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Abstract: This paper aims to provide a comprehensive analysis of the advancements made in
understanding Iterative Fixed-Point Schemes, which builds upon the concept of digital contraction
mappings. Additionally, we introduce the notion of an Iterative Fixed-Point Schemes in digital
metric spaces. In this study, we extend the idea of Iteration process Mann, Ishikawa, Agarwal, and
Thakur based on the 𭟋-Stable Iterative Scheme in digital metric space. We also design some fractal
images, which frame the compression of Fixed-Point Iterative Schemes and contractive mappings.
Furthermore, we present a concrete example that exemplifies the motivation behind our investigations.
Moreover, we provide an application of the proposed Fractal image and Sierpinski triangle that
compress the works by storing images as a collection of digital contractions, which addresses the
issue of storing images with less storage memory in this paper.

Keywords: fixed point; 𭟋-stable iterative scheme; digital metric space; fractal image; symmetry;
sierpinski triangle

1. Introduction and Preliminaries

In recent years, Rosenfeld [1] introduced the concept of the digital image, laying the
foundation for Boxer’s [2] development of the topological notion of digital representation.
Subsequently, Ege and Karaca [3–6] defined a digital metric space, offering a unified
approach that has shed new light on the Banach contraction principle. This framework
is particularly useful for measuring distances and similarities between points or patterns
within a digital image. As a result, in this research, iterative schemes are employed to
reduce data size or the dimension of picture files in digital contraction mappings and
its applications. These schemes efficiently compress an image by iteratively refining
approximations until a close match to the original image is achieved.

Now, we review some fundamental aspects of digital images, digital metric space, and
𭟋-stable iterative scheme for the main continuation of our theoretical and geometrically analysis.

Definition 1 ([6]). Let r, n be positive integers with 1 ≤ r ≤ n in such a way that

ζ = (ζ1, ζ2, . . . , ζn), κ = (χ1, χ2, . . . , χn) ∈ Zn.

where ζ and κ are ϱr -adjacent, if there is r indices τ such that |ζτ − χτ | = 1 and for every other
indices l such that

|ζτ − χτ | ̸= 1, ζl = χl .

There are some facts can be derived from Definition 1:
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• Two points ζ and χ in Z are 2-adjacent, if |ζ − χ| = 1 (see Figure 1).

Figure 1. 2-adjacent.

• Two points ζ and χ in Z2 are 8-adjacent, if they are distinct and differ by at most 1 in
each coordinate.

• Two points ζ and χ in Z2 are 4-adjacent, if they are 8-adjacent and differ in exactly one
coordinate (see Figure 2).

Figure 2. 4-adjacent and 8-adjacent.

• Two points ζ and χ in Z3 are 26-adjacent, if they are distinct and differ by at most 1 in
each coordinate.

• Two points ζ and χ in Z3 are 18-adjacent, if they are 26-adjacent and differ at most two
coordinates.

• Two points ζ and χ in Z3 are 6-adjacent, if they are 18-adjacent and differ in exactly
one coordinate (see Figure 3).

Figure 3. 6-adjacent, 18-adjacent, and 26-adjacent.

Definition 2 ([6]). Digital image is a graph (D, ϱ), where ϱ is an adjacency relation, and D is a
finite subset of Z n for some positive integer n.

Definition 3 ([6]). A ϱ-neighbor of ζ ∈ Zn is a point of Zn that is ϱ-adjacent to ζ, where
ϱ ∈ {2, 4, 6, 8, 18, 26} and n ∈ {1, 2, 3}.

Definition 4 ([6]). The set Nϱ(ζ) = {χ | χ is ϱ-neighbor of ζ} is called the ϱ-neighborhood of ζ.

Definition 5 ([6]). A digital interval is defined by [i, j]Z = {κ ∈ Z | i ≤ κ ≤ j}, where i, j ∈ Z
and i < j.
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A digital image D ⊂ Zn is ϱ−connected [6] if and only if for every pair of different
points ı, ȷ ∈ D, there is a set {ı0, ı1, . . . , ır} of points of a digital image X such that ı = ı0,
ȷ = ır and ıi and ıi+1 are ϱ-neighbors where i = 0, 1, . . . , r − 1.

Definition 6 ([7]). Let (D, ϱ0) ⊂ Zp0 , and (M, ϱ1) ⊂ Zp1 be digital images and µ : D → M be
a function’

• If for every ϱ0-connected of X ⊂ D, µ(X) is a ϱ1-connected of M ⊂ D, then µ is said to be
(ϱ0, ϱ1)-continuous [8].

• µ is (ϱ0, ϱ1)-continuous [8] if and only if for every ϱ0-adjacent points {ı0, ı1} of D, either
µ(ı0) = µ(ı1) or µ(ı0) and µ(ı1) are ϱ1-adjacent in M.

• If µ is (ϱ0, ϱ1)-continuous, bijective, and µ−1 is (ϱ1, ϱ0)-continuous, then µ is called (ϱ0, ϱ1)-
isomorphism [2], that is D ∼=(ϱ0,ϱ1)

M.

Definition 7 ([7]). Let D ⊂ Zn, g be the Euclidean metric on Zn. Suppose metric space (D, g)
and (D, ϱ) is a digital image with ϱ- adjaceny, then(D, g, ϱ) is called a digital metric space.

Definition 8 ([6]). A sequence {ıp} in digital metric space (D, g, ϱ) converges to q ∈ D, if for all
ϵ > 0, there exists η ∈ N such that for all p > η, then

g(ıp, q) < ϵ.

Definition 9 ([6]). Let (D, g, ϱ) be a digital metric space and µ : (D, g, ϱ) → (D, g, ϱ) be a self
digital mapping. If there is L ∈ (0, 1) such that for all ı, ȷ ∈ D,

g(µ(ı), µ(ȷ)) ≤ Lg(ı, ȷ),

then µ is called a digital contraction map.

