
Citation: Alanzi, A.R.A.; Fakhfakh, R.;

Alshahrani, F. On Generalized

t-Transformation of Free Convolution.

Symmetry 2024, 16, 372. https://

doi.org/10.3390/sym16030372

Academic Editor: Aviv Gibali

Received: 1 February 2024

Revised: 9 March 2024

Accepted: 14 March 2024

Published: 19 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

On Generalized t-Transformation of Free Convolution
Ayed. R. A. Alanzi 1,2, Raouf Fakhfakh 2,3,* and Fatimah Alshahrani 4

1 Department of Mathematics, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia;
aralenzi@ju.edu.sa

2 Department of Mathematics, College of Science and Arts in Gurayat, Jouf University,
Gurayat 77454, Saudi Arabia

3 Laboratory of Probability and Statistics, Faculty of Sciences of Sfax, University of Sfax, Sfax 3000, Tunisia
4 Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University,

P.O. Box 84428, Riyadh 11671, Saudi Arabia; fmalshahrani@pnu.edu.sa
* Correspondence: rfakhfakh@ju.edu.sa

Abstract: A notion of generalized (two-parameterized) t-transformation of free convolution, also
called (t = (a, b))-deformed free convolution, is introduced for a ∈ R and b > 0. In this article, some
results of t-deformed free convolution are given within the theory of Cauchy-Stieltjes Kernel (CSK)
families. The variance function is a fundamental concept in CSK families. An expression is provided
for the variance function under t-deformed free convolution power. In addition, through the use of
the variance function, an approximation is provided for members of the t-deformed free Gaussian
CSK family and members of the t-deformed free Poisson CSK family respectively. Furthermore,
by involving the free multiplicative convolution, a new limit theorem is provided with respect to
t-deformed free convolution.

Keywords: variance function; Cauchy–Stieltjes transform; deformation of measures

1. Introduction

The notion of the t-deformation of a measure and of a convolution was introduced by
Bożejko and Wysoczański [1,2]. The definition of t-transformation of measure is based on
the Cauchy–Stieltjes transform Gσ(.), defined by

Gσ(w) =
∫ 1

w − y
σ(dy) for w ∈ C\supp(σ), (1)

where σ is a real probability measure. The t-transformation of a measure σ is introduced
in the following way: Let t > 0, based on the Nevanlinna theorem, the function Gσt(w),
provided by:

1
Gσt(w)

=
t

Gσ(w)
+ (1 − t)w, (2)

is the Cauchy–Stieltjes transform of a probability measure denoted by Ut(σ) := σt.
The t-transformation of σ is nothing but the t-th Boolean additive convolution power

of σ.
The t-transformation of any probability measure σ (with all finite moments) can be

interpreted as a multiplication of the two Jacobi coefficients α1 and λ1 of the first level in
the continued fraction notation of the Cauchy–Stieltjes transform. That is, if
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Gσ(w) =
1

w − α1 −
λ1

w − α2 −
λ2

w − α3 −
λ3

w − α4 − ...

,

then the Cauchy–Stieltjes transform of the deformed measure Ut(σ) is

GUt(σ)(w) =
1

w − tα1 −
tλ1

w − α2 −
λ2

w − α3 −
λ3

w − α4 − ...

.

Based on the t-transformation of measures, a new type of convolution, called t-
deformed free convolution (or t-free convolution), denoted as t -convolution, is defined
in [1,2]: The t-deformed free convolution t is introduced by

ρ t σ = U1/t(Ut(ρ)⊞Ut(σ)), (3)

where ρ and σ are the real probability measures. However, the central limit theorem with
respect to t -convolution is established. The limit law is called t-deformed free Gaussian
law. The Poisson limit theorem with respect to t -convolution is proven. The limit law
is called the t-deformed free Poisson law. Families of free random variables associated
with these central limit measures are constructed, see [1,2] for more details. Further studies
related to t -convolution are presented in [3,4].

This topic was further studied and extended in many ways in a number of papers.
Krystek and Yoshida [5] introduced a generalized (two-parameterized) t-transformation,
whereby the t-transformation of Bożejko and Wysoczański was reduced to a special case.
The corresponding transformed convolutions were also defined. They considered a de-
formation of the Cauchy–Stieltjes transform of σ (with all finite moments) as follows: Let
a ∈ R and b > 0, denote t = (a, b) and consider the (t = (a, b))-transformation defined by

1
GŨt(σ)(w)

=
b

Gσ(w)
+ (1 − b)w + (b − a)m0(σ), (4)

where m0(σ) denotes the moment of order 1 of the measure σ.
If a = b = t, the transformation Ũt(.) is the t-transformation Ut(.) introduced in [1,2].

