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Abstract: This paper considers the Hermitian solutions of a new system of commutative quaternion
matrix equations, where we establish both necessary and sufficient conditions for the existence of
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1. Introduction

In 1843, Hamilton introduced the concept of real quaternions, which are defined by [1]

H = {q = q0 + q1i + q2 j + q3k : i2 = j2 = k2 = −1, ijk = −1, q0, q1, q2, q3 ∈ R},

which is a four-dimensional noncommutative associative algebra over real number field.
Quaternions have been used in many areas, such as statistic of quaternion random sig-
nals [2], color image processing [3], and face recognition [4]. The non-commutative nature
of quaternion multiplication introduces numerous challenges and difficulties when dealing
with real quaternions.

A commutative quaternion, which was proposed by Segre [5] in 1892, is in the form
of q = q0 + q1i + q2 j + q3k, where q0, q1, q2, q3 belong to the real number field and the
imaginary identities i, j, k satisfy i2 = k2 = −1, j2 = 1, ijk = −1, ij = ji = k, jk = kj =
i, ki = ik = −j.

A notable characteristic of a commutative quaternion is its fulfillment of the multi-
plication commutative rule. The collection of commutative quaternions comprises four-
dimensional Clifford algebra, forming a ring. Within this set, we can find noteworthy
attributes such as nontrivial idempotents, zero divisors, and nilpotent elements. There are
many applications of commutative quaternion algebra in Hopfield neural networks, digital
signals, image processing [6–10], and so on. Commutative quaternions have also been ex-
tensively researched. Kösal et al. [11] presented complex representations of commutative
quaternion matrices and discussed several related properties. In [12], Kösal et al. proposed
the real representation of a commutative quaternion matrix and derived explicit expressions
for solutions to commutative quaternion matrix equations X − A ¯̄XB = C, X − A ¯̃XB = C,
and X − A ˜̄XB = C, which are commonly referred to as Kalman–Yakubovich-conjugate
matrix equations. Based on this, Kösal et al. [13] provided a formulation for the general
solution to the matrix equation AX = B over the commutative quaternion ring.
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The Hermitian matrix has drawn a significant amount of attentions due to its great
importance. In [14], Yu et al. studied Hermitian solutions to the generalizaed quater-
nion matrix equation AXB + CX∗D = E through the real representation of quaternion
matrices. In [15], Yuan et al. also discussed Hermitian solutions to the split quaternion
matrix equation AXB + CXD = E by using the complex representation of quaternion
matrices. In [16], Kyrchei obtained the determinantal representation formulas of η-(η-
skew)-Hermitian solutions to the quaternion matrix equations AX = B and AXAη∗ = B.
In [17], Xu et al. proceeded to delve further into the η Hermitian solutions of the equations,
after providing the solvability conditions and expressions for the solutions of the system of
equations over the quaternion ring. As a special type of Hermitian solution, research on
Hermitian solutions is still in progress. Chen et al. [18] not only investigated the solvabil-
ity conditions and the general expressions of solution for the matrix equation AXB = C
over dual quaternion algebra but also explored the expression of ϕ Hermitian solutions
when they exist. The Sylvester matrix equations are widely utilized in diverse fields. For
example, the Sylvester matrix equation A1X + XB1 = C1 and the Sylvester-like matrix
equation A1X + YB1 = C1 have been applied in singular system control [19], perturbation
theory [20], sensitivity analysis [21], and control theory [22]. Kyrchei [23] gave the determi-
nantal representation formulas of solutions to the generalized Sylvester quaternion matrix
equation A1X1B1 + A2X2B2 = C.

Motivated by a sustained interest in Hermitian solutions and the wide applications of
commutative quaternion matrix equations, in this paper we aim to explore the solvability
conditions and the Hermitian solutions of the following system of commutative quaternion
matrix equations, 

A1X = C1,
YB1 = D1,
A2Z = C2, ZB2 = D2,
A3W = C3, WB3 = D3, A4WB4 = C4,
A5X + YB5 + A6ZB6 + A7WB7 = C5,

(1)

where X, Y, Z, W are unknown Hermitian commutative quaternion matrices.
This paper is organized as follows. In Section 2, we review some useful properties

and the structures of vec(AXB) over the commutative quaternion algebra when X is a
Hermitian commutative quaternion matrix. In Section 3, we derive some practical necessary
and sufficient conditions for the existence of Hermitian solutions to the system (1) over Hc,
and the numerical examples are provided in Section 4.

