Y(Λσrijeiθ)

]
, (10)

VK

(⃗
rijeiθ

)
=

g2
ch

4π

m2
K

12mimj

Λ2
K

Λ2
K − m2

K
mK

[
Y(mKrijeiθ)

−
Λ3

K
m3

K
Y(ΛKrijeiθ)

]
(⃗σi · σ⃗j)

7

∑
a=4

(⃗λa
i · λ⃗a

j ) , (11)

Vη

(⃗
rijeiθ

)
=

g2
ch

4π

m2
η

12mimj

Λ2
η

Λ2
η − m2

η
mη

[
Y(mηrijeiθ)

−
Λ3

η

m3
η

Y(Ληrijeiθ)

]
(⃗σi · σ⃗j)

[
cos θp

(⃗
λ8

i · λ⃗8
j

)
− sin θp

]
, (12)

where Y(x) is the Yukawa function defined by Y(x) = e−x/x. The physical η meson is
considered by introducing the angle θp. The λ⃗a is the SU(3) flavor Gell-Mann matrix. Taken
from their experimental values, mπ , mK and mη are the masses of the SU(3) Goldstone
bosons. The value of mσ is determined through the partially conserved axial current (PCAC)
relation m2

σ ≃ m2
π + 4m2

u,d [56]. Finally, the chiral coupling constant, gch, is determined
from the πNN coupling constant through

g2
ch

4π
=

9
25

g2
πNN
4π

m2
u,d

m2
N

, (13)

which assumes that flavor SU(3) is an exact symmetry only broken by the different mass of
the strange quark.

Finally, the chiral quark model parameters are summarized in Table 1. They have
been fixed along the last two decades by thorough studies of hadron phenomenology
such as meson [57,58] and baryon [59] spectra, hadron decays and reactions [60], coupling
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between conventional hadrons and hadron–hadron thresholds [61] as well as molecular
hadron–hadron formation [62].

Table 1. Quark model parameters.

Quark masses mu = md (MeV) 313
ms (MeV) 555
mc (MeV) 1752

Goldstone bosons Λπ = Λσ (fm−1) 4.20
Λη (fm−1) 5.20
g2

ch/(4π) 0.54
θP(

◦) −15

Confinement ac (MeV) 430
µc (fm−1) 0.70

∆ (MeV) 181.10

OGE α0 2.118
Λ0 (fm−1) 0.113
µ0 (MeV) 36.976

r̂0 (MeV fm) 28.170

2.2. The Wave Function

Three sets of configurations are generally needed for qqscc̄ (q = u, d) pentaquarks
and are shown in Figure 2. Moreover, the anti-symmetry operator must be applied to
each diagram as corresponding. Particularly, the anti-symmetry operator for the first
configuration, panel (a) of Figure 2, is

A1 = 1− (1 ↔ 3)− (2 ↔ 3) . (14)

This expression also holds for the second case, panel (b) of Figure 2b, viz., A2 = A1.
Meanwhile, the anti-symmetry operator of panel (c) in Figure 2, where the two heavy
quarks are arranged in each sub-cluster, reads

A3 = 1− (1 ↔ 2)− (1 ↔ 3) . (15)

The pentaquark wave function is a product of four terms: color, flavor, spin and
space wave functions. Firstly, concerning the color degree-of-freedom, there are richer
structures in multiquark systems than in conventional hadrons. For instance, the color
wave function of a pentaquark must be colorless, but the way of reaching this condition
can be accomplished by either a color-singlet channel, hidden-color channel or both at
the same time. The authors of Refs. [63,64] assert that it is enough to consider the color-
singlet channel when all possible excited states of a system are included. However, a more
economical and practical way is considering both. The color-singlet wave function is
as follows:

χnc
1 =

1√
18

(rgb − rbg + gbr − grb + brg − bgr)

× (r̄r + ḡg + b̄b) , (16)

where n = 1, 2, 3 is a label for each of the three different configurations in Figure 2 (it is
of the same meaning for spin, flavor and space wave functions). They are in a common
form but with different quark sequences, namely 123;45, 125;43 and 235;41, respectively.
In matrix element calculation, one should switch the remaining two cases with the first one
in ascending order. Then, the hidden-color wave function is as follows:



Symmetry 2024, 16, 354 6 of 24

χnc
k =

1√
8
(χnk

3,1χ2,8 − χnk
3,2χ2,7 − χnk

3,3χ2,6 + χnk
3,4χ2,5

+ χnk
3,5χ2,4 − χnk

3,6χ2,3 − χnk
3,7χ2,2 + χnk

3,8χ2,1) , (17)

where k = 2, 3 is an index which stands for the symmetric and anti-symmetric configuration
of two identical quarks in the 3-quark sub-cluster.

5
s

q

3

21

c 4

q
( a )

c

5
s

q

3

21

c 4

q
( b )

c 5
s

q

3

21

c 4

q
( b )

c

5
s

q

3

21

c 4

q
( c )

c

Figure 2. According to the SU(2) flavor symmetry, there are three kinds of baryon–meson con-
figurations of the hidden-charm pentaquarks with strangeness. In particular, panel (a) shows the
three-quark cluster with qqs content along with the cc̄ pair, whereas panels (b,c) are of the (qqc)(sc̄)
and (qsc)(qc̄) form, respectively. Note herein that we are considering interactions between quarks
and (anti-)quarks that belong to different clusters, and it should be deduced from the discussion of
the pentaquark wave function and in connection with the chiral potential presented in the text.

According to the SU(3) flavor symmetry in the isospin space, flavor wave functions
for the sub-clusters mentioned above are given by:

B1+
1,0 =

1√
12

(2uds + 2dus − usd − dsu − sud − sdu) , (18)

B1−
1,0 =

1√
2
(usd − sud + dsu − sdu) , (19)

B1∗
1,0 =

1√
6
(uds + dus + usd + dsu + sud + sdu) , (20)

B1+
0,0 =

1√
2
(usd − dsu + sud − sdu) , (21)

B1−
0,0 =

1√
12

(2uds − 2dus + usd − dsu − sud + sdu) , (22)
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B2+
1,0 =

1√
2
(ud + du)c , (23)

B2−
0,0 =

1√
2
(ud − du)c , (24)

B3±
1
2 , 1

2
=

1√
2
(us ± su)c , B3±

1
2 ,− 1

2
=

1√
2
(ds ± sd)c , (25)

M1
0,0 = c̄c , M2

0,0 = c̄s , (26)

M3
1
2 , 1

2
= c̄u , M3

1
2 ,− 1

2
= c̄d , (27)

where the superscripts of cluster wave functions, B and M, stand for the assigned numbers
of each of the three configurations and the subscripts refer to isospin (I) and its third
component (MI). Moreover, the symbols of +(∗) and − in the wave function stand
for a symmetry and anti-symmetry property of two quarks in the 3-quark sub-cluster.
Consequently, flavor wave functions for the 5-quark system with isospin I = 0 and 1 are

χ
1 f 1
0,0 (5) = B1+

0,0 M1
0,0 , χ

1 f 2
0,0 (5) = B1−

0,0 M1
0,0 , (28)

χ
2 f 1
0,0 (5) = B2−

0,0 M2
0,0 , (29)

χ
3 f 1
0,0 (5) =

1√
2
(B3+

1
2 , 1

2
M3

1
2 ,− 1

2
− B3+

1
2 ,− 1

2
M3

1
2 , 1

2
) , (30)