Proposition 1 ([6]). Every digital contraction map is digitally continuous.

Theorem 1 ([9]). Digital metric space (D, g, ϱ) is a complete metric space.

Hicks and Harder [10] presented a stability result for iterative processes in a complete
metric space, which can be restated as follows:

Definition 10 ([10]). Let (D, g) be a complete metric space, 𭟋 : D → D be a self mapping, and
ın+1 = f (𭟋, ın) be a iterative procedure. Suppose that Fix(𭟋) ̸= ϕ, the set of fixed point, and
sequence ın converges to l ∈ Fix(𭟋).

Let a sequence {ȷn} ⊂ D and ϵn = g(ȷn+1, f (𭟋, ȷn)). If limn→∞ ϵn = 0 such that
limn→∞ ȷn = l, then ın+1 = f (𭟋, ın) is said to be 𭟋-stable. See more details in [10,11].

Osilike and Udomene [12] designed the following contractive condition, that is, for
each ı, ȷ ∈ D there is constants η ∈ [0, 1) and L̂ ≥ 0 such that

g(𭟋ı,𭟋ȷ) ≤ L̂(g(ı,𭟋ı)) + ηg(ı, ȷ). (1)

After, Osilike [12] established various stability results that generalize and extend many of
the findings of Rhoades [11].

If L̂ = 2ξ and η = ξ, where ξ = max{η, µ
1−µ , ν

1−ν} and 0 ≤ ξ < 1 then the contractive
condition (1) restated to the Zamfirscu [13] contraction condition, that is,

g(𭟋ı,𭟋ȷ) ≤ ξg(ı, ȷ) + 2ξ(g(ı,𭟋ı)). (2)

Furthermore, if L̂ = 0 then (1) yield as

g(𭟋ı,𭟋ȷ) ≤ ηg(ı, ȷ). (3)
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Berinde [14–17] established several generalizations of Banach’s fixed point theorem. In one
of the results of Berinde [17], designed that ideas in the following frame of extension, that
is, for each ı, ȷ ∈ D, there exist η ∈ [0, 1) and L̂ ≥ 0 such that

g(𭟋ı,𭟋ȷ) ≤ L̂(α(ı,𭟋ı)) + ηA(ı, ȷ). (4)

where
A(ı, ȷ) = max{g(ı, ȷ), g(ı,𭟋ı), g(ȷ,𭟋ȷ),

1
2
[g(ı,𭟋ȷ) + g(ȷ,𭟋ı)]}

and
α(ı, ȷ) = min{g(ı,𭟋ı), g(ȷ,𭟋ȷ), g(ı,𭟋ȷ), g(ȷ,𭟋ı)}.

Pradip Debnath [18] introduced the following generalized Boyd–Wong-type contractive
conditions and proved fixed-figure theorems in metric spaces. Suppose α : D → D and
upper semi-continuous functions Ξ : [0, ∞) → [0, ∞) with 0 ≤ Ξ(s) < s for s > 0 such that
Ξ(0) = 0. If there is β0 ∈ D such that

χ(αβ, β) > 0 ⇒ χ(αβ, β) ≤ Ξ(χ(β, β0)) (5)

for all β ∈ D, then α is called a Boyd and Wong type β0-contraction.
Amid the years, which have been failed since this hypothsis, a number of iteration

techniques have been established to approximate non-expasive mappings. Mann’s iteration
system [19] has been substantially used to approximate fixed point of non-expasive map-
pings. In this fashion of iterative system, the sequence {ın}is procreated from an arbitrary
point ı0 ∈ D; by the technique as follow:

ın+1 = (1 − ηn)ın + ηn𭟋ın, ηn ∈ [0, 1], (6)

where n = 0, 1, 2, . . . , ∞.
Later on, Ishikawa [20] investigated the new iterative system which has been broadly

used to approximate fixed point of non-expasive mappings. In this regard of iterative
system the sequence {ın} is given iteratively from ı0 ∈ D by

ın+1 = (1 − ηn)ın + ηn𭟋ȷn;

ȷn = (1 − µn)ın + µn𭟋ın,
(7)

where ηn, µn ∈ [0, 1] and n = 0,1, 2, . . . .
Hereafter, Agrawal et al. [21] provided the iteration system and they declared that the

process of converges rate of analysis same as that of the Picard iterative system and faster
than the Mann iterative system for contractions, where the sequence {ın} is generated by

ın+1 = (1 − ηn)𭟋ın + ηn𭟋ȷn;

ȷn = (1 − µn)ın + µn𭟋ın,
(8)

where ηn, µn ∈ [0, 1] for all n ≥ 0 values.
B. S. Thakur et al. [22] introduce a new iteration process to approximate fixed point

of nonexpasive mappings, where for any fixed value ı0 ∈ D and the sequence {ın} is
construct by

ın+1 = (1 − ηn)𭟋ζn + ηn𭟋ȷn;

ȷn = (1 − µn)ζn + µn𭟋ζn;

ζn = (1 − νn)ın + νn𭟋ın,

(9)

for all n ≥ 0, where ηn, µn, and νn are in [0, 1].
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Lemma 1 ([14]). Let {εn} where n = 0, 1, 2, . . . , ∞ such that limn−→∞ νn = 0 and 0 ≤ ξ < 1,
then for any sequence of positive numbers {bn} where n = 0, 1, 2, . . . , satisfying

bn+1 ≤ ξ(bn) + εn, ∀ n = 0, 1, 2, . . . (10)

then we have limn→∞ bn = 0.

