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Abstract: Generalized Pareto distribution (GPD), an asymmetrical distribution, primarily models
exceedances over a high threshold in many applications. Within the peaks-over-threshold (POT)
framework, we consider a new GPD parameter estimation method to estimate a common tail risk
measure, the value at risk (VaR). The proposed method is more suitable for the POT framework and
makes full use of data information. Specifically, our estimation method builds upon the generalized
probability weighted moments method and integrates it with the nonlinear weighted least squares
method. We use exceedances for the GPD, minimizing the sum of squared differences between the
sample and population moments of a function of GPD random variables. At the same time, the
proposed estimator uses three iterations and assigns weight to further improving the estimated
performance. Under Monte Carlo simulations and with a real heavy-tailed dataset, the simulation
results show the advantage of the newly proposed estimator, particularly when VaRs are at high
confidence levels. In addition, by simulating other heavy-tailed distributions, our method still
exhibits good performance in estimating misjudgment distributions.

Keywords: generalized Pareto distribution; parameter estimation; extreme quantile estimation;
extreme value theory

1. Introduction

Some scholars have found that the tails of various measured data distributions tend
to be heavier than those of a normal distribution, as reported in [1,2]. Embrechts et al. [3]
proposed the assumption that normal distribution will underestimate the risk associated
with extreme tails. Since the 1990s, the extreme value theory (EVT) has been widely used in
insurance, earthquake analysis, hydrology, transportation, climate, reliability analysis and
other fields. The EVT mainly uses two approaches for modeling random variables: the block
maxima model (BMM) and peaks over threshold (POT). The BMM first divides the sample
interval, takes the maximum value in each sample interval, and then asymptotically fits the
obtained maximum value series as the analysis object to the generalized extreme value (GEV)
distributions. However, the POT fits all exceedances over a given threshold for heavy-tailed
data. Pickands [4] first proposed that the excesses can be approximated via the generalized
Pareto distribution (GPD) when the distribution of excesses is in the maximum domain
of attraction. In the field of financial market analysis, risk measurement is an extremely
important issue. As one of the most important and widely accepted risk measurement tools,
Value at Risk (VaR) can reflect the risk and play an early-warning role in financial markets.
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The VaR from the fitted GPD is extremely sensitive to the GPD parameter estimators and a
small difference in the parameter value will cause a significant impact on a bank’s financial
position, highlighting the importance of accurately estimating GPD parameters.

Since Pickands first proposed the GPD, various parameter estimation methods for
this distribution have been studied. For example, Hosking and Wallis [5] considered
the method of moments (MOMs); Greenwood et al. [6] discussed probability weighted
moments (PWMs); Smith [7] introduced maximum likelihood (ML); and Moharram et al. [8]
discussed the least square (LS) of the GPD. Hosking [9] developed an L-moment method
based on the PWM linear combination; Ashkar and Ouarda [10] proposed the generalized
method of moments (GMOM) based on the MOM method. Castillo and Hadi [11] used
the elemental percentile method (EPM). Based on the EPM, From and Ratnasingam [12]
proposed various efficient closed-form estimators for the GPD. Product of spacing (POS)
and logarithmic Cramér–von Mises (LCVM) methods were proposed at the same time.
Rasmussen [13] proposed generalized probability weighted moments (GPWMs) based
on the PWM method, both of which broadened the scope for parameter estimation. In
recent years, for the estimation of GPD parameters, Zhang [14] introduced the likelihood
moment estimator (LME), which solves the iterative convergence problem in ML methods.
The LME always has the advantages of high asymptotic efficiency and simple calculation.
Zhang and Stephens [15] combined Bayesian methods to propose an estimation method
based on likelihood functions, which has strong practicality. Song and Song [16] considered
the use of nonlinear least squares (NLSs) estimation. It is based on the least squares
estimation method to minimize the sum of squares of the deviation between the empirical
distribution function (EDF) and the theoretical distribution function (GPD) of the excess
data. Park and Kim [17] developed weighted nonlinear least squares (WNLS) based on
NLS, further improving the estimation accuracy of high quantiles. Based on the GPWM
method, the generalized probability weighted moment equation (GPWME) method was
proposed by Chen et al. [18], confirming that the GPWM method is a special case of the
GPWME method, and the estimation method has no restrictions on parameter values. Chen
et al. [19] combined the minimum distance estimation and the M-estimation in a linear
regression. Martín et al. [20] proposed informative priors baseline Metropolis–Hastings
(IPBMH) to improve the accuracy of Bayesian parameter estimation.

Choosing the appropriate threshold is a prerequisite for accurately estimating GPD
parameters. If the selected threshold is too high, the actual sample size becomes smaller,
resulting in too little data on the fitted excess distribution function such that the variance of
the parameter estimate may be high. In contrast, if the selected threshold is too low, it may
cause a biased estimate and an increase in estimated deviation. Several threshold selection
procedures are available in the literature. Langousis et al. [21] detailed many of these
methods for the chosen threshold. One category of methods applies the goodness of fit of
the GPD. Choulakian and Stephens [22] proposed a goodness-of-fit test for a two-parameter
GPD, using the Cramér–von Mises (CvM) and Anderson–Darling (AD) tests to select the
lowest threshold at a given confidence level. Combining the AD and CvM tests with the
stop rule proposed by G’Sell et al. [23], Bader et al. [24] proposed an automatic threshold
selection method. Yang et al. [25] performed threshold selection based on the relationship
between eigenvalues and thresholds. Saadatmand-Tarzjan [26] proposed a global threshold
selection method based on fuzzy expert systems. Curceac et al. [27] used an automated
threshold determination method based on the stability of shape parameters and modified
scale parameters. Based on the L-moment theory, an automatic L-moment ratio threshold
selection method was proposed by Silva Lomba and Fraga Alves [28].