χ
3 f 2
0,0 (5) =

1√
2
(B3−

1
2 , 1

2
M3

1
2 ,− 1

2
− B3−

1
2 ,− 1

2
M3

1
2 , 1

2
) , (31)

χ
1 f 1
1,0 (5) = B1+

1,0 M1
0,0 , χ

1 f 2
1,0 (5) = B1−

1,0 M1
0,0 (32)

χ
1 f 3
1,0 (5) = B1∗

1,0M1
0,0 , χ

2 f 1
1,0 (5) = B2+

1,0 M2
0,0 (33)

χ
3 f 1
1,0 (5) =

1√
2
(B3+

1
2 , 1

2
M3

1
2 ,− 1

2
+ B3+

1
2 ,− 1

2
M3

1
2 , 1

2
) , (34)

χ
3 f 2
1,0 (5) =

1√
2
(B3−

1
2 , 1

2
M3

1
2 ,− 1

2
+ B3−

1
2 ,− 1

2
M3

1
2 , 1

2
) , (35)

where the third component of isospin is set to be zero without loss of generality because
there is no interaction in the Hamiltonian that can distinguish such a component.

We are going to consider herein a 5-quark system with total spin ranging from 1/2
to 5/2. The Hamiltonian does not have any spin–orbit coupling-dependent interaction;
therefore, the third component of spin is assumed to be equal to the total one without loss
of generality. Then, the spin wave function is given by

χnσ1
1
2 , 1

2
(5) = χnσ1

1
2 , 1

2
(3)χσ

00 , (36)

χnσ2
1
2 , 1

2
(5) = χnσ2

1
2 , 1

2
(3)χσ

00 , (37)

χnσ3
1
2 , 1

2
(5) =

√
1
3

χnσ1
1
2 , 1

2
(3)χσ

10 −
√

2
3

χnσ1
1
2 ,− 1

2
(3)χσ

11 , (38)

χnσ4
1
2 , 1

2
(5) =

√
1
3

χnσ2
1
2 , 1

2
(3)χσ

10 −
√

2
3

χnσ2
1
2 ,− 1

2
(3)χσ

11 , (39)

χnσ5
1
2 , 1

2
(5) =

√
1
6

χnσ
3
2 ,− 1

2
(3)χσ

11 −
√

1
3

χnσ
3
2 , 1

2
(3)χσ

10

+

√
1
2

χnσ
3
2 , 3

2
(3)χσ

1−1 , (40)
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for S = 1/2,

χnσ1
3
2 , 3

2
(5) = χnσ1

1
2 , 1

2
(3)χσ

11 , (41)

χnσ2
3
2 , 3

2
(5) = χnσ2

1
2 , 1

2
(3)χσ

11 , (42)

χnσ3
3
2 , 3

2
(5) = χnσ

3
2 , 3

2
(3)χσ

00 , (43)

χnσ4
3
2 , 3

2
(5) =

√
3
5

χnσ
3
2 , 3

2
(3)χσ

10 −
√

2
5

χnσ
3
2 , 1

2
(3)χσ

11 , (44)

for S = 3/2, and

χnσ1
5
2 , 5

2
(5) = χnσ

3
2 , 3

2
(3)χσ

11 , (45)

for S = 5/2. These expressions can be obtained easily through considering the 3-quark and
quark–antiquark sub-clusters and using an SU(2) algebra.

Among the different methods for solving a complex Schrödinger-like 5-body bound
state equation, we use the Rayleigh–Ritz variational principle, which is one of the most
extended tools for solving eigenvalue problems due to its simplicity and flexibility. Then,
the spatial wave function of a 5-quark system is written as follows:

ψLML = [[[ϕn1l1 (⃗ρeiθ)ϕn2l2 (⃗λeiθ)]lϕn3l3 (⃗reiθ)]l′ϕn4l4(R⃗eiθ)]LML . (46)

Taking the first configuration of Figure 2a as an example, the internal Jacobi coordinates
are defined as

ρ⃗ = x⃗1 − x⃗2 , (47)

λ⃗ = x⃗3 − (
m1 x⃗1 + m2 x⃗2

m1 + m2
) , (48)

r⃗ = x⃗4 − x⃗5 , (49)

R⃗ =

(
m1 x⃗1 + m2 x⃗2 + m3 x⃗3

m1 + m2 + m3

)
−
(

m4 x⃗4 + m5 x⃗5
m4 + m5

)
. (50)

The other two configurations of Figure 2, i.e., panels (b) and (c), are very similar but
consider a different arrangement of quark sequences. This choice is convenient because the
center-of-mass kinetic term TCM can be completely eliminated for a non-relativistic system,
and it also allows us to extend the coordinates of relative motion between quarks into the
complex scaling ground.

How to choose the basis on which to expand the genuine wave function of Equation (46)
is important. Herein, by employing the Gaussian expansion method (GEM) [47], the spatial
wave functions of each of the four relative motions are all expanded with Gaussian basis
functions, whose sizes are taken in geometric progressions. This method was proven to be
quite efficient in solving the bound state problem of multiquark systems [65–67], and details
on how the geometric progression is fixed can be found in, e.g., Ref. [65]. Accordingly,
the form of orbital wave functions ϕ in Equation (46) reads

ϕnlm (⃗reiθ ) = Nnl(reiθ)le−νn(reiθ)2
Ylm(r̂) . (51)

Since only the S-wave states of qqscc̄ pentaquarks are investigated in this work,
the spherical harmonic function is just a constant, viz., Y00 =

√
1/4π, and thus, no la-

borious Racah algebra is needed while computing matrix elements.
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Finally, in order to fulfill the Pauli principle, the complete anti-symmetric complex
wave function can be written as

ΨJMJ ,I = ∑
i,j,k

cijkΨJMJ ,I,i,j,k

= ∑
i,j,k

3

∑
n=1

cijkAn

[[
ψLML χ

nσi
SMS

(5)
]

JMJ
χ

n f j
I χnc

k

]
, (52)

where An is the anti-symmetry operator of a 5-quark system, and its different expressions
are shown in Equations (14) and (15). This is needed because we have constructed an
anti-symmetric complex wave function for only two light quarks within the baryon sub-
cluster, and the remaining quark of the system has been added to the wave function by
simply considering the appropriate Clebsch–Gordan coefficients. Furthermore, the so-
called expansion coefficients,

|cijk|2 = ⟨ΨJMJ ,I,i,j,k|ΨJMJ ,I⟩ , (53)

are determined, together with the pentaquark eigenenergy, by a generalized matrix eigen-
value problem.

Although the bases of different baryon–meson channels are not orthogonal to each
other due to the anti-symmetry operator, and this is inevitable when working within a
constituent quark model approach, the off-diagonal matrix elements are very small nu-
merically and negligible when compared with the diagonal ones. Therefore, a quantitative
analysis of the inter-quark distances, rqq̄, and a qualitative one of the dominant components,
Cp, calculated as

rqq̄ =
√
⟨ΨJMJ ,I |r2

qq̄|ΨJMJ ,I⟩ , (54)

Cp = ∑
i,j,k∈Cp

⟨cl
ijkΨJMJ ,I,ijk|cr

ijkΨJMJ ,I,ijk⟩ , (55)

where Cp is the component of one particular pentaquark channel and cl
ijk and cr

ijk are, respec-
tively, the left and right generalized eigenvectors of the complete anti-symmetry complex
wave function, can be performed in order to shed some light on the pentaquark’s nature.