2. Preliminaries

Throughout this paper, let Rm×n,SRn×n,ASRn×n,Cm×n,Hc,Hc
n, and Hc

m×n denote
the sets of all m × n real matrices, n × n real symmetric matrices, n × n real anti-symmetric
matrices, m × n complex matrices, commutative quaternions, n dimensional commutative
quaternion column vectors, and m × n commutative quaternion matrices, respectively.

The symbol r(A) denotes the rank of A. Let the symbols I, O, AT , A† stand for the
identity matrix, the zero matrix with appropriate size, the transpose of A, and the Moore–
Penrose inverse of matrix A, respectively. Ā and AH denote the conjugate matrix and
the conjugate transpose matrix of A, respectively. We call A ∈ Hc

n×n a Hermitian matrix
if AH = A and denote it by A ∈ HHc

n×n, where HHc
n×n is the set of all Hermitian

commutative quaternion matrices with a size of n × n.
For any A ∈ Hc

m×n, A can be uniquely expressed as A = A0 + A1i + A2 j + A3k,
where A0, A1, A2, A3 ∈ Rm×n. It can also be uniquely expressed as A = C1 + C2 j, where
C1 = A0 + A1i, C2 = A2 + A3i ∈ Cm×n.
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Proposition 1 ([11]). The complex representation matrix for commutative quaternion q = d1 +
d2 j, d1 = q0 + q1i, d2 = q2 + q3i is denoted as

g(q) =
(

d1 d2
d2 d1

)
∈ C2×2.

Similarly, for any given A = A1 + A2 j ∈ Hc
m×n, the complex representation matrix of A is

G(A) =

(
A1 A2
A2 A1

)
∈ C2m×2n. (2)

Obviously, G(A) is uniquely determined by A. It is straightforward to confirm that
the following statements are valid.

Proposition 2 ([11]). If A, B ∈ Hc
n×n, then

(a) A = B if and only if G(A) = G(B),
(b) G(A + B) = G(A) + G(B),
(c) G(In) = I2n,
(d) G(AB) = G(A)G(B).

Suppose A = (aij) ∈ Hm×n
c and B = (bij) ∈ Hs×t

c ; the Kronecker product of A and
B is defined as A ⊗ B = (aijB) ∈ Hms×nt

c . Considering commutative quaternion matrices
A, B, C, D, E with appropriate dimensions, along with the real number p, we establish that

(pA)⊗ B = A ⊗ (pB) = p(A ⊗ B),

(A, B, C)⊗ D = (A ⊗ D, B ⊗ D, C ⊗ D),(
A B
C D

)
⊗ E =

(
A ⊗ E B ⊗ E
C ⊗ E D ⊗ E

)
.

The vec-operator of A = (aij) ∈ Hm×n
c is defined as

vec(A) = (a1, a2, . . . , an)
T , aj = (a1j, a2j, . . . , amj), j = 1, 2, . . . , n.

To investigate the Hermitian solutions of a system of matrix Equation (1) within
the framework of the commutative quaternion algebra, we need to review some certain
definitions and fundamental properties.

Assume that A = A1 + A2 j ∈ Hc
m×n, A1, A2 ∈ Cm×n, then we have

A1 + A2 j = A ∼= ΦA = (A1, A2),

where the symbol ∼= represents an equivalence relation. For a given matrix A = (aij) ∈
Cm×n, the corresponding Frobenius norm is defined as follows:

||A|| =

√√√√ m

∑
i=1

n

∑
j=1

∥∥aij
∥∥2,

∥∥aij
∥∥2

=
(
Re aij

)2
+
(
Im aij

)2.

According to the previously mentioned definition of Frobenius norm for complex matrices,
we can define the Frobenius norm for commutative quaternion matrix A = A1 + A2 j ∈
Hc

m×n as follows:

∥Á∥ =

√
∥Re A1∥2 + ∥Im A1∥2 + ∥Re A2∥2 + ∥Im A2∥2,

where Á =
(
Re(A1) Im(A1) Re(A2) Im(A2)

)
; then we have

||ΦA|| = ||Á|| = || vecΦA ||.
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Theorem 1 ([24]). Let p ∈ R, A, B ∈ Hc
m×n and C ∈ Hc

n×s. Then

(a) A = B if and only if ΦA = ΦB,
(b) ΦA+B = ΦA + ΦB, ΦpA = pΦA,
(c) (AC)T = CT AT ,
(d) (AC)−1 = C−1 A−1, if the matrices A, C and AC are invertible,
(e) ΦAC = ΦAG(C).

For the purpose of deriving the Hermitian solutions of the system (1), we introduce
some relevant definitions and conclusions.