In this study, within the POT framework, a new GPD parameter estimation method is
provided to estimate VaRs. The method is derived from the GPWME method. The proposed
method, however, is suitable for POT by employing the exceedances over a sufficiently
high threshold. Firstly, based on the GPWME, we select three suitable objective functions,
the specific forms of which can be found in Section 3.2. Secondly, using the exceedance
over a certain high threshold for a heavy-tailed dataset, based on moment estimation and
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the nonlinear weighted least squares methods, the sum of squared differences between the
sample and population moments of a function of the GPD random variables is minimized.
Finally, we select appropriate weights to modify the objective function to obtain a more
accurate parameter estimate. Then, we estimate the extreme VaR via the proposed method.
To evaluate its performance, we apply it to different heavy-tailed distributions and a real
dataset. We then compare it to various common parameter estimation methods. The
results show that our method performs better than the compared methods to some extent,
particularly for VaRs with extremely high confidence levels in some cases.

This paper is organized as follows: In Section 2, the relevant theories in GPD, POT and
VaR are briefly introduced. In Section 3, under the POT framework, we present a new GPD
parameter estimator by comparing it with the existing method. Section 4 introduces numer-
ical simulations, and we show the performance of different existing methods for estimating
tail extreme quantiles under different heavy-tailed common parameter distributions. In
Section 5, a similar exercise is performed using a real dataset. In Section 6, we conclude
this paper.

2. EVT for Extreme Tail Risk Measures
2.1. The GPD

Let X be a random variable (r.v.). The cumulative distribution function (cdf) of the
GPD is defined as

Gµ,ξ,σ(x) =


1 −

(
1 + ξ

x − µ

σ

)−
1
ξ , ξ ̸= 0,

1 − exp
(
− x − µ

σ

)
, ξ = 0,

(1)

where ξ(ξ ∈ R), µ(µ ∈ R) and σ(σ > 0) are the shape, location, and scale parameters,
respectively, and 1/ξ is the tail index. When µ = 0, the three-parameter GPD reduces to
the two-parameter GPD (ξ, σ). When ξ > 0, the domain of x is (µ, ∞) and Gµ,ξ,σ(x) is
heavy-tailed. When ξ < 0, x ∈ (µ, µ − σ/ξ), it is short-tailed. When ξ = 0, the GPD is a
medium-tailed exponential distribution (more details can be found in [16]).

The corresponding probability density function (pdf) is

gµ,ξ,σ(x) =


1
σ

(
1 + ξ

x − µ

σ

)−
1
ξ
−1

, ξ ̸= 0,

1
σ

exp
(
− x − µ

σ

)
, ξ = 0.

In order to show the flexibility and asymmetry of the GPD, we plot the pdfs of the
GPD with various shape parameters ξ(µ = 0, σ = 1) in Figure 1.
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Figure 1. pdfs of GPD(µ, ξ, σ), µ = 0, σ = 1.
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The quantile function, x(G), is

x(G) =

µ − σ

ξ
[1 − (1 − G)−ξ ], ξ ̸= 0,

µ − σ log(1 − G), ξ = 0.

2.2. Peaks over Threshold (POT)

The EVT mainly studies the tail distribution characteristics of the continuous r.v. X,
that is, the tail of F(x), F̄(x) = 1 − F(x), 0 < x < ∞ and F̄(x) is also called the survival
function [29]. If

lim
x→∞

F̄(xλ)

F̄(x)
= λ−α, λ > 0,

we say that F̄ changes regularly varying with index α > 0 or F̄ ∈ ℜ−α. When α = 0, F̄ is
said to be slowly varying [17]. Based on this definition, there is a distribution that changes
regularly as F̄∼L(x)x−α, where L(·) is slowly varying. It is known that f (x)∼g(x) means
lim

x→∞
f (x)
g(x) = 1. It can be concluded that the tail of a regularly varying distribution can be

expressed by multiplying a slowly varying function by a power function. At this point,
the distribution is called the maximum domain of attraction of the Fréchet distribution
(F ∈ MDA(Φα), where Φα = exp{−x−α}), representing a distribution class with heavy
tails if and only if F̄ ∈ ℜ−α, where α > 0. The GPD is in MDA(Φα) [17].

The Pickands–Balkema–de Haan theorem (see [4,29]) states that, for F̄ ∈ ℜ−α, the
excess loss (X − u|X > u) from such a distribution with a high threshold u > 0 converges

to the GPD with Pareto parameter ξ > 0 and
1
ξ
= α. That is,

lim
u→xF

sup
0<x<xF−u

|Fu(x)− Gξ,σ(x)| = 0,

where Fu(x) = P(X − u ≤ x|X > u), and xF ≤ ∞ is the right endpoint of F. This means that
the excess distribution Fu(x) converges to the GPD when F is a heavy-tailed distribution in
MDA(Φα) (see [4,29]).

It is worth noting that the GPD is stable with respect to excess over threshold opera-
tions [30]. This means that, if X ∼ GPD(ξ, σ), the r.v. Y = X − u|X > u will follow the GPD
(ξ, σ + ξµ), where u is a threshold. This can also be derived for any ũ > u, X − ũ|X > ũ
that follows a parameter of (ξ, σ + ξ(u − ũ)) of the GPD. This characteristic of the GPD
illustrates that the excess above a threshold does not change the GPD shape parameter ξ ,
but the GPD scale parameter is altered.

2.3. Value at Risk (VaR)

VaR reflects the maximum possible loss of the value of a financial dataset or portfolio
of securities within a future time period, under a given probability level. Let F(x) be the
distribution function of the population X; then, the p quantile of F(x) is F−1

X (p) , denoted
by Qp(x) = F−1

X (p) . The exceedance distribution above the threshold u can be defined
by [30]

Fu(x) = P(X − u ≤ x|X > u) =
F(u + x)− F(u)

1 − F(u)
, 0 < x < xF − u,

which is assumed to be Gξ,σ(x). Therefore, F(x) can be expressed as

F(x) = (1 − F(u))Gu,ξ,σ(x) + F(u). (2)

Based on the estimated parameters,

F̂(x) = (1 − Fn(u))Gu,ξ̂,σ̂(x) + Fn(u),
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where Fn is the EDF, and ξ̂ and σ̂ are the estimations of the GPD parameters using the
exceedances over the threshold. Then, the estimated p quantile of F(x) is

Q̂p(X) = u +
σ̂

ξ̂

[(
n

n − nu
(1 − p)

)−ξ̂

− 1

]
, (3)

where n is the total sample size of observations, and nu is the number of observations lower
than the threshold u.