In the next section, where our results on hidden-charm pentaquarks with strangeness
are discussed, we firstly study the systems by a real-range analysis, viz., the rotated angle
θ is equal to 0◦. In this case, when a complete coupled-channel calculation of matrix
diagonalization is performed, possible resonant states are embedded in the continuum.
However, one can employ the CSM, with appropriate non-zero values of θ, to disentangle
bound, resonance and scattering states in a complex energy plane. Accordingly, with the
purpose of solving manageable eigenvalue problems, the artificial parameter of the rotated
angle ranges from 0◦ to 6◦. Meanwhile, with the cooperation of real- and complex-range
computations, available exotic states, which are firstly obtained within a complex-range
analysis and then can be identified among continuum states according to their mass
in a real-range calculation, are further investigated by analyzing their dominant quark
arrangements, sizes and decay patterns.

3. Results

The lowest-lying and possible resonant states of S-wave qqscc̄ pentaquarks are investi-
gated by taking into account three types of baryon–meson configurations, which include
(qqs)(c̄c), (qqc)(c̄s) and (qsc)(c̄c), and they are shown in Figure 2. Therein, the angular mo-
menta l1, l2, l3 and l4, which appear in Equation (46), are all equal to zero. Therefore, the to-
tal angular momentum, J, coincides with the total spin, S, and can take the values 1/2, 3/2
and 5/2, respectively. The parity of the pentaquark system is then negative. Tables 2 and 3
list all allowed baryon–meson configurations of each I(JP) channel. In particular, channels
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are indexed in the second column, and the third and fifth columns present the necessary

basis combination in spin (χnσi
J ), flavor (χ

n f j
I ) and color (χnc

k ) degrees-of-freedom along
with possible configurations (n = 1, 2, 3). Physical channels with color-singlet (labeled
with the super-index 1) and color-octet (labeled with the super-index 8) configurations are
listed in the fourth and sixth columns, respectively.

First of all, the lowest-lying qqscc̄ pentaquark in each channel is computed with a
rotated angle θ = 0◦. The CSM is then employed in a fully coupled-channel calculation.
Tables 4–14 summarize our results for the qqscc̄ system with spin-parity JP = 1

2
−

, 3
2
−

and
5
2
−

and isospin I = 0 and 1. Figures 3–8 show the distribution of complex eigenenergies,
and the obtained bound and resonance states are indicated inside colored orange circles.
Finally, a summary of our most salient results is presented in Table 15.

In Tables 4, 6, 8, 10, 11 and 13, the baryon–meson configuration is listed in the first
column, and the superscripts 1 and 8 stand for color-singlet and -octet states, respectively.
The experimental threshold value of the baryon–meson channel is then listed in the paren-
theses. The lowest theoretical mass obtained in each channel is shown in the second column,
and the binding energy is presented in the following one. A mixture of color-singlet and
-octet configurations for each baryon–meson case is considered, and the coupled mass and
binding energy are shown in the last column. The lowest-lying mass in coupled-channel
calculation, which includes all-color-singlet, all-color-octet and a complete coupled-channel
one, is indicated at the bottom of the tables. For the identified bound and resonance
states, Tables 5, 7, 9, 12 and 14 list the sizes and probabilities of the different pentaquark
configurations in their wave functions.

Table 2. All possible channels for qqscc̄ pentaquark systems with JP = 1/2−. Each channel is assigned

an index in the second column, and it reflects a particular combination of spin (χnσi
J ), flavor (χ

n f j
I ) and

color (χnc
k ) wave functions that are shown explicitly in the third and fifth columns. The baryon–

meson configuration is listed in the fourth and last columns, and the superscripts 1 and 8 stand for
color-singlet and -octet states, respectively.

I = 0 I = 1

JP Index χnσi
J ; χ

n f j
I ; χnc

k ; Channel χnσi
J ; χ

n f j
I ; χnc

k ; Channel

[i; j; k; n] [i; j; k; n]

1
2
−

1 [1, 2; 1, 2; 1; 1] (Ληc) 1 [1, 2; 1, 2; 1; 1] (Σηc)1

2 [2; 1; 1; 2] (ΛcDs) 1 [3, 4; 1, 2; 1; 1] (ΣJ/ψ) 1

3 [1; 1; 1; 3] (Ξ′
cD) 1 [5; 3; 1; 1] (Σ∗ J/ψ) 1

4 [2; 2; 1; 3] (ΞcD) 1 [1; 1; 1; 2] (ΣcDs) 1

5 [3, 4; 1, 2; 1; 1] (ΛJ/ψ) 1 [3; 1; 1; 2] (ΣcD∗
s )

1

6 [4; 1; 1; 2] (ΛcD∗
s )

1 [5; 1; 1; 2] (Σ∗
c D∗

s )
1

7 [3; 1; 1; 3] (Ξ′
cD∗) 1 [1; 1; 1; 3] (Ξ′

cD) 1

8 [4; 2; 1; 3] (ΞcD∗) 1 [2; 2; 1; 3] (ΞcD) 1

9 [5; 1; 1; 3] (Ξ∗
c D∗) 1 [3; 1; 1; 3] (Ξ′

cD∗) 1

10 [1, 2; 1, 2; 2, 3; 1] (Ληc) 8 [4; 2; 1; 3] (ΞcD∗) 1

11 [1, 2; 1; 2, 3; 2] (ΛcDs) 8 [5; 1; 1; 3] (Ξ∗
c D∗) 1

12 [1, 2; 1; 2, 3; 3] (Ξ′
cD) 8 [1, 2; 1, 2; 2, 3; 1] (Σηc) 8

13 [1, 2; 2; 2, 3; 3] (ΞcD) 8 [3, 4; 1, 2; 2, 3; 1] (ΣJ/ψ) 8

14 [3, 4; 1, 2; 2, 3; 1] (ΛJ/ψ) 8 [5; 1, 2; 2, 3; 1] (Σ∗ J/ψ) 8

15 [3, 4; 1; 2, 3; 2] (ΛcD∗
s )

8 [1, 2; 1; 2, 3; 2] (ΣcDs) 8

16 [3, 4; 1; 2, 3; 3] (Ξ′
cD∗) 8 [3, 4; 1; 2, 3; 2] (ΣcD∗

s )
8

17 [3, 4; 2; 2, 3; 3] (ΞcD∗) 8 [5; 1; 3; 2] (Σ∗
c D∗

s )
8

18 [5; 1, 2; 2, 3; 3] (Ξ∗
c D∗) 8 [1, 2; 1; 2, 3; 3] (Ξ′

cD) 8

19 [1, 2; 2; 2, 3; 3] (ΞcD) 8

20 [3, 4; 1; 2, 3; 3] (Ξ′
cD∗) 8

21 [3, 4; 2; 2, 3; 3] (ΞcD∗) 8

22 [5; 1, 2; 2, 3; 3] (Ξ∗
c D∗) 8
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Table 3. All possible channels for qqscc̄ pentaquark systems with 3/2− and 5/2−. Columns are
similarly organized as those in Table 2.