Definition 1 ([15]). For the matrix A =
(
aij
)
∈ Hn×n

c , set a1 =
(

a11,
√

2a21, . . . ,
√

2an1

)
, a2 =(

a22,
√

2a32, . . . ,
√

2an2

)
, . . . , an−1 =

(
a(n−1)(n−1),

√
2an(n−1)

)
, an = ann, and denote by vecS(A)

the following vector:

vecS(A) = (a1, a2, . . . , an−1, an)
T ∈ H(n(n+1))/2

c . (3)

Definition 2 ([15]). For the matrix B =
(
bij
)
∈ Hn×n

c , set b1 = (b21, b31, . . . , bn1), b2 =

(b32, b42 , . . . , bn2), . . . , bn−2 =
(

b(n−1)(n−2), bn(n−2)

)
, bn−1 = bn(n−1), and denote by vecA(B)

the following vector:

vecA(B) =
√

2(b1, b2, . . . , bn−2, bn−1)
T ∈ H(n(n−1))/2

c . (4)

Proposition 3 ([25]). Suppose that X ∈ Rn×n, then
(1)

X ∈ SRn×n ⇐⇒ vec(X) = KS vecS(X), (5)

where the matrix KS ∈ Rn2×(n(n+1)/2) is of the following form:

KS =
1√
2



√
2e1 e2 · · · en−1 en 0 0 · · · 0 · · · 0 0 0
0 e1 · · · 0 0

√
2e2 e3 · · · en · · · 0 0 0

0 0 · · · 0 0 0 e2 · · · 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
0 0 · · · e1 0 0 0 · · · 0 · · ·

√
2en−1 en 0

0 0 · · · 0 e1 0 0 · · · e2 · · · 0 en−1
√

2en


,

and ei is the ith column of the identity matrix of order n.
(2)

X ∈ ASRn×n ⇐⇒ vec(X) = KA vecA(X), (6)

vecA(X) is described as (4) and the matrix KA ∈ Rn2×(n(n−1)/2) is of the following form:

KA =
1√
2



e2 e3 · · · en−1 en 0 · · · 0 0 · · · 0
−e1 0 · · · 0 0 e3 · · · en−1 en · · · 0

0 −e1 · · · 0 0 −e2 · · · 0 0 · · · 0
...

...
...

...
... 0 0 0

0 0 · · · −e1 0 0 · · · −e2 0 · · · en
0 0 · · · 0 −e1 0 · · · 0 −e2 · · · −en−1


,

where ei is the column of the identity matrix of order n. It is apparent that KT
S KS = I(n(n+1))/2, KT

AKA =
I(n(n−1))/2.

Next, we explore the relationships between the Hermitian commutative quaternion
matrices and symmetric matrices, as well as anti-symmetric matrices.
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If X = X1 + X2 j ∈ HHn×n
c , where X1, X2 ∈ Cn×n, we can obtain

X ∈ HHn×n
c ⇔

{
Re(X1)

T = Re(X1), Im(X1)
T = − Im(X1),

Re(X2)
T = −Re(X2), Im(X2)

T = − Im(X2).

Apparently, Re(X1) is symmetric, and Im(X1), Re(X2), and Im(X2) are antisymmetric. By
means of Proposition 3, we have the following:

Theorem 2 ([26]). Assume that X = X1 + X2 j ∈ HHn×n
c , then we obtain

(
vec(X1)
vec(X2)

)
= M


vecS(Re(X1))
vecA(Im(X1))
vecA(Re(X2))
vecA(Im(X2))

, (7)

in which

M =

(
KS iKA 0 0
0 0 KA iKA

)
. (8)

Theorem 3 ([26]). Suppose that A = A1 + A2 j ∈ Hc
m×n, B = B1 + B2 j ∈ Hc

s×t and X =
X1 + X2 j ∈ Hc

n×s, where A1, A2 ∈ Cm×n, B1, B2 ∈ Cs×t and X1, X2 ∈ Cn×s. Then

vec(ΦAXB) = G
[
(BT

1 ⊗ A1 + BT
2 ⊗ A2) + (BT

2 ⊗ A1 + BT
1 ⊗ A2)j

](vec(X1)
vec(X2)

)
. (9)

Note that the results of vec(ΦAXB) is very important for calculating the system of
commutative quaternion matrix Equation (1). Analogous methods and related conclusions
can be found in [15].

By incorporating Theorem 3 with Theorem 2, we can gain the following outcome.