Definition 11. Let (D, µ̃, ϱ) be a digital metric space and ♢ : D × [0, 1] → D be a mapping such
that ♢(l, η + µ) = ♢(l, η) +♢(l, µ) and ♢(l, 1) = l. We say that a digital metric space have
linear digital structure if for all l, m, h, t ∈ D and η, µ ∈ [0, 1], if it satisfies,

µ̃(♢(l, η) +♢(m, µ),♢(h, η) +♢(t, µ)) ≤ ηµ̃(l, h) + µµ̃(m, t). (11)

Definition 12 ([23]). Let (D, µ̃, ϱ) be a digital metric space and 𭟋 a self-map of D. Let ın+1 be a
iteration procedure defined as

ın+1 = f𭟋,αn(ın) (12)

where αn ∈ [0, 1] and f is a function involving the digital structure. Suppose that Fix(𭟋), the
fixed point set of 𭟋, is nonempty and that ın converges to a point l ∈ Fix(𭟋). Let {ȷn} ⊂ D and
define ϵn = µ̃(ȷn+1, f𭟋,αn(ȷn)). If limn→∞ ϵn = 0 implies that limn→∞ ȷn = l, then the iteration
procedure ın+1 = f𭟋,αn(ın) is said to be 𭟋-stable.

Motivated by the work of Berinde [17], we will use the following contractive condition:
For a mapping 𭟋 : D −→ D, there exists η ∈ [0, 1) and L ≥ 0 such that for all ı, ȷ ∈ D

µ̃(𭟋ı,𭟋ȷ) ≤ ηµ̃(ı, ȷ) + L(m(ı, ȷ)) (13)

where,

m(ı, ȷ) =min{µ̃(ı,𭟋ı), µ̃(ȷ,𭟋ȷ), µ̃(ı,𭟋ȷ), µ̃(ȷ,𭟋ı),
1
2
[µ̃(ı,𭟋ȷ) + µ̃(ȷ,𭟋ı)],

1
2
[µ̃(ı,𭟋ı) + µ̃(ȷ,𭟋ȷ)]}.

(14)

The contractive condition (13) is more general than the contractive conditions (1), (3), (2)
and (4).

In this study, inspired by the concept of Mann, Ishikawa, Agarwal, and Thakur iterative
procedure in the class of Banch spaces, we develop a new iterative procedure and design
𭟋-stability in the context of digital metric space. We also develop several fractal images
to illustrate the compression of Fixed-Point Iterative Schemes and contractive mappings.
Additionally, we present a specific example to demonstrate the motivation behind our
investigations. Furthermore, we provide an application of the proposed Fractal image
and Sierpinski triangle, which compress works by storing images as a collection of digital
contractions, addressing the issue of storing images with less storage memory.

2. Main Results

First, in order to give our new extended iterative procedure in the class of digital
metric space:

• Extended Mann (6) iteration process:

ın+1 = ♢(ın, (1 − ηn)) +♢(𭟋(ın), ηn), ηn ∈ [0, 1]. (15)

• Extended Ishikawa (7) iteration process:

ın+1 = ♢(ın, (1 − ηn)) +♢(𭟋(ȷn), ηn), ηn ∈ [0, 1],

ȷn = ♢(ın, (1 − µn)) +♢(𭟋(ın), µn), µn ∈ [0, 1].
(16)
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• Extended Agarwal (8) iteration process:

ın+1 = ♢(𭟋ın, (1 − ηn)) +♢(𭟋(ȷn), ηn), ηn ∈ [0, 1],

ȷn = ♢(ın, (1 − µn)) +♢(𭟋(ın), µn), µn ∈ [0, 1].
(17)

• Extended Thakur (9) iteration process:

ın+1 = ♢(𭟋zn, (1 − ηn)) +♢(𭟋(ȷn), ηn), ηn ∈ [0, 1],

ȷn = ♢(zn, (1 − µn)) +♢(𭟋(zn), µn), µn ∈ [0, 1].

ζn = ♢(ın, (1 − νn)) +♢(𭟋(ın), νn), νn ∈ [0, 1].

(18)

Theorem 2. Let (D, µ̃, ϱ) be a digital metric space with linear digital structure ♢ and 𭟋 : D −→ D
be a mapping that satisfies contractive condition (13). Suppose that 𭟋 has a fixed point l. For
arbitrary setting ı0 ∈ D, let the sequence {ın}∞

n=0 is generated by the extended Mann iterative
procedure (15), where ηn ∈ [0, 1] such that 0 < η ≤ ηn. Then, the extended Mann iteration is
𭟋-stable.

Proof. Let {ın} be the sequence in D, where n = 0, 1, 2, . . . and define εn = µ̃(ın+1,♢(ın,
(1 − ηn)) +♢( 𭟋(ın), ηn)). Suppose that limn→∞ εn = 0. Then, we establish that limn→∞
ın = l. By using condition (13). Thus, we have

µ̃(ın+1, l) ≤ µ̃(ın+1,♢(ın, (1 − ηn)) +♢( 𭟋(ın), ηn))

+ µ̃(♢(ın, (1 − ηn)) +♢( 𭟋(ın), ηn), l)

= µ̃(♢(ın, (1 − ηn)) +♢( 𭟋(ın), ηn), l) + εn

= µ̃(♢(ın, (1 − ηn)) +♢( 𭟋(ın), ηn),♢(l, 1)) + εn

= µ̃(♢(ın, (1 − ηn)) +♢( 𭟋(ın), ηn),♢(l, (1 − ηn) + ηn) + εn

= µ̃(♢(ın, (1 − ηn)) +♢( 𭟋(ın), ηn),♢(l, (1 − ηn)) +♢(l, ηn) + εn

≤ (1 − ηn)µ̃(ın, l) + ηnµ̃( 𭟋(ın), l) + εn

= (1 − ηn)µ̃(ın, l) + ηnµ̃( 𭟋(ın), 𭟋(l)) + εn.