I = 0 I = 1

JP Index χnσi
J ; χ

n f j
I ; χnc

k ; Channel χnσi
J ; χ

n f j
I ; χnc

k ; Channel

[i; j; k; n] [i; j; k; n]

3
2
−

1 [1, 2; 1, 2; 1; 1] (ΛJ/ψ) 1 [1, 2; 1, 2; 1; 1] (ΣJ/ψ) 1

2 [2; 1; 1; 2] (ΛcD∗
s )

1 [3; 3; 1; 1] (Σ∗ηc) 1

3 [1; 1; 1; 3] (Ξ′
cD∗) 1 [4; 3; 1; 1] (Σ∗ J/ψ) 1

4 [2; 2; 1; 3] (ΞcD∗) 1 [1; 1; 1; 2] (ΣcD∗
s )

1

5 [3; 1; 1; 3] (Ξ∗
c D) 1 [3; 1; 1; 2] (Σ∗

c Ds) 1

6 [4; 1; 1; 3] (Ξ∗
c D∗) 1 [4; 1; 1; 2] (Σ∗

c D∗
s )

1

7 [1, 2; 1, 2; 2, 3; 1] (ΛJ/ψ) 8 [1; 1; 1; 3] (Ξ′
cD∗) 1

8 [1, 2; 1; 2, 3; 2] (ΛcD∗
s )

8 [2; 2; 1; 3] (ΞcD∗) 1

9 [1, 2; 1; 2, 3; 3] (Ξ′
cD∗) 8 [3; 1; 1; 3] (Ξ∗

c D) 1

10 [1, 2; 2; 2, 3; 3] (ΞcD∗) 8 [4; 1; 1; 3] (Ξ∗
c D∗) 1

11 [3; 1, 2; 2, 3; 3] (Ξ∗
c D) 8 [1, 2; 1, 2; 2, 3; 1] (ΣJ/ψ) 8

12 [4; 1, 2; 2, 3; 3] (Ξ∗
c D∗) 8 [3; 1, 2; 2, 3; 1] (Σ∗ηc) 8

13 [4; 1, 2; 2, 3; 1] (Σ∗ J/ψ) 8

14 [1, 2; 1; 2, 3; 2] (ΣcD∗
s )

8

15 [3; 1; 3; 2] (Σ∗
c Ds) 8

16 [4; 1; 3; 2] (Σ∗
c D∗

s )
8

17 [1, 2; 1; 2, 3; 3] (Ξ′
cD∗) 8

18 [1, 2; 2; 2, 3; 3] (ΞcD∗) 8

19 [3; 1, 2; 2, 3; 3] (Ξ∗
c D) 8

20 [4; 1, 2; 2, 3; 3] (Ξ∗
c D∗) 8

5
2
−

1 [1; 1; 1; 3] (Ξ∗
c D∗) 1 [1; 3; 1; 1] (Σ∗ J/ψ) 1

2 [1; 1, 2; 2, 3; 3] (Ξ∗
c D∗) 8 [1; 1; 1; 2] (Σ∗

c D∗
s )

1

3 [1; 1; 1; 3] (Ξ∗
c D∗) 1

4 [1; 1, 2; 2, 3; 1] (Σ∗ J/ψ) 8

5 [1; 1; 3; 2] (Σ∗
c D∗

s )
8

6 [1; 1, 2; 2, 3; 3] (Ξ∗
c D∗) 8

We proceed now to describing our theoretical findings in detail. However, two com-
ments are in order here. Firstly, there are two sources of theoretical uncertainties in our
results: one is intrinsic to the numerical algorithm and the other is related to the way the
model parameters are fixed. The numerical error is negligible and, as mentioned in the text,
the model parameters are adjusted to reproduce a certain number of hadron observables
within a determinate range of agreement with the experiment. It is therefore difficult to as-
sign an error to these parameters and consequently to the quantities calculated using them.
Secondly, it has been demonstrated that, given a multiquark system, the lowest-energy state
in the spectrum corresponds to one of the possible meson(s) plus baryon(s) configurations.
Therefore, for the case at hand, the lowest-mass state should correspond to a particular
meson–baryon configuration, (qqq)− (qq̄), and not to other kinds of arrangements such
as (qq)(qq)q̄, (qqq̄)(qq), (qqqq̄)q, etc. Since we are interested in finding the lowest-energy
states supported by the qqscc̄ pentaquark system, under a particular dynamical Hamilto-
nian, we have excluded in our study other configurations beyond meson–baryon ones with
the purpose of obtaining a manageable Hamiltonian matrix to work with. In addition, there
may be coupling effects among all configurations, included the ignored ones, but these are
usually weak when treating different arrangements of quarks.
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Table 4. The lowest-lying qqscc̄ pentaquark states with I(JP) = 0( 1
2
−
) calculated in a real-range

formulation of the potential model. The baryon–meson configuration is listed in the first column,
and the superscripts 1 and 8 stand for color-singlet and -octet states, respectively. The experimental
threshold value of the baryon–meson channel is listed in the parentheses. The lowest theoretical mass
obtained in each channel is shown in the second column, and the binding energy is presented in the
following one. A mixture of color-singlet and -octet states for each baryon–meson configuration is
considered, and the coupled mass and binding energy are shown in the last column. The lowest-lying
mass in a partially coupled-channel calculation, which includes the color-singlet and -octet channel
coupling, and a complete coupled-channel one is performed, and they are indicated at the bottom of
the table, respectively (unit: MeV).

Channel M EB Mixed
(M1⊕8, EB)

(Ληc) 1 (4097) 3918 0 (3918, 0)
(Ληc) 8 4782 +864
(ΛcDs)1(4255) 4029 0 (4029, 0)
(ΛcDs) 8 4730 +701
(Ξ′

cD) 1 (4448) 4509 −5 (4058,−6)
(Ξ′

cD) 8 4818 +304
(ΞcD) 1 (4340) 4289 −11 (4289,−11)
(ΞcD) 8 4762 +462
(ΛJ/ψ) 1 (4213) 4025 0 (4025, 0)
(ΛJ/ψ) 8 4759 +734
(ΛcD∗

s )
1 (4399) 4165 0 (4165, 0)

(ΛcD∗
s )

8 4677 +512
(Ξ′

cD∗) 1 (4585) 4627 −4 (4614,−17)
(Ξ′

cD∗) 8 4783 +152
(ΞcD∗) 1 (4477) 4410 −7 (4408,−9)
(ΞcD∗) 8 4686 +269
(Ξ∗

c D∗) 1 (4652) 4671 −5 (4617,−59)
(Ξ∗

c D∗) 8 4657 −19

All color-singlet channels coupling: 3918
All color-octet channels coupling: 4653

Complete coupled-channel: 3918

4 0 0 0 4 1 0 0 4 2 0 0 4 3 0 0 4 4 0 0 4 5 0 0 4 6 0 0 4 7 0 0- 2 5

- 2 0

- 1 5

- 1 0

- 5

0 Ξ *
c D *Ξ c D * Ξ '

c D *� c D *
s� J / � Ξ c D Ξ '

c D� c D s� � c

 

 0 °

−Γ
/2

(M
eV

)

M ( M e V )

 2 °

 4 °

 6 °

Figure 3. Complex energies of complete coupled-channel calculation for the qqscc̄ pentaquark within
I JP = 0( 1

2
−
).
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Table 5. The compositeness of exotic resonances obtained in a complete coupled-channel computation
in the 0( 1

2
−
) state of the qqscc̄ pentaquark. Particularly, the first column is the resonance pole labeled

by M + iΓ, with unit MeV; the second one is the distance between any two quarks (q = u, d, s) or
quark–antiquark, with unit fm, and the dominant component of the resonance state (S: baryon–meson
structure in a color-singlet channel; H: baryon–meson structure in a hidden-color channel).