The (t = (a, b))-transformation can be interpreted by means of continued fractions. The
coefficients α1 and λ1 in the continued fraction representation of the original probability
measure σ (with finite all moments) are multiplied by a and b, respectively: that is

GŨt(σ)(w) =
1

w − aα1 −
bλ1

w − α2 −
λ2

w − α3 −
λ3

w − α4 − ...

.

Based on Ũt-transformation of measures, the t-deformed free and classical convolu-
tions is introduced. From [5] (Proposition 1.4), for a ̸= 0 and b > 0, one can see that the
(a, b)-transformation is invertible. That is, if we write t−1 = (a−1, b−1), then Ũt and Ũt−1

are inverse of the other. The t-transformation of free convolution ⊞(t) is

ρ ⊞(t) σ = Ũt−1
(Ũt(ρ)⊞ Ũt(σ)), (5)
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where ρ and σ are real measures with all finite moments. The t-transformation of classical
convolution, denoted by ∗(t), is obtained in the same way by replacing in (5) the free
convolution ⊞ by the classical convolution ∗. It has been shown that the central limit
measures associated with t-deformed classical and free convolutions is exactly the same
for the original t-deformations, but the Poisson limit is different and depends on two
parameters. A calculation is made for the t-deformed classical and free Poisson limits. The
orthogonal polynomials that correspond to the limit measures are provided explicitly.

The theory of Cauchy–Stieltjes Kernel (CSK) families in non-commutative probability
has been introduced recently. It is defined analogously to the theory of natural expo-
nential families in classical probability. The variance function is an important concept in
CSK families. In this article, some properties of ⊞(t)-convolution are provided within the
framework of CSK families. For the clarity of the results provided in this article, some
facts about CSK families are presented in Section 2. In Section 3, an expression is provided
for the variance function under ⊞(t)-convolution power. This expression for the variance
function together with the notion of ⊞(t)-convolution are used in Section 4 to approxi-
mate the elements of the t-deformed free Gaussian CSK family and the elements of the
t-deformed free Poisson CSK family. Furthermore, by involving the free multiplicative
convolution and based on the variance function, a limit theorem is presented in Section 5
for the ⊞(t)-convolution.

2. Cauchy–Stieltjes Kernel Families

A concept of family generated by the measure µ is introduced in [6] for any kernel
N (y, ϑ), such that

L(ϑ) =
∫

N (y, ϑ)µ(dy)

converges in a open set Ω. It is the family of probability measures

{(N (y, ϑ)/L(ϑ))µ(dy) : ϑ ∈ Ω}.

Bryc and Ismail [7] introduced some properties of q-exponential families. In particular,
the case q = 0 has been connected to the free probability using the Cauchy–Stieltjes
kernel 1/(1 − ϑy). If q = 1, we can recover the exponential families. Some results for the
CSK families are provided in [8], where the generating measure µ is compactly supported.
Extended results are provided in [9] to involve measures µ with support bounded from
one side (say from above). Further studies on CSK families are presented in [10–12]. In the
following, we review some basic concepts on CSK families.

Let µ be a probability measure that is non-degenerate and has support bounded from
above. Then

Mµ(ϑ) =
∫ 1

1 − ϑy
µ(dy) (6)

converges ∀ϑ ∈ [0, ϑ+) with 1/ϑ+ = max{0, sup supp(µ)}. For ϑ ∈ [0, ϑ+), we set

P(ϑ,µ)(dy) =
1

Mµ(ϑ)(1 − ϑy)
ν(dy).

The (one-sided) CSK family generated by µ is the set of probability measures

K+(µ) = {P(ϑ,µ)(dy); ϑ ∈ (0, ϑ+)}.

The mean function ϑ 7→ kµ(ϑ) =
∫

yP(ϑ,µ)(dy) is strictly increasing on (0, ϑ+), see [9], and

kµ(ϑ) =
Mµ(ϑ)− 1

ϑMµ(ϑ)
. (7)
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For K+(µ), the (one-sided) mean domain is the interval (m0(µ), m+(µ)) = kµ((0, ϑ+)).
This provides a mean parametrization for K+(µ): The inverse of kµ(·) is denoted ψµ(·).
For s ∈ (m0(µ), m+(µ)), consider Q(s,µ)(dy) = P(ψµ(s),µ)(dy). We get

K+(µ) = {Q(s,µ)(dy); s ∈ (m0(µ), m+(µ))}.