3. Parameter Estimation Method
3.1. Existing Method GPWME

Chen et al. [18] proposed the population GPWME, and defined Mg,r,s(θ) as follows

Mg,r,s(θ) = E[g(Z; θ)FZ(Z; θ)r(1 − FZ(Z; θ))s], (4)

where both r and s are real numbers, and g(x) is a Borel measurable function for a parameter.
Accordingly, the sample generalized probability weighted quasi-moment is defined as [18]

mg,r,s(θ) =
1
n

n

∑
i=1

g(Zi; θ)FZ(Zi; θ)r(1 − FZ(Zi; θ))s. (5)

For convenience, note that X∼GPD(¸, œ) represents the excess threshold data, and the
corresponding F(x) represents the distribution function of the GPD. Denote X1, X2, . . . , Xn
as a random sample of size n from F(x) and denote X1:n < X2:n < · · · < Xn:n as order

statistics. Chen et al. [18] set β = −ξ/σ, g1(x; β, ξ) = (1− βx)−
1
ξ , g2(x; β, ξ) = log(1− βx),

β < X−1
n:n. The population GPWMEs are

Mg1,0,s1(β, ξ) = E
[
(1 − βX)

− 1
ξ (1 − F(X; β, ξ))s1

]
=

1
2 + s1

, (6)

Mg2,0,s2(β, ξ) = −ξE{[log(1 − βX)](1 − F(X; β, ξ))s2} =
ξ

(1 + s2)2 . (7)

For the sample, when s1 > −2 , s2 > −1 ,

mg1,0,s1(β, ξ) =
1
n

n

∑
i=1

(1 − βXi)
−1/ξ(1 − F(Xi; β, ξ))s1 , (8)

mg2,0,s2(β, ξ) =
1
n

n

∑
i=1

[log(1 − βXi)](1 − F(Xi; β, ξ))s2 . (9)

Notice that

1
n

n

∑
i=1

gj(Xi; β, ξ)(1 − F(Xi; β, ξ))sj =
1
n

n

∑
i=1

gj(Xi:n; β, ξ)(1 − F(Xi:n; β, ξ))sj , j = 1, 2. (10)

By combining Equations (6)–(10), we have

1
n

n

∑
i=1

(1 − βXi:n)
−1/ξ(1 − pi:n)

s1 − 1
2 + s1

= 0, (11)

1
n

n

∑
i=1

(1 − pi:n)
s2 log(1 − βXi:n)−

ξ

(1 + s2)2 = 0, (12)

where pi:n = (i + γ)/(n + δ) is the estimator of F(Xi:n; β, ξ), where δ = 0 and γ = 0.35 [31].
The estimated values of β and ξ can be obtained from Equations (11) and (12), denoted by
β̂n and ξ̂n, from which σ̂n = −ξ̂n/β̂n can be obtained.
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3.2. New Methods
3.2.1. GWNLSM Estimation

GPWME applies parameter estimation where the F(x) distribution is ideal. That is,
in practice, for all observations, the specific distribution F(x) is unknown in advance. It
is known that, based on the Pickands–Balkema–de Haan theorem, the tail region of the
observations can be modeled via the GPD. Therefore, a parameter estimate of the GPD is
required. We propose an improvement on the method by combining it with the WNLS
proposed by Park and Kim [17]. Therefore, generalized weighted nonlinear least squares
moment (GWNLSM) estimation is proposed within the POT framework.

For the threshold u, data less than the threshold are recorded as 0, and for data greater
than the threshold, the exceedance is defined as X − u. In order to obtain more accurate
parameter estimates, the combination of the nonlinear least squares method and moment
estimation is considered based on the GPWME method. The specific method is as follows.

Set

g1(x; ξ, σ) =

[
1 +

ξ

σ
(x − u)

]−1/ξ

,

g2(x; ξ, σ) = log
(

1 +
ξ

σ
(x − u)

)
,

g3(x; ξ, σ) = 1.

Within the POT framework, F(x) is replaced by Equation (2), and F(u) is replaced by
Fn(u). Using Equations (4) and (5), we have

Mg1,0,s1(ξ, σ) = E

[(
1 +

ξ

σ
(Xi:n − u)

)−1/ξ

(1 − F(Xi:n; ξ, σ))s1

]

=
B(n + 1, n + s1 + 2 − i)

B(n − i + 1, n + s1 + 2)(1 − Fn(u))
,

Mg2,0,s2(ξ, σ) = E
{[

log(1 +
ξ

σ
(Xi:n − u))

]
(1 − F(Xi:n; ξ, σ))s2

}
= −ξ

B(n + 1, n + s2 + 1 − i)
B(n − i + 1, n + s2 + 1)

(
n+s2+i

∑
j=n+s2+1

j−1 + log(1 − Fn(u))

)
,

Mg3,0,1(ξ, σ) = 1 − E[F(Xi:n; ξ, σ)] = 1 − i
n + 1

,

where ξ > −σ/(Xn:n − u), s1 > −2, s2 > −1. The specific calculation process is shown in
the Appendix A. For the sample moments, we have

mg1,0,s1(ξ, σ) =

[
1 +

ξ

σ
(Xi:n − u)

]−1/ξ

[1 − F(Xi:n; ξ, σ)]s1

= [1 − Fn(u)]
s1

(
1 + ξ

Xi:n − u
σ

)(s1+1)/ξ

,

mg2,0,s2(ξ, σ) =

[
log(1 +

ξ

σ
(Xi:n − u))

]
(1 − F(Xi:n; ξ, σ))s2

= −ξ[1 − Fn(u)]
s2

(
1 + ξ

Xi:n − u
σ

)−s2/ξ

log
(

1 + ξ
Xi:n − u

σ

)
,

mg3,0,1(ξ, σ) = 1 − F(Xi:n; ξ, σ) = [1 − Fn(u)](1 − G(Xi:n − u)).
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In the first step, the interim estimator (ξ̂1, σ̂1) can be obtained via nonlinear minimiza-
tion:

(ξ̂1, σ̂1) = arg min
(ξ,σ)

n

∑
i=nu+1

[Mg1,0,s1(ξ, σ)− mg1,0,s1(ξ, σ)]2, (13)

The following second step with (ξ̂1, σ̂1) as initial values and the third step with (ξ̂2, σ̂2)
as initial values lead to another optimization:

(ξ̂2, σ̂2) = arg min
(ξ,σ)

n

∑
i=nu+1

[Mg2,0,s2(ξ, σ)− mg2,0,s2(ξ, σ)]2, (14)

(ξ̂3, σ̂3) = arg min
(ξ,σ)

n

∑
i=nu+1

[Mg3,0,1(ξ, σ)− mg3,0,1(ξ, σ)]2. (15)

Based on the idea of weighted least squares regression, we find that the performance
of the third step estimation (ξ̂3, σ̂3) can be further improved by adding suitable weights in

Equation (15). Set the weight to wi=(Var[F(Xi:n)])
−2, where Var[F(Xi:n)] =

i(n − i + 1)
(n + 1)2(n + 2)

.

A revised version of the given nonlinear optimization is produced by adding weights:

(ξ̂3, σ̂3) = arg min
(ξ,σ)

n

∑
i=nu+1

wi[Mg3,0,1(ξ, σ)− mg3,0,1(ξ, σ)]2. (16)

Note that Mg3,0,1(ξ, σ) = 1 − i
n + 1

; we modify Mg3,0,1(ξ, σ) as 1 − i − 0.35
n

to smooth

the error of VaR via numerous simulations. Combined with Equations (13), (14) and
(16), the GWNLSM was proposed. One advantage of the proposed GWNLSM over the
GPWME is that it obtains a more stable extreme quantile estimator. The effect of the error
is reduced because each squared deviation term is multiplied by the corresponding weight.
The standard “optim” function in R is used to implement the GWNLSM estimator in
our numerical studies.Without a loss of generality, we take all starting values as (ξ, σ) =
(0.1, 0.1) in the following simulation and application. When ξ > 0, the GPD is heavy-
tailed. The proposed estimated method is only applicable to the statistical inference of the
heavy-tailed GPD.

3.2.2. (s1, s2) Estimation

Based on the GWNLSM method, the values of s1 and s2 are calculated via a large
number of simulations. With s1 and s2 fixed within a selection of ranges (−2, 2) and (0, 2),
and a step size of 0.05, s1 and s2 have a total of 3280 pairs of combinations. A total of 3280
synthetic samples were employed to evaluate the root-mean-square error (RMSE) for VaRp
of the fixed ξ, p, and Fn(u) values. The values of ξ range from 0.1 to 0.9, the values of p are
0.999 and 0.9999 and those of Fn(u) are 0.98, 0.99 and 0.995, where p > Fn(u).

First, for a given ξ, p and Fn(u), count the minimum and maximum values of the
RMSE for VaRp corresponding to each set of parameters and then change the values of u
and p, in turn, to calculate the corresponding RMSE values. Taking ξ = 0.1 as an example,
because the values of u and p are different, there are seven combinations, based on the
different values of s1 and s2, a total of seven sets of RMSEs are calculated. Specifically,
when Fn(u) is 0.98, p takes 0.99, 0.999, and 0.9999; when Fn(u) is 0.99, p takes 0.999 and
0.9999; and when Fn(u) is 0.995, p takes 0.999 and 0.9999. The results are shown in Table 1.

Table 1 shows the different values of ξ, p, and Fn(u), as well as the corresponding
actual number of samples used. The values in the table are estimated via the corresponding
s1 and s2 values; then, the corresponding RMSE values are obtained, where min and max
represent the minimum and maximum values of RMSE, respectively.
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Table 1. s1 and s2 correspond to the RMSE values of VaRp, where s1 and s2 are used in (13) and (14).

ξ
p = 0.99 p = 0.999 p = 0.9999

Min Max Min Max Min Max

n − nu = 200 (Fn(u) = 0.98)

0.1 0.1505 0.1507 0.5241 0.5245 1.8920 1.8943
0.2 0.2417 0.3880 1.0468 1.9865 4.5350 5.9320
0.3 0.3874 0.5727 2.0901 3.3288 10.931 12.778
0.4 0.6203 0.6342 4.1739 4.2635 26.574 26.820
0.5 0.9916 1.0179 8.3218 8.4833 64.592 65.264
0.6 1.5879 1.6469 16.629 17.084 160.04 161.07
0.7 2.5359 2.6193 33.193 33.911 386.40 398.62
0.8 4.0551 4.2626 66.226 68.616 987.72 1012.01
0.9 6.4608 6.8859 132.31 136.16 2489.05 2655.14

n − nu = 200 (Fn(u) = 0.99)

0.1 0.5206 0.5465 2.0061 2.0466
0.2 1.0371 2.7049 4.8787 8.0178
0.3 2.0664 4.3109 11.912 16.020
0.4 4.1189 4.3153 29.4287 29.761
0.5 8.2235 8.6656 73.150 74.088
0.6 16.419 16.982 182.86 185.17
0.7 32.708 34.350 461.78 476.22
0.8 65.731 74.542 1184.33 1604.15
0.9 131.40 173.90 2853.84 3542.59

n − nu = 200 (Fn(u) = 0.995)

0.1 0.5544 0.6366 2.0507 2.2331
0.2 1.1021 2.5829 5.0543 8.8306
0.3 2.1912 4.2018 12.534 17.377
0.4 4.3598 4.5966 31.228 31.827
0.5 8.6729 9.1764 78.282 81.745
0.6 17.156 19.610 198.75 216.080
0.7 34.499 48.666 508.52 548.680
0.8 68.833 125.12 1301.21 1548.14
0.9 137.790 293.19 3388.58 5448.34