Resonance Structure

4303 + i1.0 rqq : 0.99; rqc : 1.50; rqc̄ : 1.59; rcc̄ : 0.97

S: 90.7%; H: 9.3%
(ΛJ/ψ) 1: 60%; (ΞcD) 1: 23%

4603 + i15.9 rqq : 1.06; rqc : 1.80; rqc̄ : 1.88; rcc̄ : 1.16

S: 89%; H: 11%
(Ληc) 1: 21%; (ΛJ/ψ) 1: 29%; (ΛcDs)1: 13%

The I(JP) = 0( 1
2
−
) channel: All of the possible baryon–meson channels, Ληc, ΛJ/ψ,

ΛcD(∗)
s , Ξ′

cD(∗) and Ξ(∗)
c D(∗), listed in Table 4, are firstly investigated in a real-range

calculation. The lowest channel, Ληc, has a theoretical mass of 3918 MeV, which is just
the theoretical threshold value, and it is a scattering state. The unbound nature also holds
for other (qqs)(cc̄) and (qqc)(sc̄) configurations, viz., the color-singlet channels of ΛJ/ψ

and ΛcD(∗)
s configurations are all of scattering type. In addition, the coupling effect is

quite weak in these cases when considering their respective hidden-color channels; hence,
the scattering nature remains. On the other hand, bound states are found in the (qsc)(qc̄)
configuration; particularly, five baryon–meson channels contribute, i.e., Ξ′

cD, ΞcD, Ξ′
cD∗,

ΞcD∗ and Ξ∗
c D∗. There are binding energies which range from −4 to −11 MeV for the

color-singlet channels. Concerning the ΞcD channel, which has −11 MeV binding energy
and then 4.33 GeV attending to its experimental threshold, it is quite compatible with the
reported Pcs(4338) state [4]. However, the stability of this state needs to be confirmed in
a further coupled-channel analysis. Meanwhile, hidden-color channels of these kinds of
configurations predict unbounded states, except for a −19 MeV binding energy of the
color-octet Ξ∗

c D∗. This color resonance becomes more tightly bound with M = 4617 MeV
and EB = −59 MeV if the singlet and octet channels are all coupled, while the coupling is
weak in other Ξ(∗)

c D(∗) channels.
In a further step, three types of coupled-channel computations, all color-singlets,

all color-octets and fully coupled, are performed with θ = 0◦ (real-range calculation).
The lowest-lying masses are listed at the bottom of Table 4. Particularly, the scattering
nature of the lowest channel, Ληc, remains in this kind of computation; moreover, a color-
octet resonant signal at 4653 MeV is also obtained.

In order to better understand the spectrum of qqscc̄ pentaquarks with quantum num-
bers I(JP) = 0( 1

2
−
), the CSM is adopted by considering a rotated angle ranging from 2◦ to

6◦. The distribution of calculated complex energies is plotted in Figure 3. Therein, with an
energy interval from 3.9 to 4.7 GeV, the nine scattering states of Ληc, ΛJ/ψ, ΛcD(∗)

s , Ξ′
cD(∗)

and Ξ(∗)
c D(∗) are well presented. The vast majority of energy dots are aligned along the

corresponding threshold lines; however, two stable poles are obtained and they are circled.
Table 5 collects information about the two resonances obtained in a complete coupled-

channel computation by the CSM. Firstly, their masses and widths (M, Γ) are (4303, 1.0)
MeV and (4603, 15.9) MeV, respectively. Apparently, the lower resonance can be identified
as the Pcs(4338) state. The dominant two-body strong decay widths are the color-singlet
channels ΛJ/ψ(60%) and ΞcD(23%). Its size is less than 1.6 fm. Moreover, the higher
resonance at 4.6 GeV has a width of 15.9 MeV, which is mainly given by the final states
of Ληc(21%), ΛJ/ψ(29%) and ΛcDs(13%) in the singlet color channel. This exotic state,
whose size is less than 1.9 fm, is expected to be confirmed in future experiments.
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Table 6. The lowest-lying qqscc̄ pentaquark states with I(JP) = 0( 3
2
−
) calculated in a real-range

formulation of the potential model. This table is similarly organized as Table 4 (unit: MeV).

Channel M EB Mixed
(M1⊕8, EB)

(ΛJ/ψ) 1 (4213) 4025 0 (4025, 0)
(ΛJ/ψ) 8 4793 +768

(ΛcD∗
s )

1 (4399) 4166 0 (4166, 0)
(ΛcD∗

s )
8 4746 +580

(Ξ′
cD∗) 1 (4585) 4628 −3 (4628,−3)

(Ξ′
cD∗) 8 4898 +267

(ΞcD∗) 1 (4477) 4411 −7 (4411,−7)
(ΞcD∗) 8 4787 +369

(Ξ∗
c D) 1 (4515) 4555 −4 (4553,−6)

(Ξ∗
c D) 8 4853 +294

(Ξ∗
c D∗) 1 (4652) 4674 −2 (4656,−20)

(Ξ∗
c D∗) 8 4771 +95

All color-singlet channels coupling: 4025
All color-octet channels coupling: 4725

Complete coupled-channel: 4025

4 0 0 0 4 1 0 0 4 2 0 0 4 3 0 0 4 4 0 0 4 5 0 0 4 6 0 0 4 7 0 0 4 8 0 0- 2 5

- 2 0

- 1 5

- 1 0

- 5

0 Ξ *
c D *Ξ '

c D *Ξ *
c DΞ c D *� J / � � c D *

s

 0 °

−Γ
/2

(M
eV

)

M ( M e V )

 2 °

 4 °

 6 °

Figure 4. The complex energies of complete coupled-channel calculation for the qqscc̄ pentaquark
within I JP = 0( 3

2
−
).

Table 7. Compositeness of exotic resonances obtained in complete coupled-channel computation in
0( 3

2
−
) state of qqscc̄ pentaquark. Results are similarly organized as those in Table 5.

Resonance Structure

4419 + i0.5 rqq : 1.80; rqc : 1.32; rqc̄ : 1.75; rcc̄ : 2.03

S: 89.6%; H: 10.4%
(ΞcD∗) 1: 72%

4659 + i5.4 rqq : 1.70; rqc : 2.15; rqc̄ : 2.40; rcc̄ : 1.94

S: 93.8%; H: 6.2%
(ΛJ/ψ) 1: 28%; (Ξ′

cD∗) 1: 19%
(ΞcD∗) 1: 19%; (Ξ∗

c D) 1: 13%

The I(JP) = 0( 3
2
−
) channel: Table 6 lists our results of hidden-charm pentaquarks

with strangeness in the mentioned channel obtained by the real-range calculation. In partic-
ular, ΛJ/ψ, ΛcD∗

s , Ξ′
cD∗ and Ξ(∗)

c D(∗) are all the configurations considered. First, the lowest
mass 4025 MeV is the theoretical threshold value of ΛJ/ψ; hence, it is just a scattering state.
In addition, the second energy level, which lies at 4166 MeV, is the theoretical threshold of
ΛcD∗

s , and the unbound nature is also concluded. The scattering feature of the (qqs)(cc̄)



Symmetry 2024, 16, 354 15 of 24

and (qqc)(sc̄) configurations is characteristic of the coupled-channel studies that consider
either singlet- or color-octet channels. Particularly, the excited energy values of (ΛJ/ψ)8

and (ΛcD∗
s )

8 are 768 and 580 MeV, respectively. However, as in the channel I(JP) = 0( 1
2
−
),

bound states are found in the (qsc)(qc̄) configuration. From Table 6, one can find ∼ 4 MeV
binding energies for color-singlet channels Ξ′

cD∗, ΞcD∗, Ξ∗
c D and Ξ∗

c D∗. Their hidden-color
or color-octet channels are generally 300 MeV higher than theoretical thresholds, except for
the (Ξ∗

c D∗)8 state with 95 MeV exciting energy. Additionally, after a mixture of the singlet-
and hidden-color channels, the lowest mass values of Ξ∗

c D and Ξ∗
c D∗ shift to 4553 and 4656

MeV, respectively. However, Ξ′
cD∗ and ΞcD∗ remain at 4268 and 4411 MeV, respectively.