Denote
B = B(µ) = max{0, sup supp(µ)} = 1/ϑ+ ∈ [0, ∞) (8)

and
A = A(µ) = min{0, inf supp(µ)}.

Then it is shown in [9] that

m0(µ) = lim
ϑ→0+

kµ(ϑ) and m+(µ) = B − lim
w→B+

1
Gµ(w)

. (9)

If the measure µ has support bounded from below, the corresponding CSK family is
denoted by K−(µ) and ϑ− < ϑ < 0, where ϑ− is either 1/A(µ) or −∞. For K−(µ), the
mean domain is (m−(µ), m0(µ)) with m−(µ) = A − 1/Gµ(A). If µ is compactly supported,
the (two-sided) CSK family is K(µ) = {µ} ∪ K−(µ) ∪K+(µ) and ϑ ∈ (ϑ−, ϑ+).

The variance function (see [8]) is

s 7→ Vµ(s) =
∫
(y − s)2Q(s,µ)(dy). (10)

If µ does not have a moment of order 1, all members of K+(µ) have infinite variance. A
concept of pseudo-variance function Vµ(·) is introduced in [9] by

Vµ(s) = s
(

1
ψµ(s)

− s
)

, (11)

If m0(µ) =
∫

yµ(dy) is finite, then (see [9]) Vµ(·) exists and

Vµ(s) =
s

s − m0(µ)
Vµ(s). (12)

Let ϕ(µ) be the image of µ by ϕ : y 7−→ ξy + λ where ξ ̸= 0 and λ ∈ R. Then, ∀ s close
enough to m0(ϕ(µ)) = ϕ(m0(µ)) = ξm0(µ) + λ,

Vϕ(µ)(s) =
ξ2s

s − λ
Vµ

(
s − λ

ξ

)
. (13)

If Vµ(.) exists, then

Vϕ(µ)(s) = ξ2Vµ

(
s − λ

ξ

)
. (14)

3. ⊞(t)-Convolution and Variance Function

In this section, we establish the expression of the variance function under ⊞(t)-
convolution power. To do so, we begin by presenting some results concerning the t-
transformation of measures defined by (4). In the following, we assume that the considered
measures are compactly supported. Mc will denote the set of compactly supported real
probability measures. The next result concerns the mean function.

Proposition 1. Let ν ∈ Mc be non degenerate. Then, ∀ϑ is close enough to 0,

kŨt(ν)(ϑ) = bkν(ϑ)− (b − a)m0(ν). (15)
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Proof. From the fact that Mν(ϑ) =
1
ϑ Gν(

1
ϑ ), we see from (4), that

MŨt(ν)(ϑ) =
Mν(ϑ)

b + ((1 − b) + (b − a)ϑm0(ν))Mν(ϑ)
. (16)

We have that MŨt(ν)(0) = 1. The function MŨt(ν)(.) is well defined in a small neighborhood
of 0. Combining (7) with (16), we obtain

kŨt(ν)(ϑ) =
MŨt(ν)(ϑ)− 1

ϑMŨt(ν)(ϑ)
=

b(Mν(ϑ)− 1)
ϑMν(ϑ)

− (b − a)m0(ν) = bkν(ϑ)− (b − a)m0(ν).

Next, we establish the affect on Vν(·) by applying t-transformation to ν.

Theorem 1. Let ν ∈ Mc be non degenerate. Then, ∀ m̃ is close enough to m0(Ũt(ν)) = am0(ν),

VŨt(ν)(m̃) =
bm̃

m̃ + (b − a)m0(ν)
Vν

(
m̃ + (b − a)m0(ν)

b

)
+ m̃

(
m̃ + (b − a)m0(ν)

b
− m̃

)
. (17)

Furthermore,

VŨt(ν)(m̃) = bVν

(
m̃ + (b − a)m0(ν)

b

)
+ (m̃ − am0(ν))

(
m̃ + (b − a)m0(ν)

b
− m̃

)
. (18)

Proof. ∀ϑ is close enough to 0, which is denoted by m =
∫

yP(θ,ν)(dy) and m̃ =
∫

yP(θ,Ũt(ν))(dy).
From (15), one see that

m̃ = bm − (b − a)m0(ν), (19)

and
m0(Ũt(ν)) = kŨt(ν)(0) = bm0(ν)− (b − a)m0(ν) = am0(ν).