Using (13), we have

µ̃(ın+1, l) ≤ (1 − ηn)µ̃(ın, l) + ηn[ξµ̃(ın, l) + µm(ın, l)] + εn

Now, m(ın, l) = 0, and using (14), so

µ̃(ın+1, l) ≤ (1 − ηn)µ̃(ın, l) + ηn(ξµ̃(ın, l)) + εn

= [(1 − ηn) + ηnξ]µ̃(ın, l) + εn

= [1 − (1 − ξ)ηn]µ̃(ın, l) + εn.

Therefore, we have
µ̃(ın+1, l) ≤ [1 − (1 − ξ)η]µ̃(ın, l) + εn. (19)
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Therefore, since 0 ≤ 1 − (1 − ξ)η < 1, applying Lemma 1 in (19), which yields
limn−→∞ µ̃(ın, l) = 0, that is, limn−→∞ ın = l. Conversely, limn−→∞ ın = l. Then, we
have to prove that limn−→∞ εn = 0. Next,

εn = µ̃(ın+1,♢(ın, (1 − ηn)) +♢( 𭟋(ın), ηn))

≤ µ̃(ın+1, l) + µ̃(l,♢(ın, (1 − ηn)) +♢( 𭟋(ın), ηn))

= µ̃(ın+1, l) + µ̃(♢(l, 1),♢(ın, (1 − ηn)) +♢( 𭟋(ın), ηn))

≤ µ̃(ın+1, l) + µ̃(♢(l, (1 − ηn) + ηn),♢(ın, (1 − ηn)) +♢( 𭟋(ın), ηn))

= µ̃(ın+1, l) + µ̃(♢(l, (1 − ηn)) +♢(l, ηn),♢(ın, (1 − ηn)) +♢( 𭟋(ın), ηn))

≤ µ̃(ın+1, l) + (1 − ηn)µ̃(ın, l) + ηnµ̃( 𭟋(ın), l)

= µ̃(ın+1, l) + (1 − ηn)µ̃(ın, l) + ηnµ̃( 𭟋(ın), 𭟋(l))

µ̃(ın+1, l) + [1 − (1 − ξ)ηn]µ̃(ın, l) −→ 0 as n −→ ∞.

Theorem 3. Let (D, µ̃, ϱ) be a digital metric space with linear digital structure ♢ and 𭟋 : D −→ D
be a mapping that satisfies contractive condition (13). Suppose that 𭟋 has a fixed point l. For
arbitrary setting ı0 ∈ D, let the sequence {ın}∞

n=0 is generated by the extended Ishikawa iterative
procedure (16), where ηn, µn ∈ [0, 1] such that 0 < η ≤ ηn and 0 < µ ≤ µn. Then, the extended
Ishikawa iteration is 𭟋-stable.

Proof. Let {ın} be the sequence in D, where n = 0, 1, 2, . . . and define

bn = ♢(ın, (1 − µn)) +♢( 𭟋(ın), µn)

εn = µ̃(ın+1,♢(ın, (1 − ηn)) +♢( 𭟋(bn), ηn)).

Suppose that limn→∞ εn = 0. Then, we establish that limn→∞ ın = l by using condition (13).
Thus, we have

µ̃(ın+1, l) ≤ µ̃(ın+1,♢(ın, (1 − ηn)) +♢( 𭟋(bn), ηn))

+ µ̃(♢(ın, (1 − ηn)) +♢( 𭟋(bn), ηn), l)

= µ̃(♢(ın, (1 − ηn)) +♢( 𭟋(bn), ηn), l) + εn

= µ̃(♢(ın, (1 − ηn)) +♢( 𭟋(bn), ηn),♢(l, 1)) + εn

= µ̃(♢(ın, (1 − ηn)) +♢( 𭟋(bn), ηn),♢(l, (1 − ηn) + ηn)) + εn

= µ̃(♢(ın, (1 − ηn)) +♢( 𭟋(bn), ηn),♢(l, (1 − ηn)) +♢(l, ηn)) + εn

≤ (1 − ηn)µ̃(ın, l) + ηnµ̃( 𭟋(bn), l) + εn

= (1 − ηn)µ̃(ın, l) + ηnµ̃( 𭟋(bn), 𭟋(l)) + εn.

Using (13), we have,

µ̃(ın+1, l) ≤ (1 − ηn)µ̃(ın, l) + ηn[ξµ̃(bn, l) + νm(bn, l)] + εn.

Now m(bn, l) = 0 using (14), so

µ̃(ın+1, l) ≤ (1 − ηn)µ̃(ın, l) + ηnξµ̃(bn, l) + εn. (20)

Now

µ̃(bn, l) = µ̃(♢(ın, (1 − µn)) +♢( 𭟋(ın, µ)),♢(l, 1))

= µ̃(♢(ın, (1 − µn)) +♢( 𭟋(ın, µ),♢(l, (1 − µn)) +♢( 𭟋(l, µ))

≤ (1 − µn)µ̃(ın, l) + µnµ̃(𭟋ın, l)

≤ [1 − (1 − ξ)µn]µ̃(ın, l).
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Therefore, we have
µ̃(bn, l) ≤ [1 − (1 − ξ)µn]µ̃(ın, l). (21)

Using (21) in (20), we have

µ̃(ın+1, l) ≤ (1 − ηn)µ̃(ın, l) + ηnξ([1 − (1 − ξ)µn]µ̃(ın, l)) + εn

= [1 − (1 − ξ)ηn − (1 − ξ)ξηnµn]µ̃(ın, l) + εn

≤ [1 − (1 − ξ)η − (1 − ξ)ξηµ]µ̃(ın, l) + εn.

Therefore, since 0 ≤ 1 − (1 − ξ)η − (1 − ξ)ξηµ < 1, applying Lemma 1 in above yields
limn−→∞ µ̃(ın, l) = 0, that is, limn−→∞ ın = l.