Second, for the given ξ and p, fix Fn(u) as a certain value, and sort the RMSE values
from smallest to largest, selecting the top 5% values and their corresponding s1 and s2.
For these s1 and s2, they are weighted and averaged, with the weight being the reciprocal
of the corresponding RMSE divided by the reciprocal sum of the RMSE. Taking ξ = 0.1 as
an example, first sort the RMSE calculated by Fn(u) = 0.98 and p = 0.99 and select the first
5% of the lower RMSE values and their corresponding s1 and s2. Based on the selected
RMSE value, the weighted averages of s1 and s2 are carried out to obtain the final weighted
s1 and s2 values. The weights of s1 and s2 are the reciprocal of their corresponding RMSE
divided by the reciprocal of the previous 5% RMSE. At this point, the s1 and s2 values
corresponding to ξ = 0.1, and the Fn(u) = 0.98 and p = 0.99 can be calculated. Following the
above steps, the s1 and s2 values corresponding to Fn(u) = 0.98, p = 0.999 and p = 0.9999 can
also be calculated. This is the result based on Fn(u) classification when ξ = 0.1. Similarly,
we can obtain the result by fixing p as a certain value. By repeating the above steps, we can
find the optimal values for s1 and s2.

Third, the values of s1 and s2 based on fixing Fn(u) significantly fluctuate through
calculation and comparison. Thus, the results of s1 and s2 based on fixing p are considered.
Figure 2 is plotted in accordance with the p score, in which the upper three solid lines
represent the image of s1, the lower three dashed lines represent the image of s2, and the
different colored lines represent different values of p corresponding to VaRp. From the
image, it can be observed that the value of s2 fluctuates very little and the basic value of s2
is around 1, while the basic value of s1 is negative and the change fluctuation is relatively
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large. Based on the above analysis, s2 = 1 and s1 are used to find the function relationship.
According to the results of s1 and ξ, p shown in Figure 2, we can establish a linear regression
model for s1 via the “lm” function in R. Through a regression analysis of the value s1 and
ξ, p, the following model is obtained:

s1 = 0.4ξ + 30p − 30. (17)

Equation (17) first requires using the existing method to estimate ξ, and then determin-
ing s2 according to the different p and ξ values; it is relatively troublesome to determine
s1. Therefore, RMSE is sorted from small to large. We select the first 30% of the data and
their corresponding s1 and value ranges, for a given p and Fn(u); and then selects ξ to take
the intersection of the value range of s1 when taking different values, as the recommended
value of s1, that is, s1 = −1.15. In the following simulation and application, the presented
GWNLSM uses s1 = −1.15 and s2 = 1 for estimation parameters.

Figure 2. Plot of s1 and s2 with different ξ values (solid and dashed lines represent values of s1 and
s2, respectively, while p = 0.99, 0.999, 0.9999).

4. Simulation Studies

We only choose heavy-tailed distributions since our main interest is heavy-tailed data.
The performance of the proposed methods is investigated via Monte Carlo simulations.
The competing estimators in clude the LME estimator by Zhang [14], the WNLS by Park
and Kim [17], the GPWME by Chen et al. [18], and our GWNLSM method. In addition,
besides the GPD simulated samples, we also generate samples from the Cauchy and Pareto
distribution. The purpose is to evaluate the robustness of the proposed method when the
population distribution is misjudged. Our focus is on estimating VaR rather than the GPD
parameter itself; thus, the parameter estimation results are not shown. The 98th, 99th, and
99.5th sample quantiles are selected as the thresholds u for each sample, and the estimated
extreme quantiles are VaR at 99%, 99.9%, and 99.99%, respectively. We summarize the
simulation procedure as follows:

(1) Generate a sample from the given distribution, where the sample size is 10,000.
(2) Given 0 ≪ Fn(u) < p < 1 , then u = xFn(u) .
(3) Estimate the parameters (ξ, σ) and the VaR (given in Equation (3)).
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(4) Repeat steps (1)–(3) 2000 times.
(5) Compute the RMSE and the absolute relative bias (ARB) of each VaR estimator.

Note that there are 50–200 observations with different thresholds for the GPD fit,
with a total sample size of 10,000.

It can be seen that there is a reasonable number of exceedances for researching extreme
tails. Tables 2 and 3 show the simulation results. Table 2 is based on the simulation data
generated via the GPD, using different estimation methods to estimate VaR and calculate
the corresponding index values. Table 3 uses the simulation data generated from the
Cauchy distribution and Pareto distribution to estimate VaR. To highlight the objective
under the condition of satisfying heavy-tailed distribution characteristics, our method
proves to be effective even when the specific distribution form is incorrectly determined.

Example 1. GPD(ξ, σ) with different ξ values and σ = 1.

As can be seen from Table 2, by comparison, the LME and WNLS perform better
for estimating VaR at 99% in terms of RMSE and ARB. However, with an increasing
p in the estimated quantile, the proposed GWNLSM’s performance improves. Overall,
the GWNLSM is relatively stable. In all cases of estimation for VaR at 99.99%, the GWNLSM
outperforms all other estimators in terms of the RMSE, regardless of the used threshold
value. Notably, it can be seen that when ξ is relatively small, the LME estimate is relatively
accurate. As ξ increases, the GWNLSM estimation error decreases, resulting in more
accurate estimates compared to the other methods in most cases, as assessed via RMSE and
ARB. In addition, as the threshold increases, the GWNLSM exhibits a smaller ARB for VaR
at 99.99% compared to the other methods.

In order to facilitate the comparison and illustrate the effect of method improvement,
we use Fn(u) = 0.995, p = 0.9999, and p = 0.999 as examples to draw comparisons, as shown
in Figures 3–8. The abscissa of Figures 3–8 is the value of ξ, where the ordinates in
Figures 3, 4, 6 and 7 represent the RMSE of VaR and the ordinates in Figures 5 and 8
represent the ARB of VaR. We generate 10,000 samples from the GPD with σ = 1 and
ξ ranging from 0.1 to 1. This process is repeated 2000 times to calculate the RMSE and
ARB of VaR at 99.99% and 99.9%. In terms of the RMSE and ARB of VaR at 99.99% and
99.9%, to better illustrate the advantages of the different estimation methods and show
a discernible difference among curves in Figures 3 and 6, we provide Figures 4 and 7 as
exploded views of Figures 3 and 6, respectively. Here, in order to save space, we have only
drawn a partial trend chart. In Figures 3–8, we can see that the GWNLSM method performs
better overall. For the RMSE evaluation criteria, GWNLSM estimation performed well in
most cases. In terms of the ARB evaluation criteria, when ξ is lower, the LME estimates
VaR more accurately, and when ξ is larger, the GWNLSM estimates VaR more accurately.