One see that ∀ ϑ is close enough to 0,

ψŨt(ν)(m̃) = ϑ = ψν(m). (20)

In terms of pseudo-variance functions, relation (20) can be written as

VŨt(ν)(m̃)

m̃
+ m̃ =

Vν(m)

m
+ m. (21)

From (19), we express m as a function of m̃. Inserting it in (21), we obtain (17). Further-
more, as m0(ν) is finite, then Vν(.) and VŨt(ν)(.) exists. Equation (18) follows from (17)
and (12).

Remark 1. Note that Proposition 1 and Theorem 2 can be proven for the measure of ν with support
bounded from one side and with the finite first moment.

For ν ∈ Mc, consider the R(t)-transform introduced in [5], by

R(t)
ν (w) :=

1
b

(
RŨt(ν)(w) + (b − a)m0(ν)

)
. (22)

where
Rν(Gν(w)) = w − 1

Gν(w)
, ∀ w in an appropriate domain, (23)
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see [13] for more details about Rν(·). For µ, ν ∈ Mc,

R(t)
µ⊞(t)ν

(w) = R(t)
µ (w) +R(t)

ν (w). (24)

σ ∈ Mc is ⊞(t)-infinitely divisible, if for each q ∈ N, σq ∈ Mc exists, so that

σ = σq ⊞(t) ..... ⊞(t) σq︸ ︷︷ ︸
q times

.

The r-fold ⊞(t)-convolution of σ ∈ Mc with itself is denoted σ⊞(t)r. This operation is
well defined for r ≥ 1, (see [14]) and

R(t)

σ
⊞(t)r (w) = rR(t)

σ (w). (25)

Proposition 2. Let ν ∈ Mc be non degenerate. Then,

(i) R(t)
ν is increasing strictly on (GŨt(ν)(A(Ũt(ν))), GŨt(ν)(B(Ũt(ν)))).

(ii) For m ∈ (m−(ν), m+(ν))

R(t)
ν

(
bm − (b − a)m0(ν)

VŨt(ν)(bm − (b − a)m0(ν))

)
= m. (26)

(iii) lim
w↘0

R(t)
ν (w) = m0(ν).

(iv) lim
w↘0

zR(t)
ν (w) = 0.

Proof. The proof is based on the properties of RŨt(ν)(.), which are provided by considering

measure Ũt(ν) instead of measure µ in [9] (Proposition 3.8).

(i) One see from [9] (Proposition 3.8(i)), that RŨt(ν)(.) is increasing strictly on

(GŨt(ν)(A(Ũt(ν))), GŨt(ν)(B(Ũt(ν)))).

So, the proof of (i) follows easily from relation (22).
(ii) Combining (22), (19) and [9] (Proposition 3.8(ii)), we obtain

R(t)
ν

(
bm − (b − a)m0(ν)

VŨt(ν)(bm − (b − a)m0(ν))

)
= R(t)

ν

(
m̃

VŨt(ν)(m̃)

)

=
1
b

(
RŨt(ν)

(
m̃

VŨt(ν)(m̃)

)
+ (b − a)m0(ν)

)

=
1
b
(m̃ + (b − a)m0(ν)) = m.

(iii) Using (22) and [9] (Proposition 3.8(iii)), we have that

lim
z↘0

R(t)
ν (z) = lim

z↘0

1
b

(
RŨt(ν)(z) + (b − a)m0(ν)

)
=

1
b

(
m0(Ũt(ν)) + (b − a)m0(ν)

)
=

1
b
(am0(ν) + (b − a)m0(ν)) = m0(ν).
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(iv) From (22) and [9] (Proposition 3.8(iv)), one see that

lim
z↘0

zR(t)
ν (z) = lim

z↘0

1
b

(
zRŨt(ν)(z) + z(b − a)m0(ν)

)
= 0.

Next, the main result of this section is stated and demonstrated.

Theorem 2. Let ν ∈ Mc be non degenerate. Then, for r > 0 so that ν⊞(t)r is defined,

(i) ν⊞(t)r ∈ Mc.

(ii) ∀m close enough to m0

(
ν⊞(t)r

)
= rm0(ν),

V
ν
⊞(t)r (m) = rVν(m/r) + (1/r − 1)m(m(1 − b) + r(b − a)m0(ν)). (27)

Furthermore,

V
ν
⊞(t)r (m) = rVν(m/r) + (1/r − 1)(m − rm0(ν))(m(1 − b) + r(b − a)m0(ν)). (28)

Proof.