Theorem 4 ([26]). If A = A1 + A2 j ∈ Hm×n
c , X = X1 + X2 j ∈ HHn×n

c , and B = B1 + B2 j ∈
Hn×s

c , where Ai ∈ Cm×n, Xi ∈ Cn×n, and Bi ∈ Cn×s(i = 1, 2). Consequently,

vec(ΦAXB) = G
[
(BT

1 ⊗ A1 + BT
2 ⊗ A2) + (BT

2 ⊗ A1 + BT
1 ⊗ A2)j

]
M


vecS(Re(X1))
vecA(Im(X1))
vecA(Re(X2))
vecA(Im(X2))

. (10)

Lemma 1 ([27]). The matrix equation Ax = b, with A ∈ Rm×n and b ∈ Rm, has a solution
x ∈ Rn if and only if

AA†b = b. (11)

In this case, it has the general solution

x = A†b + (In − A† A)y, (12)

where y ∈ Rn is an arbitrary vector, and it has the unique solution x = A†b for the case when
r(A) = n. The solution of the matrix equation Ax = b with the least norm is x = A†b.

3. The Hermitian Solution to the System (1)

In accordance with the above discussion, we now focus on solving system (1); for ease
of description, we firstly state the following notations.
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Let A1 = A11 + A12 j, A2 = A21 + A22 j, A3 = A31 + A32 j ∈ Hm×n
c , C1, C2, C3 ∈

Hm×n
c , B1 = B11 + B12 j, B2 = B21 + B22 j, B3 = B31 + B32 j ∈ Hn×k

c , D1, D2, D3 ∈ Hn×k
c , A4 =

A41 + A42 j ∈ Hs×n
c , B4 = B41 + B42 j ∈ Hn×t

c , C4 ∈ Hs∈×t
c , A5 = A51 + A52 j, A6 = A61 +

A62 j, A7 = A71 + A72 j, B5 = B51 + B52 j, B6 = B61 + B62 j, B7 = B71 + B72 j ∈ Hn×n
c , and

C5 ∈ Hn×n
c . We set

E =



G[(I ⊗ A11) + (I ⊗ A12)j]
0
0
0
0
0
0

G[(I ⊗ A51) + (I ⊗ A52)j]


M, F =



0
0
0

G[(BT
11 ⊗ I) + (BT

12 ⊗ I)j]
0
0
0

G[(BT
51 ⊗ I) + (BT

52 ⊗ I)j]


M,

P =



0
G[(I ⊗ A21) + (I ⊗ A22)j]

0
0

G[(BT
21 ⊗ I) + (BT

22 ⊗ I)j]
0
0

G[(BT
61 ⊗ A61 + BT

62 ⊗ A62) + (BT
62 ⊗ A61 + BT

61 ⊗ A62)j]


M,

Q =



0
0

G[(I ⊗ A31) + (I ⊗ A32)j]
0
0

G[(BT
31 ⊗ I) + (BT

32 ⊗ I)j]
G[(BT

41 ⊗ A41 + BT
42 ⊗ A42) + (BT

42 ⊗ A41 + BT
41 ⊗ A42)j]

G[(BT
71 ⊗ A71 + BT

72 ⊗ A72) + (BT
72 ⊗ A71 + BT

71 ⊗ A72)j]


M,

T =



vec
(
ΦC1

)
vec
(
ΦC2

)
vec
(
ΦC3

)
vec
(
ΦD1

)
vec
(
ΦD2

)
vec
(
ΦD3

)
vec
(
ΦC4

)
vec
(
ΦC5

)


, T1 =



vec
(
Re ΦC1

)
vec
(
Re ΦC2

)
vec
(
Re ΦC3

)
vec
(
Re ΦD1

)
vec
(
Re ΦD2

)
vec
(
Re ΦD3

)
vec
(
Re ΦC4

)
vec
(
Re ΦC5

)


, T2 =



vec
(
Im ΦC1

)
vec
(
Im ΦC2

)
vec
(
Im ΦC3

)
vec
(
Im ΦD1

)
vec
(
Im ΦD2

)
vec
(
Im ΦD3

)
vec
(
Im ΦC4

)
vec
(
Im ΦC5

)


, ϵ =

(
T1
T2

)
,

W =


KS 0 0 0
0 KA 0 0
0 0 KA 0
0 0 0 KA

,W =


W 0 0 0
0 W 0 0
0 0 W 0
0 0 0 W

,

vec(X⃗) =


vecS(Re(X1))
vecA(Im(X1))
vecA(Re(X2))
vecA(Im(X2))

, vec(Y⃗) =


vecS(Re(Y1))
vecA(Im(Y1))
vecA(Re(Y2))
vecA(Im(Y2))

,

vec(Z⃗) =


vecS(Re(Z1))
vecA(Im(Z1))
vecA(Re(Z2))
vecA(Im(Z2))

, vec(W⃗) =


vecS(Re(W1))
vecA(Im(W1))
vecA(Re(W2))
vecA(Im(W2))

, (13)
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and
E1 = Re E, E2 = Im E, F1 = Re F, F2 = Im F,

P1 = Re P, P2 = Im P, Q1 = Re Q, Q2 = Im Q,

U1 = (E1, F1, P1, Q1),

U2 = (E2, F2, P2, Q2).