Conversely, limn−→∞ ın = l. Then, we have to prove that limn−→∞ εn = 0. We have

εn = µ̃(ın+1,♢(ın, (1 − ηn)) +♢( 𭟋 bn, ηn))

= µ̃(ın+1, l) + µ̃(l,♢(ın, (1 − ηn)) +♢( 𭟋 bn, ηn))

= µ̃(ın+1, l) + µ̃(♢(l, (1 − ηn) + ηn),♢(ın, (1 − ηn)) +♢( 𭟋(bn, ηn))

= µ̃(ın+1, l) + (1 − ηn)µ̃(ın, l) + ηnµ̃( 𭟋(bn), 𭟋(l))

≤ µ̃(ın+1, l) + (1 − ηn)µ̃(ın, l) + ηn[ξµ̃(bn, l) + νm(bn, l)].

Now, m(bn, l) = 0 using (14), so

εn ≤ µ̃(ın+1, l) + (1 − ηn)µ̃(ın, l) + ηnξµ̃(ȷn, l).

Using (21)

εn ≤ µ̃(ın+1, l) + (1 − ηn)µ̃(ın, l) + ηnξ[1 − (1 − ξ)µn]µ̃(ın, l)

≤ µ̃(ın+1, l) + [(1 − ηn) + ηnξ(1 − (1 − ξ)µn]µ̃(ın, l)

≤ µ̃(ın+1, l) + [1 − ηn(1 − ξ) + ηnµnξ(1 − ξ)]µ̃(ın, l)

≤ µ̃(ın+1, l) + [1 − η(1 − ξ) + ηµξ(1 − ξ)]µ̃(ın, l).

Now, since 0 ≤ 1 − (1 − ξ)η − (1 − ξ)ξηµ < 1 . Using Lemma 1, we have

εn ≤ µ̃(ın+1, l) + [1 − η(1 − ξ) + ηµξ((1 − ξ)]µ̃(ın, l) −→ 0 as n −→ ∞.

Theorem 4. Let (D, µ̃, ϱ) be a digital metric space with linear digital structure ♢ and 𭟋 : D −→ D
be a mapping that satisfies contractive condition (13). Suppose that 𭟋 has a fixed point l. For
arbitrary setting ı0 ∈ D, let the sequence {ın}∞

n=0 is generated by the extended Agarwal iterative
procedure (17), where ηn, µn ∈ [0, 1] such that 0 < η ≤ ηn and 0 < µ ≤ µn. Then, the extended
Agarwal iteration is 𭟋-stable.

Proof. Let {ın} be the sequence in D, where n = 0, 1, 2, . . . and define

ȷn = ♢(ın, (1 − µn)) +♢( 𭟋(ın), µn)

εn = µ̃(ın+1,♢( 𭟋ın, (1 − ηn)) +♢( 𭟋(ȷn), ηn)).

Suppose that limn→∞ εn = 0.
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Then, we establish that limn→∞ ın = l by using condition (13). Thus, we have

µ̃(ın+1, l) ≤ µ̃(ın+1,♢(𭟋ın, (1 − ηn)) +♢( 𭟋(ȷn), ηn))

+ µ̃(♢( 𭟋ın, (1 − ηn)) +♢( 𭟋(ȷn), ηn), l)

= µ̃(♢( 𭟋ın, (1 − ηn)) +♢( 𭟋(ȷn), ηn), l) + εn

= µ̃(♢( 𭟋ın, (1 − ηn)) +♢( 𭟋(ȷn), ηn),♢(l, 1)) + εn

= µ̃(♢( 𭟋ın, (1 − ηn)) +♢( 𭟋(ȷn), ηn),♢(l, (1 − ηn) + ηn)) + εn

= µ̃(♢( 𭟋ın, (1 − ηn)) +♢( 𭟋(ȷn), ηn),♢(l, (1 − ηn)) +♢(l, ηn)) + εn

= µ̃(♢( 𭟋ın, (1 − ηn)) +♢( 𭟋(ȷn), ηn),♢( 𭟋 l, (1 − ηn)) +♢( 𭟋l, ηn)) + εn

≤ (1 − ηn)µ̃( 𭟋ın, 𭟋 l) + ηnµ̃( 𭟋(ȷn), 𭟋 l) + εn

= (1 − ηn)µ̃( 𭟋 ın, 𭟋 l) + ηnµ̃( 𭟋(ȷn), 𭟋(l)) + εn.

Using (13), we have

µ̃(ın+1, l) ≤ (1 − ηn)[ξµ̃(ın, l) + νm(ın, l)] + ηn[ξµ̃(ȷn, l) + νm(ȷn, l)] + εn.

Now, m(ın, l) = 0 and m(ȷn, l) = 0. By applying (14)

µ̃(ın+1, l) ≤ (1 − ηn)ξµ̃(ın, l) + ηnξµ̃(ȷn, l) + εn. (22)

Next,

µ̃(ȷn, l) = µ̃(♢(ın, (1 − µn)) +♢( 𭟋(ın, µ)),♢(l, 1))

= µ̃(♢(ın, (1 − µn)) +♢( 𭟋(ın, µ),♢(l, (1 − µn)) +♢( 𭟋(l, µ))

≤ (1 − µn)µ̃(ın, l) + µnµ̃( 𭟋 ın, l)

≤ [1 − (1 − ξ)µn]µ̃(ın, l).

Therefore, we have
µ̃(ȷn, l) ≤ [1 − (1 − ξ)µn]µ̃(ın, l). (23)

Using (22) in (23), we have

µ̃(ın+1, l) ≤ (1 − ηn)ξµ̃(ın, l) + ηnξ([1 − (1 − ξ)µn]µ̃(ın, l)) + εn

= ξ[1 − (1 − ξ)ηnµn]µ̃(ın, l) + εn

≤ ξ[1 − (1 − ξ)ηµ]µ̃(ın, l) + εn.