(i) As ν ∈ Mc, then the measure Ũt(ν) is in Mc. Thus, in a domain containing some
open interval (−δ, δ) for δ > 0, the function

R(t)
ν (.) =

1
b

(
RŨt(ν)(.) + (b − a)m0(ν)

)
is univalent. Therefore, in the same domain, the function

rR(t)
ν (.) = R(t)

ν
⊞(t)r (.) =

1
b

(
R

Ũt
(

ν
⊞(t)r)(.) + (b − a)m0

(
ν⊞(t)r

))
is univalent. This implies that that G

Ũt
(

ν
⊞(t)r)(w) and so G

ν
⊞(t)r (w) is analytic for

|w| > c, with c = G−1
Ũt
(

ν
⊞(t)r)(δ). Then, ν⊞(t)r ∈ Mc, (see [15] (Proposition 6.1)).

(ii) From Proposition 2(iii), we see that

m0

(
ν⊞(t)r

)
= lim

z−→0
R(t)

ν
⊞(t)r (z) = r lim

z−→0
R(t)

ν (z) = rm0(ν).

∀m is close enough to rm0(ν), such that m/r ∈ (m−(ν), m+(ν)) and

bm − (b − a)m0

(
ν⊞(t)r

)
V

Ũt
(

ν
⊞(t)r)(bm − (b − a)m0

(
ν⊞(t)r

)) ∈ (GŨt(ν)(A(Ũt(ν))), GŨt(ν)(B(Ũt(ν)))),

we have

R(t)
ν

 bm − (b − a)m0

(
ν⊞(t)r

)
V

Ũt
(

ν
⊞(t)r)(bm − (b − a)m0

(
ν⊞(t)r

))
 =

1
r
R(t)

ν
⊞(t)r

 bm − (b − a)m0

(
ν⊞(t)r

)
V

Ũt
(

ν
⊞(t)r)(bm − (b − a)m0

(
ν⊞(t)r

))


=
m
r

= R(t)
ν

(
bm/r − (b − a)m0(ν)

VŨt(ν)(bm/r − (b − a)m0(ν))

)
.
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Recall Proposition 2(i), R(t)
ν (·) is one-to-one on (GŨt(ν)(A(Ũt(ν))), GŨt(ν)(B(Ũt(ν)))). So

bm − (b − a)m0

(
ν⊞(t)r

)
V

Ũt
(

ν
⊞(t)r)(bm − (b − a)m0

(
ν⊞(t)r

)) =
bm/r − (b − a)m0(ν)

VŨt(ν)(bm/r − (b − a)m0(ν))
,

or equivalently

V
Ũt
(

ν
⊞(t)r)(bm − r(b − a)m0(ν)) = rVŨt(ν)(bm/r − (b − a)m0(ν)). (29)

However, from (17), one can see that

V
Ũt
(

ν
⊞(t)r)(bm − r(b − a)m0(ν)) =

b(bm − r(b − a)m0(ν))

(bm − r(b − a)m0(ν)) + (b − a)m0

(
ν⊞(t)r

)V
ν
⊞(t)r

 bm − r(b − a)m0(ν) + (b − a)m0

(
ν⊞(t)r

)
b


+ (bm − r(b − a)m0(ν))

 bm − r(b − a)m0(ν) + (b − a)m0

(
ν⊞(t)r

)
b

− (bm − r(b − a)m0(ν))


That is

V
Ũt
(

ν
⊞(t)r)(bm − r(b − a)m0(ν)) =

=
bm − r(b − a)m0(ν)

m
V

ν
⊞(t)r (m) + (bm − r(b − a)m0(ν))(m(1 − b) + r(b − a)m0(ν)). (30)

We also have, from (17)

VŨt(ν)(bm/r − (b − a)m0(ν)) =

bm − r(b − a)m0(ν)

m
Vν(m/r) +

1
r2 (bm − r(b − a)m0(ν))(m(1 − b) + r(b − a)m0(ν)). (31)

Combining (30) and (31) with (29), we obtain

bm − r(b − a)m0(ν)

m
V

ν
⊞(t)r (m) =

bm − r(b − a)m0(ν)

m
rVν(m/r)

+ (1/r − 1)(bm − r(b − a)m0(ν))(m(1 − b) + r(b − a)m0(ν)),

which is nothing but relation (27).
Furthermore, Vν(.) and V

ν
⊞(t)r(.) exists. Combining (27) with (12), we obtain (28).