Example 2. Cauchy (µ, σ). The cdf of the Cauchy distribution is defined as

Fµ,σ(x) =
1
π

arctan
(

x − µ

σ

)
, −∞ < x < +∞,

where µ and σ are location and scale parameters.

We generated samples from the standard Cauchy distribution (µ = 0, σ = 1) and
presented the results in Table 3 with different thresholds. Table 3 illustrates that the
GWNLSM outperforms other methods at 99.9% and 99.99% in terms of the RMSE and ARB
with the 99th and 99.5th sample quantiles as thresholds.
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Table 2. RMSE and ARB are calculated for each VaR estimation from the GPD with different ξ values.

RMSE ARB

VaR 99% VaR 99.9% VaR 99.99% VaR 99% VaR 99.9% VaR 99.99%

GPD (0.2, 1)

Fn(u) = 0.98

LME 0.2358 1.0236 4.6917 0.0249 0.0548 0.1364
WNLS 0.2363 1.1068 5.1240 0.0250 0.0600 0.1528

GPWME 0.2406 1.0464 5.1278 0.0255 0.0558 0.1459
GWNLSM 0.2423 1.0412 4.5217 0.0253 0.0564 0.1388

Fn(u) = 0.99

LME 1.0274 5.2043 0.0550 0.1511
WNLS 1.0902 5.6780 0.0590 0.1715

GPWME 1.0388 5.9179 0.0555 0.1661
GWNLSM 1.0350 4.8295 0.0559 0.1484

Fn(u) = 0.995

LME 1.0889 5.4096 0.0581 0.1559
WNLS 1.0973 5.6234 0.0592 0.1718

GPWME 1.0928 6.0105 0.0582 0.1675
GWNLSM 1.0959 5.0130 0.0589 0.1534

GPD (0.4, 1)

Fn(u) = 0.98

LME 0.5960 4.1581 28.526 0.0359 0.0889 0.2208
WNLS 0.5963 4.3481 29.282 0.0359 0.0945 0.2346

GPWME 0.6043 4.2111 30.011 0.0364 0.0897 0.2286
GWNLSM 0.6210 4.1443 26.543 0.0369 0.0905 0.2209

Fn(u) = 0.99

LME 4.1749 33.105 0.0893 0.2527
WNLS 4.3218 33.957 0.0939 0.2705

GPWME 4.2194 36.377 0.0901 0.2708
GWNLSM 4.1020 29.095 0.0892 0.2411

Fn(u) = 0.995

LME 4.3559 35.972 0.0927 0.2684
WNLS 4.3036 34.655 0.0935 0.2800

GPWME 4.3624 38.747 0.0928 0.2800
GWNLSM 4.3250 30.981 0.0932 0.2542

GPD (0.8, 1)

Fn(u) = 0.98

LME 3.8021 68.581 1157.57 0.0624 0.1704 0.4027
WNLS 3.7820 67.292 1054.26 0.0623 0.1720 0.3890

GPWME 3.8128 68.095 1142.27 0.0627 0.1690 0.3976
GWNLSM 4.0488 65.579 989.23 0.0656 0.1697 0.3828

Fn(u) = 0.99

LME 69.805 1480.19 0.1732 0.4870
WNLS 68.472 1349.27 0.1753 0.4726

GPWME 70.129 1520.94 0.1739 0.4998
GWNLSM 65.032 1155.32 0.1674 0.4314

Fn(u) = 0.995

LME 71.113 1812.26 0.1758 0.5483
WNLS 67.375 1436.30 0.1726 0.5027

GPWME 71.083 1799.72 0.1758 0.4694
GWNLSM 67.983 1292.96 0.1720 0.4694

GPD (2, 1)

Fn(u) = 0.98

LME 981.834 3.28×106 1.32×109 0.1535 0.4490 1.1581
WNLS 958.756 2.78×105 8.93×107 0.1511 0.4028 0.8835

GPWME 961.981 3.11×105 1.11×108 0.1508 0.4311 1.0458
GWNLSM 3257.37 4.49×105 5.82×107 0.5939 0.8414 0.9610

Fn(u) = 0.99

LME 3.58×106 2.65×109 0.4786 1.72649
WNLS 3.02×106 1.56×109 0.4339 1.2574

GPWME 3.57×105 2.29×108 0.4793 1.6624
GWNLSM 4.89×105 5.23×107 0.9684 1.0007

Fn(u) = 0.995

LME 3.59×105 6.07×108 0.4777 2.5958
WNLS 2.96×105 2.45×108 0.4268 1.5203

GPWME 4.26×105 7.44×108 0.5410 4.5462
GWNLSM 4.79×105 4.99×107 0.9568 0.9976

Example 3. Pareto (σ, µ, α).
The cdf of the Pareto (type I) distribution is given by
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F(x) = 1 −
(

x − µ

σ

)−α

, x ≥ µ + σ,

where µ, σ, and α are the location, scale, and shape parameters.

The Pareto distribution is also another heavy-tailed distribution. We generated Pareto
samples with σ = 1 and α = 1, and the results are presented in Table 3. As can be seen in
Table 3, in most cases, our proposed method performs best again.

Table 3. RMSE and ARB for different heavy-tailed distributions.