Herein, the ΞcD∗ bound state, which has a binding energy of −7 MeV and a modified mass
of 4470 MeV, is compatible with Pcs(4459) in the I(JP) = 0( 3

2
−
) state [3].

At the bottom of Table 6, we show the lowest coupled mass in three types of real-range
calculations. When all color-singlet channels are considered, the lowest mass, 4025 MeV, is
still the theoretical threshold value of the ΛJ/ψ channel. This weak coupling effect remains
in the complete coupled-channel calculation. In addition, a color resonance of 4725 MeV is
obtained in a computation with all hidden-color channels included.

The spectrum of qqscc̄ pentaquarks with isospin and spin-parity 0( 3
2
−
) is now inves-

tigated in a fully coupled calculation with the help of the CSM; see Figure 4. Within an
energy range of 4.0 − 4.8 GeV, the scattering states of ΛJ/ψ, ΛcD∗

s , ΞcD∗, Ξ∗
c D, Ξ′

cD∗

and Ξ∗
c D∗ are clearly shown. However, two stable poles are obtained and circled. Their

complex energies read as 4419 + i0.5 MeV and 4659 + i5.4 MeV, respectively. Moreover,
quark–(anti-)quark distances and the dominant components of resonances are listed in
Table 7. The first resonance at 4.42 GeV is quite compatible with the Pcs(4459) state [3]. Its
size is less than 2.0 fm, and the golden channel is ΞcD∗(72%) in our calculation. In addition,
since the calculated distance between q and c̄ is 2.4 fm, a loosely resonant nature of the second
state at 4.66 GeV can be drawn. There is a strong coupling among the color-singlet channels
ΛJ/ψ(28%), Ξ′

cD∗(19%), ΞcD∗(19%) and Ξ∗
c D(13%). Accordingly, the narrow resonance,

4659+ i5.4 MeV, is also expected to be found in future high-energy experimental facilities.

Table 8. The lowest-lying qqscc̄ pentaquark states with I(JP) = 0( 5
2
−
) calculated in a real-range

formulation of the potential model. This table is similarly organized as Table 4 (unit: MeV).

Channel M EB Mixed
(M1⊕8, EB)

(Ξ∗
c D∗) 1 (4652) 4673 −3 (4673,−3)

(Ξ∗
c D∗) 8 5003 +327
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Figure 5. Complex energies of complete coupled-channel calculation for qqscc̄ pentaquark within
I JP = 0( 5

2
−
).
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Table 9. Compositeness of exotic states obtained in complete coupled-channel computation in 0( 5
2
−
)

state of qqscc̄ pentaquark. Results are similarly organized as those in Table 5.

Exotic State Structure

4673 + i0 rqq : 1.86; rqc : 1.36; rqc̄ : 1.78; rcc̄ : 2.05

(EB = −3) (Ξ∗
c D∗) 1: 97.4%; (Ξ∗

c D∗) 8: 2.6%

5533 + i3.4 rqq : 1.55; rqc : 1.18; rqc̄ : 1.28; rcc̄ : 0.89

(Ξ∗
c D∗) 1: 49.5%; (Ξ∗

c D∗) 8: 50.5%

The I(JP) = 0( 5
2
−
) channel: Only one baryon–meson channel, Ξ∗D∗, contributes to

the highest spin channel within the isoscalar sector. Firstly, in the single-channel calculation
that includes the color-singlet and -octet configurations, the lowest-lying mass values are
4673 and 5003 MeV, respectively, which correspond to binding energy values of −3 and
327 MeV, when compared to the theoretical threshold. Moreover, the channel-coupling
effect is extremely weak in this case, and thus the coupled mass remains at 4673 MeV.

A complex-range analysis of fully coupled-channel calculation is then performed,
and results are presented in Figure 5. In the 4.6–5.6 GeV energy region, three scatter-
ing states, which include Ξ∗(1S)D∗(1S) and its radial excited cases Ξ∗(2S)D∗(1S) and
Ξ∗(1S)D∗(2S), are well presented. Moreover, one bound state and one narrow resonance
are also obtained. Firstly, the mentioned Ξ∗D∗ again appears loosely bound. Secondly,
a narrow resonance with Γ = 3.4 MeV is obtained at 5533 MeV. It is compact, with size
around 1.2 fm, and there is a strong coupling between the color-singlet (50%) and -octet
(50%) channels of Ξ∗D∗.

Table 10. The lowest-lying qqscc̄ pentaquark states with I(JP) = 1( 1
2
−
) calculated in a real-range

formulation of the potential model. This table is similarly organized as Table 4 (unit: MeV).

Channel M EB Mixed
(M1⊕8, EB)

(Σηc) 1 (4174) 4084 0 (4084, 0)
(Σηc) 8 4837 +753

(ΣJ/ψ) 1 (4290) 4192 0 (4192, 0)
(ΣJ/ψ) 8 4818 +626

(Σ∗ J/ψ) 1 (4482) 4477 0 (4477, 0)
(Σ∗ J/ψ) 8 4807 +330

(ΣcDs) 1 (4422) 4501 0 (4501, 0)
(ΣcDs) 8 4906 +405

(ΣcD∗
s )

1 (4566) 4636 0 (4636, 0)
(ΣcD∗

s )
8 4877 +241

(Σ∗
c D∗

s )
1 (4632) 4679 0 (4621,−58)

(Σ∗
c D∗

s )
8 4645 −34

(Ξ′
cD) 1 (4448) 4514 0 (4514, 0)

(Ξ′
cD) 8 4909 +395

(ΞcD) 1 (4340) 4301 0 (4301, 0)
(ΞcD) 8 4752 +451

(Ξ′
cD∗) 1 (4585) 4631 0 (4631, 0)

(Ξ′
cD∗) 8 4908 +277

(ΞcD∗) 1 (4477) 4418 0 (4418, 0)
(ΞcD∗) 8 4695 +277

(Ξ∗
c D∗) 1 (4652) 4676 0 (4676, 0)

(Ξ∗
c D∗) 8 4857 +181

All color-singlet channels coupling: 4084
All color-octet channels coupling: 4563

Complete coupled-channel: 4084
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Figure 6. (Top panel): The complex energies of complete coupled-channel calculation for the qqscc̄
pentaquark within I JP = 1( 1

2
−
). (Middle panel): Enlarged top panel, with real values of energy

ranging from 4.49 GeV to 4.59 GeV. (Bottom panel): Enlarged top panel, with real values of energy
ranging from 4.62 GeV to 4.70 GeV.