For a = b = t > 0, the ⊞(t)-convolution is reduced to the t -convolution. We have the
following corollary.

Corollary 1. Let ν ∈ Mc be non-degenerate. Then, for r > 0, so that ν t r is defined,

(i) ν t r ∈ Mc.

(ii) ∀m close enough to m0(ν
t r) = rm0(ν),

V
ν

t r
(m) = rVν(m/r) + m2((1 − t)/r + t − 1). (32)
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In addition,

V
ν

t r
(m) = rVν(m/r) + m(m − rm0(ν))((1 − t)/r + t − 1). (33)

4. Approximations in CSK Families Based on ⊞(t)-Convolution

4.1. Approximation of t-Deformed Free Gaussian CSK Family

As pointed in the introduction and according to [5] the (t = (a, b))-deformed free
Gaussian law is the same as the t-deformed free Gaussian law (or Kesten law), with
b = t. According to [16], (see also [2]), the t-deformed free Gaussian law is provided by
κt = κ̃t + κ̂t with

κ̃t(dy) =
1

2π

√
4t − y2

1 − (1 − t)y2 1[−2
√

t,2
√

t](y)dy

and for t < 1/2,

κ̂t =
1 − 2t
2 − 2t

(
δ −1√

1−t
+ δ 1√

1−t

)
.

Proposition 3. ∀m close enough to m0(κt) = 0,

Vκt(m) = 1 + (t − 1)m2. (34)

Proof. According to [16], (see also [1]), the Kesten distribution κt is related to the Wigner
semi-circular distribution

SC(dy) =
√

4 − y2

2π
1(−2,2)(y)dy,

by κt = U1/t(D√
t(SC)). Note that Dc(ν) is the dilation of measure ν by c ̸= 0. On the other

hand, from [8] (Theorem 3.2), we have VSC(m) = 1 = VSC(m), with m0(SC) = 0.
Recall that the t-transformation of measures Ut(ν) is nothing but the t-th power of

the Boolean additive convolution of ν. From [10] (Theorem 3.2), ∀m in a neighborhood of
m0(κt) = m0(U1/t(D√

t(SC))) = 0, one see that

Vκt(m) =
1
t
VD√

t(SC)(tm) + (t − 1)m2 = 1 + (t − 1)m2.

Next, an approximation is presented for elements of K(κt).

Theorem 3. Let ν ∈ Mc be non degenerate with a mean of 0. Then, there is ε > 0, such that if, for
r > 0, the law of a random variable Yr belonging to K(νr) with νr = D1/r

(
ν⊞(t)r

)
and the mean

of Yr is equal to m/
√

r with |m| < ε, then

√
rYr

r→+∞−−−−→ Q(m,κt) ∈ K(κt) in distribution.

Proof. The law of the random variable Yr is denoted by L(Yr). As L(Yr) ∈ K(νr) with

Vνr (m) = V
ν
⊞(t)r (rm)/r2 = Vν(m)/r + (1/r − 1)(1 − t)m2,

then L(
√

rYr) is in the CSK family with

Vr(m) = rVνr (m/
√

r) = Vν(m/
√

r) + (1/r − 1)(1 − t)m2.

We have
Vr(m)

r→+∞−−−−→ Vν(0) + (t − 1)m2.
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Using [8] (Proposition 4.2), we conclude that there is ε > 0, such that if |m| < ε and the
mean of Yα is equal to m/

√
r, then with Vν(0) = 1, we have

L(
√

rYr)
r→+∞−−−−→ Q(m,κt) ∈ K(κt) in distribution.

For m = 0, we obtained the central limit theorem with respect to ⊞(t)-convolution.

4.2. Approximation of t-Deformed Free Poisson CSK Family

According to [5], the (a, b)-transformed free Poisson law pα with a mean m0(pα) = α > 0
is provided by pα = pC

α + pD
α . The continuous part is

pC
α (dy) =

√
4bα − (y − aα − 1)2

2π f (y)
1[1+aα−2

√
bα,1+aα+2

√
bα](dy),

with f (y) = (b − 1)y2 + (α + aα + 1 − 2bα)y − (a − b)α2. pD
α is 0 except possibly for the

following cases:
Case 1: f (y) has two real roots, y1 and y2. Then,

pD
α (dy) = w1δy1 + w2δy2 ,

where

wi =
1√

(α − aα − 1)2 − 4α(b − 1)
× max

{
0,

α

|yi − (α − aα − 1)| − b|yi − (α − aα − 1)|
}

.