(14)

For further study of the structure of Hermitian solution of the system of matrix Equation (1),
it is necessary to study the generalized inverse of matrices in the form of column blocks.
The following notations are required. Let

d = 6mn + 6kn + 2st + 2n2,

H =
(

I8n2−4n − U†
1 U1

)
UT

2 ,

K =
(

Id +
(

Id − H†H
)

U2U†
1 U†T

1 UT
2

(
Id − H† H

))−1
,

J = H† +
(

Id − H† H
)

KU2U†
1 U†T

1

(
I8n2−4n − UT

2 H†
)

,

R11 = Id − U1U†
1 + U†T

1 UT
2 K
(

Id − H†H
)

U2U†
1 ,

R12 = −U†T
1 UT

2

(
Id − H† H

)
K,

R22 =
(

Id − H†H
)

K.

From the findings [28] presented above, it can be inferred that(
U1
U2

)†

=
(

U†
1 − JTU2U†

1 , JT
)

,
(

U1
U2

)†(U1
U2

)
= U†

1 U1 + HH†, (15)

and

I2d −
(

U1
U2

)(
U1
U2

)†

=

(
R11 R12
RT

12 R22

)
. (16)

Taking into account the aforementioned results, we then turn our attention to the Hermitian
solution of the system (1).

Theorem 5. Let A1, A2, A3, C1, C2, C3 ∈ Hm×n
c , B1, B2, B3, D1, D2, D3 ∈ Hn×k

c , A4 ∈ Hs×n
c , B4 ∈

Hn×t
c , C4 ∈ Hs×t

c , A5, A6, A7, B5, B6, B7 ∈ Hn×n
c , and C5 ∈ Hn×n

c .U1, U2 and ϵ are in the form of
(3) and (14), respectively. Then the system of commutative quaternion matrix Equation (1) has a
solution X, Y, Z, W ∈ HHc

n×n if and only if(
U1
U2

)(
U1
U2

)†

ϵ = ϵ. (17)

In this case, the set of Hermitian solutions is as follows:

Λ =

(X, Y, Z, W)|


vec(X́)
vec(Ý)
vec(Ź)
vec(Ẃ)

 = W

(
U1
U2

)†

ϵ +W(I8n2−4n −
(

U1
U2

)†(U1
U2

)
)y

, (18)

where y is an arbitrary vector of appropriate order. Then the system (1) has a unique solution
(X, Y, Z, W) ∈ Λ if and only if

r
(

U1
U2

)
= 8n2 − 4n. (19)
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If this condition satisfies, then

Λ =

(X, Y, Z, W)|


vec(X́)
vec(Ý)
vec(Ź)
vec(Ẃ)

 = W

(
U1
U2

)†

ϵ

. (20)

Proof. By virtue of Theorems 1 and 4 , we obtain
A1X = C1,
YB1 = D1,
A2Z = C2, ZB2 = D2,
A3W = C3, WB3 = D3, A4WB4 = C4,
A5X + YB5 + A6ZB6 + A7WB7 = C5,

⇐⇒


ΦA1X = ΦC1 ,
ΦYB1 = ΦD1 ,
ΦA2Z = ΦC2 , ΦZB2 = ΦD2 ,
ΦA3W = ΦC3 , ΦWB3 = ΦD3 , ΦA4WB4 = ΦC4 ,
ΦA5X + ΦYB5 + ΦA6ZB6 + ΦA7WB7 = ΦC5 ,

⇐⇒ E


vecS(Re(X1))
vecA(Im(X1))
vecA(Re(X2))
vecA(Im(X2))

+ F


vecS(Re(Y1))
vecA(Im(Y1))
vecA(Re(Y2))
vecA(Im(Y2))

+ P


vecS(Re(Z1))
vecA(Im(Z1))
vecA(Re(Z2))
vecA(Im(Z2))

+ Q


vecS(Re(W1))
vecA(Im(W1))
vecA(Re(W2))
vecA(Im(W2))

 = T,

⇐⇒ (Re E + i Im E)


vecS(Re(X1))
vecA(Im(X1))
vecA(Re(X2))
vecA(Im(X2))

+ (Re F + i Im F)


vecS(Re(Y1))
vecA(Im(Y1))
vecA(Re(Y2))
vecA(Im(Y2))



+ (Re P + i Im P)


vecS(Re(Z1))
vecA(Im(Z1))
vecA(Re(Z2))
vecA(Im(Z2))

+ (Re Q + i Im Q)


vecS(Re(W1))
vecA(Im(W1))
vecA(Re(W2))
vecA(Im(W2))

 = T1 + iT2,

⇐⇒
(

Re E Re F Re P Re Q
Im E Im F Im P Im Q

)
vec(X⃗)

vec(Y⃗)
vec(Z⃗)
vec(W⃗)

 = ϵ,

⇐⇒
(

U1
U2

)
vec(X⃗)

vec(Y⃗)
vec(Z⃗)
vec(W⃗)

 = ϵ.