Since 0 ≤ 1 − (1 − ξ)ηµ < 1, and applying Lemma 1 which yields limn−→∞ µ̃(ın, l) = 0,
that is, limn−→∞ ın = l.

Conversely, limn−→∞ ın = l. Then, we have to prove that limn−→∞ εn = 0. We have,

εn = µ̃(ın+1,♢( 𭟋 ın, (1 − ηn)) +♢( 𭟋 ȷn, ηn))

= µ̃(ın+1, l) + µ̃(l,♢( 𭟋 ın, (1 − ηn)) +♢( 𭟋 ȷn, ηn))

= µ̃(ın+1, l) + µ̃(♢(l, (1 − ηn) + ηn),♢( 𭟋 ın, (1 − ηn)) +♢( 𭟋(ȷn, ηn))

= µ̃(ın+1, l) + (1 − ηn)µ̃( 𭟋 ın, 𭟋 l) + ηnµ̃( 𭟋 ȷn, 𭟋(l))

≤ µ̃(ın+1, l) + (1 − ηn)[ξµ̃(ın, l) + νm(ın, l)] + ηn[ξµ̃(ȷn, l) + νm(ȷn, l)]

Now, m(ın, l) = 0 and m(ȷn, l) = 0 using (14), so

εn ≤ µ̃(ın+1, l) + (1 − ηn)ξµ̃(ın, l) + ηnξµ̃(ȷn, l).
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Using (22)

εn ≤ µ̃(ın+1, l) + (1 − ηn)ξµ̃(ın, l) + ηnξ[1 − (1 − ξ)µn]µ̃(ın, l)

≤ µ̃(ın+1, l) + ξ[(1 − ηn) + ηn(1 − (1 − ξ)µn]µ̃(ın, l)

≤ µ̃(ın+1, l) + ξ[(1 − ηnµn(1 − ξ)]µ̃(ın, l)

≤ µ̃(ın+1, l) + ξ[(1 − ηµ(1 − ξ)]µ̃(ın, l).

Now, since 0 ≤ 1 − (1 − ξ)ηµ < 1, using Lemma 1:

εn ≤ µ̃(ın+1, l) + [1 − ηµ(1 − ξ)]µ̃(ın, l) −→ 0 as n −→ ∞.

Theorem 5. Let (D, µ̃, ϱ) be a digital metric space with linear digital structure ♢ and 𭟋 : D −→ D
be a mapping that satisfies contractive condition (13). Suppose that 𭟋 has a fixed point l. For
arbitrary setting ı0 ∈ D, let the sequence {ın}∞

n=0 is generated by the extended Thakur iterative
procedure (18), where ηn, µn, νn ∈ [0, 1] such that 0 < η ≤ ηn, 0 < µ ≤ µn and 0 < ν ≤ νn.
Then, the extended Thakur iteration is 𭟋-stable.

Proof. Let {ın} be the sequence in D, where n = 0, 1, 2, . . . and define

ζn = ♢(ın, (1 − νn)) +♢(𭟋ın, νn),

ȷn = ♢(ζn, (1 − µn)) +♢(𭟋ζn, µn),

εn = µ̃(ın+1,♢( 𭟋ζn, (1 − ηn)) +♢(𭟋ȷn, ηn)).

Suppose that limn→∞ εn = 0. Then, we establish that limn→∞ ın = l by using condition (13).
Thus, we have

µ̃(ın+1, l) ≤ µ̃(ın+1,♢(𭟋ζn, (1 − ηn)) +♢(𭟋ȷn, ηn))

+ µ̃(♢( 𭟋ζn, (1 − ηn)) +♢( 𭟋(ȷn), ηn), l)

= µ̃(♢( 𭟋ζn, (1 − ηn)) +♢(𭟋ȷn, ηn), l) + εn

= µ̃(♢( 𭟋ζn, (1 − ηn)) +♢(𭟋ȷn, ηn),♢(l, 1)) + εn

= µ̃(♢( 𭟋ζn, (1 − ηn)) +♢(𭟋ȷn, ηn),♢(l, (1 − ηn) + ηn)) + εn

= µ̃(♢( 𭟋ζn, (1 − ηn)) +♢(𭟋ȷn, ηn),♢(l, (1 − ηn)) +♢(l, ηn)) + εn

= µ̃(♢( 𭟋ζn, (1 − ηn)) +♢(𭟋ȷn, ηn),♢( 𭟋 l, (1 − ηn)) +♢( 𭟋l, ηn)) + εn

≤ (1 − ηn)µ̃( 𭟋ζn, 𭟋 l) + ηnµ̃(𭟋ȷn, 𭟋 l) + εn

= (1 − ηn)µ̃( 𭟋 ζn, 𭟋 l) + ηnµ̃( 𭟋 ȷn, 𭟋(l)) + εn.

Using (13), we have,

µ̃(ın+1, l) ≤ (1 − ηn)[ξµ̃(ζn, l) + ηm(ζn, l)] + ηn[ξµ̃(ȷn, l) + ηm(ȷn, l)] + εn.

Now, m(ın, l) = 0 and m(ȷn, l) = 0 using (2.4), so

µ̃(ın+1, l) ≤ (1 − ηn)ξµ̃(ζn, l) + ηnξµ̃(ȷn, l) + εn. (24)

Now,

µ̃(ȷn, l) = µ̃(♢(ζn, (1 − µn)) +♢( 𭟋(ζn, µ)),♢(l, 1))

= µ̃(♢(ζn, (1 − µn)) +♢( 𭟋(ζn, µ),♢(l, (1 − µn)) +♢( 𭟋(l, µ))

≤ (1 − µn)µ̃(ζn, l) + µnµ̃( 𭟋(ζn, l)

≤ [1 − (1 − ξ)µn]µ̃(ζn, l).