In this case, the parameters should satisfy

(α + 1)2 + aα(aα − 2α + 2)− 4αb > 0,

and two real roots can be provided by

yi =
2bα − α − aα − 1 ±

√
(α + 1)2 + aα(aα − 2α + 2)− 4αb

2(b − 1)
.

Case 2: b = 1 and α ̸= aα + 1 so that f (y) has one real root y3 = α + α
α−aα−1 . Then,

pD
α (dx) = max

(
0, 1 − bα

(α − aα − 1)2

)
δy3 .

The t-deformed free Poisson law appears in the free probability as the limiting law of
repeated ⊞(t)-convolution of measures of the form

µK =
(

1 − α

K

)
δ0 +

α

K
δ1, for K = 1, 2, 3, .... and 0 < α < K.

In other words,

µK ⊞(t) µK...... ⊞(t) µK︸ ︷︷ ︸
K times

K→+∞−−−−→ pα in distribution.

Proposition 4. ∀m close enough to m0(pα) = α,

Vpα(m) = m − (m − α)(m(1 − b) + (b − a)α). (35)

Proof. According to [5], we have

R(t)
pα (w) =

α

1 − w
. (36)
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Combining (36) with (26), ∀m close enough to m0(pα) = α, we obtain

α

1 −
(

bm−(b−a)m0(pα)
VŨt(pα)

(bm−(b−a)m0(pα))

) = m.

That is,

VŨt(pα)
(bm − (b − a)α) =

m(bm − (b − a)α)
m − α

. (37)

One see from (17) and (37) that

Vpα(m) =
m

m − α
[m − (m − α)(m(1 − b) + (b − a)α)]. (38)

Combining (12) with (38), the expression of Vpα(.) is provided by (35).

Now, an approximation is presented for members of K(pα).

Theorem 4. For K = 1, 2, 3, . . . and 0 < α < K, let

µK =
(

1 − α

K

)
δ0 +

α

K
δ1.

Then, ∀m in a neighborhood of α

Q(
m,µ

⊞(t)K

K

) K→+∞−−−−→ Q(m,pα), in distribution,

Proof. We know from [11] (p. 878) that ∀x in a small neighborhood of m0(µK) = α/K,

VµK (x) = x(1 − x). (39)

We have m0

(
µ
⊞(t)K
K

)
= α = m0(pα). Then, ε > 0 exists, so that

(
m−
(

µ
⊞(t)K
K

)
, m+

(
µ
⊞(t)K
K

))
∩ (m−(pα), m+(pα)) = (α − ε, α + ε).

∀m ∈ (α − ε, α + ε) ∫
yQ(

m,µ
⊞(t)K

K

)(dy) = m =
∫

yQ(m,pα)(dy).

Using (28) and (39), ∀m ∈ (λ − ε, λ + ε), we obtain

V
µ
⊞(t)K

K

(m) = KVµK

(m
K

)
+ (1/K − 1)(m − Km0(µK))(m(1 − b) + Km0(µK)(b − a))

= m
(

1 − m
K

)
+ (1/K − 1)(m − α)(m(1 − b) + (b − a)α).

K→+∞−−−−→ m − (m − α)(m(1 − b) + (b − a)α) = Vpα(m).
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By using [8] (Proposition 4.2) applied to Q(
m,µ

⊞(t)K

K

), we obtain

Q(
m,µ

⊞(t)K

K

) K→+∞−−−−→ Q(m,pα) in the distribution, ∀ m ∈ (α − ε, α + ε).

For m = α, we recover the Poisson limit theorem with respect to ⊞(t)-convolution, i.e.,

µ
⊞(t)K
K

K→+∞−−−−→ pα, in distribution.

5. A Limit Theorem Related to ⊞(t)-Convolution

M+ will denote the set of probability measures on R+. Let ρ ∈ M+, (ρ ̸= δ0). The
S-transform is introduced by

Rρ(ξSρ(ξ)) =
1

Sρ(ξ)
∀ ξ in a neighborhood of 0.

Multiplication of S-transforms remains an S-transform. For ρ1, ρ2 ∈ M+, the mul-
tiplicative free convolution ρ1 ⊠ ρ2 is defined by Sρ1⊠ρ2(ξ) = Sρ1(ξ)Sρ2(ξ). Powers of
multiplicative free convolution ρ⊠p are well defined, (at least) ∀p ≥ 1, by Sρ⊠p(ξ) = Sρ(ξ)p,
see [17] (Theorem 2.17) for more details.