By Lemma 2, we conclude that the system (1) has a Hermitian solution (X, Y, Z, W) ∈
Λ if and only if (17) is satisfied; thus we have

vec(X⃗)

vec(Y⃗)
vec(Z⃗)
vec(W⃗)

 =

(
U1
U2

)†

ϵ +

(
I8n2−4n −

(
U1
U2

)†(U1
U2

))
y.
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On account of

vec(X́) =


vec(Re(X1))
vec(Im(X1))
vec(Re(X2))
vec(Im(X2))

 =


KS 0 0 0
0 KA 0 0
0 0 KA 0
0 0 0 KA




vecS(Re(X1))
vecA(Im(X1))
vecA(Re(X2))
vecA(Im(X2))

 = W vec(X⃗),

similarly, we can derive vec(Ý) = W vec(⃗Y), vec(Ź) = W vec(Z⃗), and vec(Ẃ) = W vec(W⃗);
then we have 

vec(X́)
vec(Ý)
vec(Ź)
vec(Ẃ)

 =


W 0 0 0
0 W 0 0
0 0 W 0
0 0 0 W




vec(X⃗)

vec(Y⃗)
vec(Z⃗)
vec(W⃗)



= W


vec(X⃗)

vec(Y⃗)
vec(Z⃗)
vec(W⃗)


= W

(
U1
U2

)†

ϵ +W(I8n2−4n −
(

U1
U2

)†(U1
U2

)
)y.

This means that (18) is true; if (17) holds, the system (1) has a unique solution (X, Y, Z, W) ∈
Λ if and only if (

U1
U2

)†(U1
U2

)
= I8n2−4n.

Thus, by (19) we can obtain (20).

Corollary 1. The system (1) has a solution X, Y, Z, W ∈ HHc if and only if(
R11 R12
RT

12 R22

)
ϵ = 0. (21)

Under this circumstance, the set of the Hermitian solution of the system (1) can be represented as
follows:

Λ =

(X, Y, Z, W)|


vec(X́)
vec(Ý)
vec(Ź)
vec(Ẃ)

 = W
(

U†
1 − JTU2U†

1 , JT
)

ϵ +W(I8n2−4n − U†
1 U1 − HH†)y

, (22)

in which y is an arbitrary vector of appropriate size. Then, the system (1) has an unique solution
(X, Y, Z, W) ∈ Λ when (21) and (19) are obeyed. In this case,

Λ =

(X, Y, Z, W)|


vec(X́)
vec(Ý)
vec(Ź)
vec(Ẃ)

 = W
(

U†
1 − JTU2U†

1 , JT
)

ϵ

. (23)

4. Numerical Exemplification

In this section, on the basis of discussions in Sections 2 and 3, we provide Algorithms 1
and 2 for solving the system (1) and present two numerical examples to verify the feasibility
of the algorithms.
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Algorithm 1 For the system (1)

1: Input: the matrix:A1, A2, A3 ∈ Hm×n
c , C1, C2, C3 ∈ Hm×n

c , B1, B2, B3 ∈ Hn×k
c , D1, D2, D3 ∈

Hn×k
c , A4 ∈ Hs×n

c , B4 ∈ Hn×t
c , C4 ∈ Hs∈×t

c , A5, A6, A7, B5, B6, B7 ∈ Hn×n
c , C5 ∈ Hn×n

c , KS and
KA.
2: Compute U1, U2 and ϵ.
3: If both (17) and (19) hold, then calculate the unique solution (X, Y, Z, W) ∈ Λ by (20).
4: If (17) holds, then calculate (X, Y, Z, W) ∈ Λ according to (18).
5: Output:(X, Y, Z, W).