RMSE ARB

VaR 99% VaR 99.9% VaR 99.99% VaR 99% VaR 99.9% VaR 99.99%

Cauchy (0, 1)

Fn(u) = 0.98

LME 3.1092 88.443 2318.32 0.0775 0.2120 0.4773
WNLS 3.0863 85.680 2033.446 0.0772 0.2121 0.4527

GPWME 3.0866 87.650 2230.66 0.0770 0.2095 0.4681
GWNLSM 3.3829 82.235 1949.25 0.0839 0.2078 0.4417

Fn(u) = 0.99

LME 90.650 3202.64 0.2166 0.5904
WNLS 85.880 2707.33 0.2138 0.5293

GPWME 90.269 3123.24 0.2158 0.5799
GWNLSM 82.370 2462.95 0.2066 0.5153

Fn(u) = 0.995

LME 91.416 4325.15 0.2178 0.7113
WNLS 84.334 3070.36 0.2111 0.5997

GPWME 91.209 4022.12 0.2175 0.6959
GWNLSM 85.447 3379.91 0.2106 0.5925

Pareto (1, 1)

Fn(u) = 0.98

LME 9.3271 280.801 7496.16 0.0756 0.21743 0.5073
WNLS 9.3032 270.150 6702.71 0.0754 0.21501 0.4791

GPWME 9.3260 278.776 7322.52 0.0755 0.2163 0.5041
GWNLSM 10.079 263.021 6286.66 0.0814 0.2126 0.4683

Fn(u) = 0.99

LME 286.769 9886.04 0.2208 0.6097
WNLS 271.847 8537.50 0.2168 0.5585

GPWME 286.754 9904.80 0.22084 0.6094
GWNLSM 262.670 7461.39 0.2110 0.5345

Fn(u) = 0.995

LME 287.946 14914.1 0.2212 0.7202
WNLS 265.757 10433.2 0.2133 0.6269

GPWME 287.636 13634.9 0.2210 0.7170
GWNLSM 274.081 9534.50 0.2161 0.6060

Figure 3. RMSE of VaR at 99.99% with σ = 1 and 98th quantile as threshold.
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Figure 4. RMSE of VaR at 99.99% with σ = 1 and 98th quantile as threshold (exploded view of
Figure 3).

Figure 5. ARB of VaR at 99.99% with σ = 1 and 98th quantile as the threshold.
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Figure 6. RMSE of VaR at 99.9% with σ = 1 and 98th quantile as threshold.

Figure 7. RMSE of VaR at 99.9% with σ = 1 and 98th quantile as the threshold (exploded view of
Figure 6).
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Figure 8. ARB of VaR at 99.9% with σ = 1 and 98th quantile as threshold.

As can be seen from Table 3, for the Cauchy and the Pareto distributions, the GWNLSM
parameter estimation method performs relatively well, regardless of a high- or low-
threshold u, and the accuracy requirements of the estimated VaR are evidently superior.
The higher the accuracy of the estimate, the more obvious the contrast error of various
methods appears, and it is evident that the GWNLSM methods exhibit superiority over the
LME, WNLS and GPWME methods in terms of performance. Whether it is a Cauchy or
Pareto distribution, GWNLSM is optimal in most cases for VaR at 99.9% and VaR at 99.99%.

5. Actual Data Processing and Analysis

To verify the performance of different estimators, we chose PM2.5 data for our ex-
perimental analysis. PM2.5 data were obtained from the China National Environmental
Monitoring Center. The center is a national technical institution and is directly affiliated
with the Ministry of Ecology and Environment. It operates as the center of technology,
network, information, quality control, and training for national environmental monitoring.
In addition, it collects at least 100 million environmental monitoring data annually, which
provides a strong guarantee for scientifically and accurately assessing national environmen-
tal quality. The PM2.5 monitoring results are also published online (https://www.cnemc.cn/
(accessed on 19 February 2023) We use the Beijing PM2.5 dataset from 2015 to 2022. The
sample size is 2737. In order to preserve the original nature of the data and reduce the
influence of scale parameter σ of the GPD, making it as small as possible, we changed the
data separately, with the PM2.5 dataset reduced to 1% of the original. The following results
are calculated based on transformed data.

We select the threshold and the corresponding analysis calculation using the following
steps. First, when the exponential QQ plot is convex, indicating that the empirical quantile
is growing faster than the theoretical quantile, the distribution is heavy-tailed. Conversely,
the explanation is a short-tailed distribution. The tail distribution characteristics of PM2.5
are examined. The exponential QQ plot is given in Figure 9. It is worth noting that, in the
exponential QQ plot of this study, the x axes are theoretical quantiles, and the y axes are
empirical quantiles. Contrary to the aforementioned theory QQ, Figure 9 shows a concave
shape; it can be observed that the data used are subject to a heavy-tailed distribution.

For the heavy-tailed features of the diagnostic data, we also plotted the empirical
mean excess function (EMEF), given in Figure 10. In general, if EMEF has a significant

https://www.cnemc.cn/
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linear change after exceeding a certain threshold and the slope is positive, it indicates
that the excess threshold data follow the GPD and the shape parameter is greater than 0.
For heavy-tailed data, this threshold can be selected as the threshold for analysis; if EMEF
has a significant linear change after a certain threshold, but the slope is negative, it indicates
that the observed data are short-tailed. As can be seen from Figure 10, the dataset satisfied
the heavy-tailed distribution.

Secondly, a suitable threshold is selected. The preliminary value of the threshold
can be roughly observed in the mean residual life plot. Another way to initially select a
threshold is through the Hill plot in Figure 10. The trend stabilization point of the Hill plot
is generally determined as a threshold. By observing the EMEF and Hill plots in Figure 10,
it can be intuitively judged that the u value is about 1.

Figure 9. The QQ diagram of the PM2.5 data; the ordinate x represents order data.

Figure 10. The EMEF and Hill diagrams of the PM2.5 data. In (a), the black and grey lines represent
the empirical mean residual life and its confidence intervals with confidence level 0.95. In (b), the
black and blue lines represent the Hill estimator of the GPD tail index and its confidence intervals
with confidence level 0.95.

In order to find a more suitable and objective threshold u, we use goodness-of-fit tests
to select the threshold. The main objective is to find the lowest threshold such that the
highest number of exceedances above the threshold follows the GPD. We use the AD test
statistic [22].

The details of the threshold selection method, instance calculation, and simulation
steps are as follows.