Next, involving the free multiplicative convolution, a limit theorem is provided for
the ⊞(t)-convolution. M+

c will denote the set of compactly supported measures on R+.

Theorem 5. Let ν ∈ M+
c be non degenerate. Denoting γ = Var(ν)

(m0(ν))2 = Vν(m0)

m2
0

, then

D1/(qmq
0)

(
ν⊠q
)⊞(t)q q→+∞−−−−→ τγ in distribution,

with

Vτγ(m) =
γm(m − 1)

ln(m)
+ (m − 1)((b − 1)m + (a − b)) (40)

∀m in a small neighborhood of m0(τγ) = 1.

Proof. Using [12] (Theorem 2.4 (i)) and Theorem 2(ii) , we obtain

m0

(
D1/(qm0(ν)

q)

(
ν⊠q
)⊞(t)q

)
=

m0

((
ν⊠q)⊞(t)q

)
(qm0(ν)q)

=
(qm0(ν

⊠q))

(qm0(ν)q)
= 1.

Combining [12] (Theorem 2.4 (ii)) and (28), ∀m close enough to 1, we obtain
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V
D

1/(qmq
0)
(ν⊠q)

⊞(t)q(m) =
1

q2m2q
0

V
(ν⊠q)

⊞(t)q

(
qmmq

0

)
=

1

q2m2q
0

{
qVν⊠q

(
mmq

0

)
+ (1/q − 1)(qmmq

0 − qm0(ν
⊠q))

(
qmmq

0(1 − b) + q(b − a)m0(ν
⊠q)
)}

=
1

qm2q
0

Vν⊠q(mmq
0) + (1/q − 1)(m − 1)(m(1 − b) + b − a)

=
(mmq

0 − mq
0)m

1−1/qmq−1
0 Vν

(
m1/qm0

)
qm2q

0 [(mmq
0)

1/q − m0]

+ (1/q − 1)(m − 1)(m(1 − b) + b − a).

=
(m − 1)m1−1/q

m2
0

m1/q−1
1/q

Vν

(
m1/qm0

)
+ (1/q − 1)(m − 1)(m(1 − b) + b − a).

q→+∞−−−−→ m(m − 1)
m2

0 ln(m)
Vν(m0) + (m − 1)((b − 1)m + (a − b)).

Recall [8] (Proposition 4.2), the previous calculations implies that

D1/(qmq
0)

(
ν⊠q
)⊞(t)q q→+∞−−−−→ τγ in distribution,

with

Vτγ(m) =
m(m − 1)
m2

0 ln(m)
Vν(m0) + (m − 1)((b − 1)m + (a − b)) =

γm(m − 1)
ln(m)

+ (m − 1)((b − 1)m + (a − b)),

and m0(τγ) = m0

(
D1/(qm0(ν)

q)

(
ν⊠q)⊞(t)q

)
= 1.

Remark 2. The free cumulants rn = rn(τγ), n = 1, 2, ..., of the measure τγ can be obtained
from the expression of the variance function provided by (40) and [8] (formula (3.12)). That is
r1(τγ) = m0(τγ) = 1 and for all n ≥ 1

rn+1(τγ) =
1
n!

dn−1

dmn−1

(
Vτγ(m)

)n
∣∣∣∣
m=1

.

One can see that the variance of the measure τγ is r2(τγ) = γ. Furthermore, after some calculations
we obtain r3(τγ) = γ( 3

2 γ + a − 1) and r4(τγ) = γ( 8
3 γ2 + (b + 3a − 4)γ + (a − 1)2).

6. Conclusions

The notion of ⊞(t)-convolution, is defined in [5] as a generalization of the original
t-transformation of free convolution introduced in [1,2]. The central limit theorem with
respect to ⊞(t)-convolution is provided and the t-deformed free Poisson measure is calcu-
lated in [5]. Further results related to ⊞(t)-convolution are presented in [5]. The goal of this
article is to study of the notion of ⊞(t)-convolution from the perspective of CSK families,
which has been recently introduced in [8,9]. A fundamental concept for CSK families is
given by the variance function. An expression is provided for the variance function under
⊞(t)-convolution power. This expression is used to approximate elements of the t-deformed
free Gaussian CSK family and elements of the t-deformed free Poisson CSK family. Further-
more, involving the free multiplicative convolution, a new limit theorem is proven with
respect to ⊞(t)-convolution.
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