Algorithm 2 For the system (1)

1: Input: the matrix:A1, A2, A3 ∈ Hm×n
c , C1, C2, C3 ∈ Hm×n

c , B1, B2, B3 ∈ Hn×k
c , D1, D2, D3 ∈

Hn×k
c , A4 ∈ Hs×n

c , B4 ∈ Hn×t
c , C4 ∈ Hs∈×t

c , A5, A6, A7, B5, B6, B7 ∈ Hn×n
c , C5 ∈ Hn×n

c , KS and
KA.
2: Compute U1, U2, H, K, J, R11, R12, R22 and ϵ.
3: If both (19) and (21) hold, then calculate the unique solution (X, Y, Z, W) ∈ Λ by (23).
4: If (21) holds, then calculate (X, Y, Z, W) ∈ Λ according to (22).
Otherwise stop.
5: Output: (X, Y, Z, W).

From the previous theoretical analysis, if the system (1) is solvable, then

θ1 =

∥∥∥∥∥
(

U1
U2

)(
U1
U2

)†

ϵ − ϵ

∥∥∥∥∥, θ2 =

∥∥∥∥(R11 R12
RT

12 R22

)
ϵ

∥∥∥∥
and

θ3 =

∥∥∥∥∥I2d −
(

U1
U2

)(
U1
U2

)†

−
(

R11 R12
RT

12 R22

)∥∥∥∥∥
are small enough.

Example 1. Let m = 6, n = 4, k = 5, s = 2, t = 3, and

A1 = A11 + A12 j, A2 = A21 + A22 j, A3 = A31 + A32 j,

B1 = B11 + B12 j, B2 = B21 + B22 j, B3 = B31 + B32 j,

A4 = A41 + A42 j, B4 = B41 + B42 j, A5 = A51 + A52 j,

A6 = A61 + A62 j, A7 = A71 + A72 j, B5 = B51 + B52 j,

B6 = B61 + B62 j, B7 = B71 + B72 j,

Ẋ = Ẋ1 + Ẋ2 j, Ẏ = Ẏ1 + Ẏ2 j,

Ż = Ż1 + Ż2 j, Ẇ = Ẇ1 + Ẇ2 j,

C1 = A1Ẋ, C2 = A2Ż, C3 = A3Ẇ,

D1 = ẎB1, D2 = ŻB2, D3 = ẆB3,

C4 = A4ẆB4, C5 = A5Ẋ + ẎB5 + A6ŻB6 + A7ẆB7.
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where

A11 =

(
I4

O2×4

)
, A12 = O6×4, A21 = O6×4, A22 =

(
I4

O2×4

)
,

A31 = O6×4, A32 =

(
O2×4

I4i

)
, A41 =

(
1 0 i 0
0 1 0 i

)
, A42 =

(
0 0 1 0
0 0 0 1

)
,

A51 = I4i, A52 = O4×4, A61 =

(
I2 O2×2

O2×2 O2×2

)
, A62 = O4×4,

A71 =

(
O2×2 I2

I2 O2×2

)
, A72 =

(
O2×2 −I2i
O2×2 O2×2

)
, B11 = O4×5, B12 =

(
I4 O4×1

)
,

B21 =
(
−I4i O4×1

)
, B22 = O4×5, B31 = O4×5, B32 =

(
I4 O4×1

)
,

B41 =

(
I3

O1×3

)
, B42 = O4×3, B51 = O4×4, B52 = −I4i,

B61 = I4, B62 = O4×4, B71 =

(
O2×2 I2

I2 O2×2

)
, B72 = O4×4,

C1 =



1 −1 + i j 0
−1 − i 2 i k
−j −i 0 0
0 −k 0 1
0 0 0 0
0 0 0 0

, C2 =



j 0 0 k
0 j 0 −1
0 0 j 0
−k 1 0 j
0 0 0 0
0 0 0 0

,

C3 =



0 0 0 0
0 0 0 0
0 −j i 0
j 0 k 0
−i k 0 −1
0 0 1 0

, D1 =
(
0 0 −k j 0

)
,

D2 =



−i 0 0 1 0
0 −i 0 k 0
0 0 −i 0 0
0 k j 0 0
−k 0 −1 + k 0 0

j 1 − k 0 k 0
−1 −k 0 −i 0


, D3 =


0 k 1 0 0
−k 0 j 0 0
−1 j 0 i 0
0 0 −i 0 0

,

C4 =

(
−1 − k 2i + j j
−i 0 1 − i + j

)
,

C5 =


1 + i −i + j + k i − j 1 + i − k

−i − j − k 1 + 2i −1 + i + j −2j
j − 2k 1 − i − j 0 i + j

1 j −i − j i − k

.
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We take

Ẋ1 =


1 −1 + i 0 0

−1 − i 2 i 0
0 −i 0 0
0 0 0 1

, Ẋ2 =


0 0 1 0
0 0 0 i
−1 0 0 0
0 −i 0 0

,

Ẏ1 =


0 i 1 0
−i 0 i 0
1 −i 0 i
0 0 −i 1

, Ẏ2 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

,

Ż1 =


1 0 0 i
0 1 0 0
0 0 1 0
−i 0 0 1

, Ż2 =


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

,

Ẇ1 =


0 i 0 0
−i 0 1 0
0 1 0 0
0 0 0 0

, Ẇ2 =


0 0 1 0
0 0 0 0
−1 0 0 i
0 0 −i 0

.