(1) Threshold selection. For the PM2.5 data, we combine the AD statistic and the Raw
Down method to select the threshold u = 0.83, exceeding the number n − nu = 473,
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Fn(u) = 82.72%, where Raw Down means that the test begins at the largest threshold
and choose the first threshold until the test is rejected, then the threshold before the
rejection is chosen [24].

(2) Based on the threshold u using LME, WNLS, and GPWME, the GWNLSM method is
used to calculate the estimates of ξ̂, σ̂ and VaRt (given in Equation (3)). The specific
results are shown in Table 4.

(3) Based on the above parameter estimation results, n − nu random samples following
GPD(u, ξ̂, σ̂) and ξ̃, σ̃, VaRs are calculated.

(4) Repeat (3) 1000 times; RMSE and ARB for VaR are calculated. Some results are shown
in Table 5.

Table 4. Parameter estimation for real data using different methods.

ξ̂ σ̂

LME 0.0782 0.5185
WNLS 0.1169 0.4953

GPWME 0.0813 0.5169
GWNLSM 0.0481 0.5363

u 0.83

Table 5 compares the index values of the VaR based on four parameter estimation
methods for the PM2.5 data. From Table 5, we can see that the LME and proposed GWNLSM
exhibit better performances for VaR at 99.9% and VaR at 99.99% in terms of RMSE and ARB.
Specifically, it can be observed that the proposed method works better for VaR at 99.99% in
most cases.

Table 5. VaR estimation of the PM2.5 data.

RMSE ARB

VaR at 99% VaR at 99.9% VaR at 99.99% VaR at 99% VaR at 99.9% VaR at 99.99%

LME

LME 0.939642 3.567475 9.359341 0.029951 0.069050 0.140593
WNLS 1.114730 4.347896 11.12457 0.049561 0.102806 0.165263

GPWME 1.033365 4.195512 11.23957 0.045660 0.096672 0.161397
GWNLSM 1.021122 3.781147 9.356901 0.045634 0.083634 0.140933

WNLS

LME 1.068671 4.288407 11.87006 0.032968 0.077429 0.136665
WNLS 1.194244 4.963725 13.53752 0.037138 0.091490 0.159159

GPWME 1.110651 4.800949 13.69599 0.034303 0.086194 0.155536
GWNLSM 1.097004 4.361997 11.53057 0.034309 0.080041 0.136313

GPWME

LME 0.729066 2.94535 8.193269 0.025959 0.061376 0.1145927
WNLS 0.787671 3.432898 9.433241 0.028197 0.072860 0.132312

GPWME 0.739436 3.287148 9.479313 0.026414 0.068239 0.128704
GWNLSM 0.745556 3.017241 8.055831 0.026776 0.064257 0.114585

GWNLSM

LME 1.596907 4.875529 10.94257 0.041240 0.083499 0.134014
WNLS 1.889057 5.813446 12.88081 0.049464 0.101360 0.160320

GPWME 1.739965 5.616292 12.95679 0.045003 0.095299 0.155665
GWNLSM 1.651400 4.856433 10.34925 0.043370 0.083253 0.132417

6. Conclusions

In this study, based on the GPWME method within the POT framework, we present
a novel GPD parameter estimation GWNLSM. The proposed method is applicable to the
heavy-tailed GPD when the shape parameter ξ is greater than 0. This method utilizes the
concepts of nonlinear least squares estimation and moment estimation while applying
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GPWME to the POT framework. In terms of the RMSE and ARB, extensive simulation
studies and real-world datasets have shown that the advantage of the newly proposed
estimator when VaRs are at high confidence levels. For example, when the estimated
extreme quantile VaR is 99.99%, GWNLSM is optimal in most cases. Furthermore, when a
set of data satisfies other heavy-tailed distributions, we can still use the asymmetrical GPD
to obtain approximate extreme quantile estimates. The resulting extreme quantile estimates
also exhibit relatively small errors. The new method performs well for heavy-tailed Cauchy
and Pareto distributions and the actual dataset we present. A future research direction
involves exploring more accurate and simpler methods to estimate the GPD parameters
within the POT framework and optimizing the selection of s1 and s2.
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Appendix A

This section gives the calculation process of Mgi ,0,si (ξ, σ), i = 1, 2, 3 in detail.
Suppose that we have a sample X1, X2, . . . , Xn of size n. For convenience, we

write F(Xi:n) as Fi, where Fi follows Beta(i, n − i + 1). Hence, we have

E[− log(1 − Fi)] =
Γ(n + 1)

Γ(i)Γ(n + 1 − i)

∫ 1

0
−xi−1(1 − x)n−i log(1 − x)dx

=
i

∑
j=1

1
n + 1 − j

.

and

E(1 − Fi)
a =

Γ(n + 1)
Γ(i)Γ(n + 1 − i)

∫ 1

0
xi−1(1 − x)n+a−idx

=
Γ(n + 1)Γ(n + a + 1 − i)
Γ(n + 1 − i)Γ(n + a + 1)

≜ h(a).

Hence,

Mg1,0,s1(ξ, σ) =
1

1 − F(u)
E(1 − Fi)

s1+1

=
Γ(n + 1)Γ(n + s1 + 2 − i)

Γ(n − i + 1)Γ(n + s1 + 2)(1 − F(u))
.

https://www.cnemc.cn/
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At the same time, we can also obtain the following results

E[(1 − Fi)
s2(− log(1 − Fi))] =

Γ(n + 1)
Γ(i)Γ(n + 1 − i)

∫ 1

0
−xi−1(1 − x)n+s2−i log(1 − x)dx

= h(s2)
i

∑
j=1

1
n + s2 + 1 − j

.

Therefore,

Mg2,0,s2(ξ, σ) = −ξ log(1 − F(u))E(1 − Fi)
s2 − ξE[(1 − Fi)

s2(− log(1 − Fi))]

= −ξ log(1 − F(u))h(s2)− ξh(s2)
i

∑
j=1

1
n + s2 + 1 − j

= −ξh(s2)

[
log(1 − F(u)) +

i

∑
j=1

1
n + s2 + 1 − j

]
,

and

Mg3,0,1(ξ, σ) = E(1 − Fi) = h(1) = 1 − i
n + 1

.
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