The I(JP) = 1( 1
2
−
) channel: Table 10 lists the real-range calculations of the qqscc̄ pen-

taquarks with isovector character and spin-parity 1
2
−

. We consider 11 baryon–meson config-

urations, and they are Σηc, Σ(∗) J/ψ, Σ(∗)
c D(∗)

s , Ξ′
cD(∗) and Ξ(∗)

c D(∗). Firstly, the lowest-lying
state in the color-singlet channels is Σηc with calculated mass 4084 MeV. Since its mass
is located just at the theoretical threshold value, a scattering nature is deduced, and this
unbound feature also holds for other singlet color channels. However, one bound state
with mass and binding energy 4645 and −34 MeV, respectively, is found in the hidden-color
channel of the Σ∗

c D∗
s state. When a color–structure mixture is considered, this bound state

is pushed down towards 4621 MeV, with a deeper binding energy of −58 MeV. Other
hidden-color channels are generally 200 − 750 MeV higher than their corresponding thresh-
olds, and the coupled-channels mechanism of color structures does not help in forming a
bound state.

Furthermore, as shown at the bottom of Table 10, in the three types of coupled-
channel calculations, the scattering nature of the Σηc state remains unchanged, while a color
resonance at 4563 MeV is obtained by only considering hidden-color channels’ coupling.
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The stability of the bound and color resonance states at 4621 and 4563 MeV, respectively,
should be further studied in a complete coupled-channel calculation by using the CSM.
Figure 6 shows the distribution of complex energies. Particularly, the scattering states of
Σηc, ΣJ/ψ, ΞcD, ΞcD∗ and Σ∗ J/ψ are presented in the top panel, and no stable pole is
found within 4.0–4.5 GeV. An enlarged part from 4.49–4.59 GeV is plotted in the middle
panel of Figure 6. Therein, the resonance pole is still unavailable, and the scattering states
of ΣcDs and Ξ′

cD are presented. Hence, the previous color resonance at 4563 MeV did
not survive in a fully coupled-channel case. Finally, in the bottom panel, whose energy
range goes from 4.62 to 4.70 GeV, four scattering states corresponding to Ξ′D∗, ΣcD∗

s ,
Ξ∗

c D∗ and Σ∗
c D∗

s are shown, and there is no evidence of a resonance state. Accordingly,
the (Σ∗

c D∗)8 bound state, which was obtained in a partial channel coupling computation, is
quite unstable.

Table 11. The lowest-lying qqscc̄ pentaquark states with I(JP) = 1( 3
2
−
) calculated in a real-range

formulation of the potential model. This table is similarly organized as Table 4 (unit: MeV).

Channel M EB Mixed
(M1⊕8, EB)

(ΣJ/ψ) 1 (4290) 4192 0 (4192, 0)
(ΣJ/ψ) 8 4845 +653

(Σ∗ηc) 1 (4366) 4370 0 (4370, 0)
(Σ∗ηc) 8 4857 +487

(Σ∗ J/ψ) 1 (4482) 4477 0 (4477, 0)
(Σ∗ J/ψ) 8 4837 +360

(ΣcD∗
s )

1 (4566) 4636 0 (4636, 0)
(ΣcD∗

s )
8 4912 +276

(Σ∗
c Ds) 1 (4488) 4543 0 (4543, 0)

(Σ∗
c Ds) 8 4735 +192

(Σ∗
c D∗

s )
1 (4632) 4679 0 (4669,−10)

(Σ∗
c D∗

s )
8 4698 +19

(Ξ′
cD∗) 1 (4585) 4631 0 (4631, 0)

(Ξ′
cD∗) 8 4888 +257

(ΞcD∗) 1 (4477) 4418 0 (4418, 0)
(ΞcD∗) 8 4772 +354

(Ξ∗
c D) 1 (4515) 4559 0 (4676, 0)

(Ξ∗
c D) 8 4856 +297

(Ξ∗
c D∗) 1 (4652) 4676 0 (4676, 0)

(Ξ∗
c D∗) 8 4848 +172

All color-singlet channels coupling: 4192
All color-octet channels coupling: 4524

Complete coupled-channel: 4192
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Figure 7. Complex energies of complete coupled-channel calculation for qqscc̄ pentaquark within
I JP = 1( 3

2
−
).
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Table 12. Compositeness of exotic resonances obtained in complete coupled-channel computation in
1( 3

2
−
) state of qqscc̄ pentaquark. Results are similarly organized as those in Table 5.

Resonance Structure

4625 + i4.0 rqq : 1.60; rqc : 1.19; rqc̄ : 1.53; rcc̄ : 1.72

S: 87%; H: 13%
(ΣcD∗

s )
1: 33%; (Σ∗

c Ds) 1: 12%; (Ξ′
cD∗) 1: 21%

4803 + i3.9 rqq : 1.39; rqc : 1.60; rqc̄ : 1.77; rcc̄ : 1.40

S: 90.6%; H: 9.4%
(Σ∗ J/ψ) 1: 27%; (Ξ∗

c D) 1: 21%; (Ξ∗
c D∗) 1: 14%

The I(JP) = 1( 3
2
−
) channel: A total of 10 baryon–meson configurations listed in

Table 11 are investigated herein. Among the Σ(∗) J/ψ, Σ∗ηc, Σ(∗)
c D(∗)

s , Ξ′
cD∗ and Ξ(∗)

c D(∗)

channels both in color-singlet and hidden-color arrangements, the lowest-lying one is
ΣJ/ψ, and its mass is 4192 MeV, which is just the theoretical value of the non-interacting
baryon–meson threshold. Moreover, bound states are still not obtained in other channel
calculations, and hidden-color channels are generally excited by an energy of 200–650 MeV,
except the color-octet channel of Σ∗

c D∗
s , which is 19 MeV higher than its theoretical threshold.

Furthermore, a weakly bound state, whose mass and binding energy are 4669 and −10 MeV,
respectively, is obtained in the Σ∗

c D∗
s configuration when the singlet- and hidden-color

channels are mixed.
When we perform a coupled-channel calculation within the real-range formalism,

taking into account all singlet channels, all octet channels and a fully coupled case, bound
states are not obtained, the lowest-lying mass, 4192 MeV, is the ΣJ/ψ theoretical threshold
value, and a color-octet resonance located at 4524 MeV is found.

Figure 7 shows the distribution of complex energies in a fully coupled-channel study
using the CSM. Within the mass interval of 4.15 − 4.85 GeV, the scattering states of Σ(∗) J/ψ,
Σ∗ηc, Σ(∗)

c D(∗)
s , Ξ′

cD∗ and Ξ(∗)
c D(∗) are clearly found. Apart from them, two stable poles

are circled in the complex energy plane. Their nature and structural information can be
found in Table 12. In particular, the lower resonance is at 4625 MeV, and the higher one
is at 4803 MeV. Their two-body strong decay widths are 4 MeV. In addition, they have
similar sizes, which are about 1.5 fm. Color-singlet channels account for the dominant
contributions to their wave functions: ΣcD∗

s (33%), Σ∗
c Ds(12%) and Ξ′

cD∗(21%) for the
lower resonance, whereas Σ∗ J/ψ(27%), Ξ∗

c D(21%) and Ξ∗
c D∗(14%) are for the other one.

Table 13. The lowest-lying qqscc̄ pentaquark states with I(JP) = 1( 5
2
−
) calculated in a real-range

formulation of the potential model. This table is similarly organized as Table 4 (unit: MeV).