Therefore, we have
µ̃(ȷn, l) ≤ [1 − (1 − ξ)µn]µ̃(ζn, l). (25)
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Now

µ̃(ζn, l) = µ̃(♢(ın, (1 − νn)) +♢( 𭟋(ζn, ν)),♢(l, 1)).

= µ̃(♢(ın, (1 − νn)) +♢( 𭟋(ın, ν),♢(l, (1 − νn)) +♢( 𭟋(l, ν))

≤ (1 − νn)µ̃(ın, l) + νnµ̃( 𭟋(ın, l)

≤ [1 − (1 − ξ)νn]µ̃(ın, l).

Therefore, we have
µ̃(ζn, l) ≤ [1 − (1 − ξ)νn]µ̃(ın, l) (26)

Using (24) and (25), we have

µ̃(ın+1, l) ≤ (1 − ηn)ξµ̃(ζn, l) + ηnξ(1 − (1 − ξ)µn)µ̃(ζn, l) + εn

= ξ[(1 − ηn) + ηn([1 − (1 − ξ)µn)]µ̃(ζn, l) + εn

= ξ[1 − (1 − ξ)ηnµn]µ̃(ζn, l) + εn.

Now, using (26),

µ̃(ın+1, l) ≤ ξ(1 − (1 − ξ)ηnµn)(1 − (1 − ξ)νn)µ̃(ın, l) + εn

≤ ξ(1 − (1 − ξ)ηµ)(1 − (1 − ξ)ν)µ̃(ın, l) + εn.

Therefore, since 0 ≤ (1 − (1 − ξ)ηµ)(1 − (1 − ξ)ν) < 1, by applying Lemma 1 yields
limn−→∞ µ̃(ın, l) = 0, that is, limn−→∞ ın = l.

Conversely, let limn−→∞ ın = l. We have to prove that limn−→∞ εn = 0. We have

εn = µ̃(ın+1,♢( 𭟋 ζn, (1 − ηn)) +♢( 𭟋 ȷn, ηn))

= µ̃(ın+1, l) + µ̃(l,♢( 𭟋 ζn, (1 − ηn)) +♢( 𭟋 ȷn, ηn))

= µ̃(ın+1, l) + µ̃(♢(l, (1 − ηn) + ηn),♢( 𭟋 ζn, (1 − ηn)) +♢( 𭟋(ȷn, ηn))

= µ̃(ın+1, l) + (1 − ηn)µ̃( 𭟋 ζn, 𭟋 l) + ηnµ̃( 𭟋 ȷn, 𭟋 l)

≤ µ̃(ın+1, l) + (1 − ηn)[ξµ̃(ζn, l) + νm(ζn, l)] + ηn[ξµ̃(ȷn, l) + νm(ȷn, l)]

Now, m(ζn, l) = 0 and m(ȷn, l) = 0 using (14), so

εn ≤ µ̃(ın+1, l) + (1 − ηn)ξµ̃(ζn, l) + ηnξµ̃(ȷn, l).

Using (25) and (26),

εn ≤ µ̃(ın+1, l) + (1 − ηn)ξµ̃(ζn, l) + ηnξ[1 − (1 − ξ)µn]µ̃(ζn, l)

≤ µ̃(ın+1, l) + ξ[(1 − ηn) + ηn(1 − (1 − ξ)µn]µ̃(ζn, l)

≤ µ̃(ın+1, l) + ξ[(1 − (1 − ξ)ηnµn][1 − (1 − ξ)νn]µ̃(ın, l)

≤ µ̃(ın+1, l) + ξ[(1 − (1 − ξ)ηµ][1 − (1 − ξ)ν]µ̃(ın, l)

Now, since 0 ≤ (1 − (1 − ξ)ηµ)(1 − (1 − ξ)ν) < 1, by using Lemma 1 we have
εn ≤ µ̃(ın+1, l) + [(1 − (1 − ξ)ηµ)(1 − (1 − ξ)ν)]µ̃(ın, l) −→ 0 as n −→ ∞.

Here, we have designed a non trivial example to check the stability of digital contrac-
tion mapping and compare the rate of convergence with the different iterative schemes.

Example 1. Let D = [0, ∞]Z and ( D, µ̃, ϱ) be the digital metric spaces endowed with the metric
µ̃(ı, ȷ) = |ı − ȷ| and digital structure ♢ : D × [0, 1]Z → D defined as ♢(l, α) = αl . For 𭟋 :
( D, µ̃, ϱ) → ( D, µ̃, ϱ), define

𭟋 ı =
ı
2
+ 3,
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and ηn = µn = νn = 5
6 , n = 1, 2, 3, . . . .

From Table 1, it is evident that every iterative algorithm was 𭟋-stable and converges to l⋆ = 6.
Table 2 and Figure 4 shows the rate of convergence of Picard-S, K. Ullah, Agarwal and Noor’s
iterative schemes.

Figure 4. Graphical presentation of Table 1.

Table 1. Numerical values obtained for different initial approximations.