Let
ΦC1 = ΦA1 G(Ẋ),

ΦD1 = ΦẎG(B1),

ΦC2 = ΦA2 G(Ż), ΦD2 = ΦŻG(B2),

ΦC3 = ΦA3 G(Ẇ), ΦD3 = ΦẆ G(B3), ΦC4 = ΦA4 G(Ẇ)G(B4),

ΦC5 = ΦA5 G(Ẋ) + ΦẎG(B5) + ΦA6 G(Ż)G(B6) + ΦA7 G(Ẇ)G(B7).

From MATLAB and Algorithms 1 and 2 , we can obtain

r
(

U1
U2

)
= 112 = 8n2 − 4n, θ2 = 7.0360 × 10−15.

According to Algorithm 2, the system of matrix Equation (1) has a unique solution (X, Y, Z, W) ∈
Λ, and we derive θ1 = 1.7493 × 10−14, θ3 = 2.3111 × 10−14 and ∥Φ(X,Y,Z,W) − Φ(Ẋ,Ẏ,Ż,Ẇ)∥ =

1.1628 × 10−14.

Example 2. Let m = 2, n = 2, k = 2, s = 2, t = 2, and

A1 =

(
i 0
0 0

)
, A2 =

(
1 i
0 0

)
, A3 =

(
1 0
0 1

)
, A4 =

(
1 0
0 1

)
,

A5 =

(
1 0
0 1

)
, A6 =

(
0 1
1 0

)
, A7 =

(
1 0
0 i

)
, B1 =

(
i 0
0 0

)
,

B2 =

(
1 0
0 1

)
, B3 =

(
1 0
0 0

)
, B4 =

(
0 k
0 0

)
, B5 =

(
0 j
0 0

)
,

B6 = O2, B7 =

(
0 0
0 j

)
, C1 =

(
i −1 + i
0 0

)
, C2 =

(
0 i
0 0

)
,

C3 =

(
0 2 + i

2 − i 0

)
, C4 =

(
0 0
0 j + 2k

)
, C5 =

(
1 1 + i + 3j + k

1 − i −k

)
,

D1 =

(
i 0
1 0

)
, D2 =

(
0 0
0 1

)
, D3 =

(
0 0

2 − i 0

)
,

taking

X =

(
1 1 + i

1 − i 0

)
, Y =

(
1 i
−i 1

)
, Z =

(
0 0
0 1

)
, W =

(
0 2 + i

2 − i 0

)
.
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From MATLAB and Algorithm 2, we obtain

r
(

U1
U2

)
= 23, θ2 = 2.1412 × 10−15.

According to Algorithm 2, the system (1) has infinite solutions (X, Y, Z, W) ∈ Λ. We can also
obtain θ1 = 3.3532 × 10−15, θ3 = 4.4730 × 10−15. Then, the optimization problem

min
(X,Y,Z,W)∈Λ

(∥∥∥Φ(X,Y,Z,W)

∥∥∥)
has a unique minimizer (X̃, Ỹ, Z̃, W̃); it can also be expressed as

vec( ´̃X)

vec( ´̃Y)
vec( ´̃Z)
vec( ´̃W)

 = W
(

U†
1 − JTU2U†

1 , JT
)

ϵ.

Therefore, we can obtain ∥Φ(X,Y,Z,W) − Φ(X̃,Ỹ,Z̃,W̃)∥ = 1, and

X̃ =

(
1 1 + i

1 − i 0

)
, Ỹ =

(
1 i
−i 0

)
, Z̃ =

(
0 0
0 1

)
, W̃ =

(
0 2 + i

2 − i 0

)
.

5. Conclusions

In this paper, we have provided the necessary and sufficient conditions for the
existence of the Hermitian solutions to the system of commutative quaternion matrix
Equation (1), and we have also established an expression of the Hermitian solutions to the
system (1) when it is consistent. We have also investigated the least squares solution when
the system (1) is not consistent. Some numerical algorithms and examples are provided to
illustrate our results. In the future, we will investigate the ϕ-Hermitian solution for such a
system of matrix equations over commutative quaternion algebra.
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