Channel M EB Mixed
(M1⊕8, EB)

(Σ∗ J/ψ) 1 (4482) 4477 0 (4477, 0)
(Σ∗ J/ψ) 8 4883 +406

(Σ∗
c D∗

s )
1 (4632) 4679 0 (4679, 0)

(Σ∗
c D∗

s )
8 4773 +94

(Ξ∗
c D∗) 1 (4652) 4676 0 (4676, 0)

(Ξ∗
c D∗) 8 4853 +177

All color-singlet channels coupling: 4477
All color-octet channels coupling: 4700

Complete coupled-channel: 4477



Symmetry 2024, 16, 354 20 of 24

4 5 0 0 4 6 0 0 4 7 0 0 4 8 0 0 4 9 0 0 5 0 0 0 5 1 0 0 5 2 0 0 5 3 0 0- 2 5

- 2 0

- 1 5

- 1 0

- 5

0

 

 0 °

−Γ
/2

(M
eV

)

M ( M e V )

 2 °

 4 °

Ξ *
c ( 2 S ) D * ( 1 S )� * ( 1 S ) � ( 2 S )� * J / �

 6 °

Ξ *
c D * � *

c D *
s

Figure 8. Complex energies of complete coupled-channel calculation for qqscc̄ pentaquark within
I JP = 1( 5

2
−
).

Table 14. Compositeness of exotic states obtained in a complete coupled-channel computation in
1( 5

2
−
) state of qqscc̄ pentaquark. Results are similarly organized as those in Table 5.

Resonance Structure

5269 + i5.8 rqq : 1.39; rqc : 1.29; rqc̄ : 1.38; rcc̄ : 1.11

S: 54%; H: 46%
(Σ∗ J/ψ) 1: 43%; (Σ∗

c D∗
s )

8: 29.4%

5327 + i5.2 rqq : 1.38; rqc : 1.19; rqc̄ : 1.28; rcc̄ : 1.11

S: 54.3%; H: 45.7%
(Σ∗ J/ψ) 1: 36.2%; (Σ∗

c D∗
s )

8: 34.1%

I(JP) = 1( 5
2
−
) channel: Three baryon–meson configurations should be considered in

the highest spin case of the isovector sector, and they are indicated in Table 13. Particularly,
the lowest-lying state is Σ∗ J/ψ with a theoretical mass of 4477 MeV; the two others lie at
4679 and 4676 MeV for Σ∗

c D∗
s and Ξ∗

c D∗, respectively. Hidden-color channels are at least
90 MeV higher in energy than theoretical threshold lines. Accordingly, no bound states
are found, and this result is also obtained within coupled-channel calculations; see the
bottom part of Table 13. However, a color resonance located at 4.7 GeV is obtained within a
coupled-channel analysis in which only hidden-color configurations are included.

Additionally, when a complex-range investigation is performed, considering all of the
15

2
−

channels, two narrow resonances are found. Figure 8 shows the scattering states corre-
sponding to Σ∗ J/ψ, Σ∗

c D∗
s and Ξ∗

c D∗ within an energy region of 4.45–5.35 GeV. Moreover,
two stable poles are circled, and their complex energies read 5269+ i5.8 and 5327 + i5.2 MeV,
respectively. By looking at Table 14, which provides structural information for the two
singularities, a strong coupling effect between the color-singlet (∼ 54%) and -octet (∼ 46%)
channels is found in both cases. Moreover, the dominant components are also the same:
(Σ∗ J/ψ)1 and (Σ∗

c D∗
s )

8. Additionally, one can also find similarities between the two res-
onances when looking at their inner quark distances. Generally, their sizes are around
1.3 fm.
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Table 15. A summary of exotic structures found in the qqscc̄ (q = u, d) pentaquark systems. The first
column shows the isospin, total spin and parity of each singularity. If available, the second column
lists well-known experimental states, which may be identified in our theoretical framework. The third
column refers to the dominant configuration components, particularly, the superscripts 1 and 8
stand for color-singlet and -octet states, respectively. For a concise purpose, the component without
superscripts is of singlet color state. Theoretical bound and resonance states are presented with the
following notation: (M, EB) and M + iΓ in the last column, respectively (unit: MeV).

I(JP) Experimental State Dominant Component Theoretical Pole

0( 1
2
−
) Pcs(4338) ΛJ/ψ(60%) + ΞcD(23%) 4303 + i1.0

Ληc(21%) + ΛJ/ψ(29%) +
ΛcDs(13%)

4603 + i15.9

0( 3
2
−
) Pcs(4459) ΞcD∗(72%) 4419 + i0.5

ΛJ/ψ(28%) + Ξ(′)
c D∗(19%) +

Ξ∗
c D(13%)

4659 + i5.4

0( 5
2
−
) Ξ∗

c D∗(97.4%) (4673,−3)
(Ξ∗

c D∗) 1 (49.5%) +
(Ξ∗

c D∗) 8 (50.5%)
5533 + i3.4

1( 3
2
−
)

ΣcD∗
s (33%) + Σ∗

c Ds(12%) +
Ξ′

cD∗(21%)
4625 + i4.0

Σ∗ J/ψ(27%) + Ξ∗
c D(21%) +

Ξ∗
c D∗(14%)

4803 + i3.9

1( 5
2
−
)

(Σ∗ J/ψ) 1 (43%) +
(Σ∗

c D∗
s )

8 (29.4%)
5269 + i5.8

(Σ∗ J/ψ) 1 (36.2%) +
(Σ∗

c D∗
s )

8 (34.1%)
5327 + i5.2

4. Summary

S-wave hidden-charm pentaquarks with strangeness, qqscc̄ (q = u, d), whose spin-
parities are JP = 1

2
−

, 3
2
−

and 5
2
−

and isospins either 0 or 1, have been systematically
investigated within a chiral quark model approach that employs a highly accurate com-
putational method, the Gaussian expansion formalism (GEM), along with the complex
scaling technique (CSM), which is a powerful tool when dealing simultaneously with
bound, resonant and scattering states.

Within this theoretical framework, and by considering baryon–meson configurations
in both singlet- and hidden-color channels, the two experimentally reported Pcs states [3,4]
can be well identified. In addition, other structures can be distinguished in the different
channels, except for the I(JP) = 1( 1

2
−
) one. Table 15 summarizes our theoretical findings

on qqscc̄ pentaquarks. In particular, the I(JP) quantum numbers are indicated in the first
column, plausible experimental assignments are listed in the following one, the third
column shows the dominant components in the wave functions of exotic states, and their
theoretical pole positions are presented in the last column.

The following details of our analysis are of particular interest. Firstly, the experimen-
tally reported Pcs(4338) and Pcs(4459) signals, whose tentative assignments of spin-parity
are 1

2
−

and 3
2
−

, respectively, can be well identified within our theoretical framework as
molecules in the isoscalar sector. The dominant components of the lower-energy state are
ΛJ/ψ (60%) and ΞcD (23%), while it is the ΞcD∗ (72%) structure that is dominant in the
higher-energy candidate. Secondly, narrow resonances are obtained in all of the allowed
I(JP) channels, except for the 1( 1

2
−
) one. Generally, they are located in a mass region from

4.6 to 5.5 GeV, and they have strong couplings to different color-singlet channels. In the
JP = 5

2
−

channels, both isoscalar and isovector, the color-singlet and -octet configurations
couple strongly. Finally, a Ξ∗

c D∗ shallow bound state is obtained in the 0( 5
2
−
) channel.

The theoretical mass and binding energy are 4673 MeV and −3 MeV, respectively.
All of the above findings are expected to be confirmed in future high-energy experiments.
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