Iterations Picard-S K. Ullah Agarwal Noor

0 0 0 0 0
1 5.0208333333 5.45958333333 4.04166666667 3.97569444444
2 5.8402054398 5.95697913773 5.36082175926 5.31703116962
3 5.9739224155 5.99968577145 5.79137932420 5.76957706707
4 5.9957442831 5.99981670001 5.93190852943 5.92225892946
5 5.9993054906 5.99997326855 5.97777570058 5.97377138650
6 5.9998866599 5.99999772599 5.99274623560 5.99115087866
7 5.9999815035 5.99999980655 5.99763245190 5.99701444575
8 5.9999969815 5.99999998354 5.99922725861 5.99899272099
9 5.9999995074 5.99999999986 5.99974778579 5.99966015992
10 5.9999999196 5.99999999988 5.99991768009 5.99988534331
11 5.9999999869 5.99999999999 5.99997313169 5.99996131664
12 5.9999999979 6.00000000000 5.99999123048 5.99998694884
13 5.9999999997 6.00000000000 5.99999713773 5.99999559674
14 5.9999999999 6.00000000000 5.99999906579 5.99999851441
15 6.0000000000 6.00000000000 5.99999969508 5.99999949879
16 6.00000000000 6.00000000000 5.99999990048 5.99999983090
17 6.00000000000 6.00000000000 5.99999996752 5.99999994295
18 6.00000000000 6.00000000000 5.99999998940 5.99999998075
19 6.00000000000 6.00000000000 5.99999999654 5.99999999351
20 6.00000000000 6.00000000000 5.99999999887 5.99999999781
21 6.00000000000 6.00000000000 5.99999999963 5.99999999926
22 6.00000000000 6.00000000000 5.99999999988 5.99999999975
23 6.00000000000 6.00000000000 5.99999999996 5.99999999992
24 6.00000000000 6.00000000000 5.99999999999 5.99999999997
25 6.00000000000 6.00000000000 6.00000000000 5.99999999999
26 6.00000000000 6.00000000000 6.00000000000 6.00000000000
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Table 2. Comparisions of iterative steps.

Algorithm Iterations

Mann 48
Ishikawa 32

Noor 26
Agarwal 28
Picard-S 15
K.Ullah 11

3. Application

Recurring patterns up to scale similarity are seen in many natural phenomena at all
scales. This gives rise to a novel concept of symmetry. This is also known mathematically
as a “fractal”, and it occurs when self similarity patterns appear similar at different small
scales. For example Mandelbrot set (Figure 5). When a precise and intricate pattern is
observed to repeat itself, fractals are employed.

The fractal tree (Figure 6) is another examples of a fractal.

Figure 5. Madelbrot set.

Figure 6. Fractal tree.

Fractal compression uses an image’s self-similarity to its advantage in order to com-
press data. In this technique, the image is divided into smaller blocks known as range
blocks, and comparable patterns inside the image known as domain blocks are found.
Fractal compression can achieve high compression ratios by identifying these matches and
encoding the modifications required to recreate them.

Now, we give an example to illustrate how fractal compression techniques’ iterative
nature helps in measuring distances and similarities between points or patterns within
a digital image and is efficient in the compression of an image by repeatedly improving
approximations until a near match to the actual image is achieved.
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Example 2. Let D = [0, 2]Z be a digital interval with 2-adjacency. LetX0 be a digital image (see
Figure 7,

Figure 7. X0.

Using the Ishikawa (16) iteration scheme and ηn = 0 and µn = 1, n = 1, 2, 3, . . . , duplicating
X0 and attach one copy to the vertex on the lower left and one to the lower right makes a new digital
image X1 as (see Figure 8),

Figure 8. X1.

Applying the second iteration on X1, we have again a new digital image X2, which is similar
to X1.

X2 (see Figure 9) is therefore the fixed point in this process. We would want to present the
mathematical version of the higher process. Give 𭟋 the function that converts Xi to 𭟋(Xi). Thus,
we can see that X2 is a fixed point of this function or that 𭟋(X2) = X2. An infinite sequence is
produced if the procedure is repeated on Xn sets. There is a convergence of Xn to X2. It is impossible
to differentiate between X5 and X2. Consequently, the computer software uses X5 rather than X2 for
improved resolution. Simultaneously, the application may quickly determine certain digital image
properties by using X2 instead of X5.

Figure 9. X2.
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Example 3. (Sierpinski triangle) We took a triangle and cut off its middle, then we repeated it
again to generate the Sierpinski triangle. However, an iterative function system can also be used to
represent the Sierpinski triangle. Start with a solid triangle with digital image I0 (see Figure 10).

Figure 10. Generators of Sierpinski triangle.

Then, three functions {ξ1, ξ2, ξ3} are generators, representing a contractive mapping are used
to form I1. Every mapping reduces the triangle’s size by half, placing the reduced triangles in each
of I0’s corners.

The corresponding Iterative process is given by {R2 : ξ1, ξ2, ξ3}, where the contractive
transformations ξ1, ξ2, and ξ3 are given by

ξ1(ı, ȷ) =

[ 1
2 0
0 1

2

][
ı
ȷ

]
,

ξ2(ı, ȷ) =

[ 1
2 0
0 1

2

][
ı
ȷ

]
+

[ 1
2
0

]
,

xi3(ı, ȷ) =

[ 1
2 0
0 1

2

][
ı
ȷ

]
+

[ 1
4
3
2

]
.

(27)

The result of this Iterative process is the Sierpinski triangle (see Figure 11) and is given by
I = limn→∞ ξn(I0).

Figure 11. Iterations.

4. Conclusions

In conclusion, this paper has undertaken a thorough examination of the advancements
achieved in comprehending Iterative Fixed-Point Schemes, grounded in the concept of
digital contraction mappings. Additionally, we have introduced the concept of Iterative
Fixed-Point Schemes within digital metric spaces. This study extends the Iteration process
of Mann (15), Ishikawa (16), Agarwal (17), and Thakur (18), incorporating the 𭟋-Stable
Iterative Scheme in the context of digital metric spaces. The design and exploration of
fractal images serve to illustrate the compression of Fixed-Point Iterative Schemes and
contractive mappings. Furthermore, a concrete example has been presented to elucidate
the underlying motivation for our investigations.

Moreover, our paper has demonstrated the practical application of the proposed
Fractal image and Sierpinski triangle in compressing works, specifically addressing the
challenge of storing images efficiently by representing them as a collection of digital
contractions. This approach offers a solution to the problem of conserving storage memory
while retaining the essential features of the images discussed in this study.
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