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Abstract: This article deals with the presentation of an alternative approach that uses methods of
geometric mechanics, which allow one to see into the geometrical structure of the equations and can
be useful not only for modeling but also during the design of symmetrical locomotion systems and
their control and motion planning. These methods are based on extracting the symmetries of Lie
groups from the locomotion system in order to simplify the resulting equations. In the second section,
the special two-dimensional Euclidean group SE(2) and its splitting into right and left actions are
derived. The physical interpretation of the local group and spatial velocities is investigated, and by
virtue of the fact that both of these velocities represent the same velocity from a physical point of
view, the dependence between them can be found by means of the adjoint action. The third section
is devoted to the modeling and analysis of the planar locomotion of the symmetrical serpentine
robot; the positions and local group velocities of its links are derived, the vector fields for the local
connections are given, and the trajectories of the individual variables in the lateral movement of the
kinematic snake are shown. At the end of the article, the overall benefits of the scientific study are
summarized, as is the comparison of the results from the simulation phase, while the most significant
novelty compared to alternative publications in the field can be considered the realization of this
study with a description of the relevant methodology at a detailed level; that is, the locomotion
results confirm the suitability of the use of geometric mechanics for these symmetrical locomotion
systems with nonholonomic constraints.

Keywords: bio-inspired robotics; geometric mechanics; symmetric mechanical system; robotic locomotion

1. Introduction

Modeling biologically inspired symmetric mechanisms in mobile robotics is relatively
problematic. The reason is the complexity of such mechanisms and the overall complexity
of systems at multiple levels. Primary modeling of symmetric locomotion systems, where
the movement or structural solution is characterized by symmetry, brings new challenges,
such as the reduction of the overall dimension of the mechanism, generation of optimal
gait functions, analysis of stability due to external perturbations, and identification of
parameters representing appropriate biological patterns and is partly related to the overall
biorealism of a complex solution. In the future, however, there will be important challenges
regarding the overall energy efficiency or the adaptability of the mechanism to the changing
environment and to the overall conditions affecting locomotion. In the past, several meth-
ods were developed for the description of mechanical systems, but the overall complexity
of the mechanical system prevented the simple use of conventional methods. Currently,
quite a lot of interest is devoted to the applications of geometric mechanics in robotics,
while it has a high ability to describe a given mechanical system in a more elegant way,
taking into account its geometric parameters, which can show a symmetrical character.
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If we look in more detail at the concept of symmetry in combination with a mechanical
solution, we can define the concept of a symmetrical mechanical system. This type of
system is characterized by its geometry and design. This means that the overall mechanical
system acquires a symmetrical character, which means that it is structurally symmetrical.
At the same time, a part of this system is the symmetrical structure of the subsystem layout,
which is mechanically balanced at the level of force action and overall structural stress.

Geometric mechanics has been used in scientific practice for decades. Its origin dates
back to the sixties and seventies, when Vladimir Arnold (1966) [1], Stephen Smale (1970) [2],
and Jean-Marie Souriau (1970) [3], laid the foundations of this discipline. Currently, geomet-
ric mechanics is used in a wide range of scientific fields, such as computer graphics, control
theory, magnetohydrodynamics, and nonlinear stability. It is also used in the design of
mechanisms for environments with active flow, such as aircraft systems, submarines, and
the like. The motivation for its use in locomotion systems was probably due to the good
results it achieved in solving the problems of positioning satellite systems in orbit, a falling
cat, parking a car, and others. With a more detailed focus on robotic locomotion systems,
we can encounter the application of geometric mechanics in several scientific works. For
example, during the 1990s, in the work titled “Symmetry, Stability, Geometric Phases, and Me-
chanical Integrators—Part I” Marsden et al. (1991) [4], the authors presented the development
of modern methods of mathematical analysis and their use for describing dynamics and
overall progress in mechanics. In the work titled “Geometric Phases and Robotic Locomotion”,
Kelly and Murray (1995) [5] deal with specific robotic applications, where they describe the
mechanisms of a two-wheeled robot, an inchworm robot, a serpentine robot with sidewind-
ing motion, and a six-legged robot with a tripod gait application. In the mentioned work,
the authors developed and applied the theory of principal fiber bundles and the theory
of connections. Geometric mechanics itself could be defined in several ways, but for our
application, the most suitable definition is that geometric mechanics is a field of mechanics
that deals with the study of the movement and iteration of bodies based on geometric
and, at the same time, algebraic methods, with the aim of overall analysis of locomotion
trajectories and identification of configuration parameters within defined spaces while
using the language of differential geometry for formal description.

A more detailed view of the theory of geometric mechanics can also be obtained
from the older works of Chaplygin (1897), Cartan (1928), Kobayashi and Nomizu (1963),
Neimark and Fufaev (1972), Rosenberg (1977), Weber (1986), Bloch and Crouch (1992), Yang,
Krishnaprasad, and Dayawansa (1993), and others. The work titled “Nonholonomic Mechani-
cal Systems with Symmetry” by Bloch, Marsden, Krishnaprasad, and Murray (1995) [6] is
considered another important work in the field. In this work, the authors deal with the
development of the dynamics of mechanical systems with non-holonomic constraints, tak-
ing into account the geometric principle. This work is considered one of the basic sources
for the study of the given issue. As an example, it shows the suitability of using the given
approach In robotic locomotion for the entire class of possible solutions, such as legged
robots, snake-like robots, and wheeled mobile robots. Within movement modeling, the
theory of connection on a principal bundle is applied. An important part is the geometric
phase, which generates a specific form of robot movement. Another application can be
seen in the work titled “Nonholonomic Mechanics and Locomotion: The Snakeboard Example”
by Ostrowski et al. (1994) [7]. The writers of this work concentrate on the design and
description of the snake board-type mechanism for a better understanding of the undu-
lating locomotion of snakes. Snake board has no biological counterpart and is an artificial
imitation of the desired mechanism performing a snake-like symmetrical movement.

Important works at the beginning of the millennium include the work titled “Nonholo-
nomic mechanics” by Bloch (2003) [8], which discusses nonholonomic mechanical systems
and their control, and the work titled “Optimal Gait Selection for Nonholonomic Locomotion
Systems” by Ostrowski et al. (2000) [9]. This work concentrates on the optimum control
and selection of gaits in a category of nonholonomic locomotion systems that demonstrate
group symmetry. Other works include, for example, A Framework for Steering Dynamic
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Robotic Locomotion Systems by McIsaac and Ostrowski (2003) [10], where the authors address
the challenge of controlling robot motion in various dynamic environments, such as uneven
terrain, obstacles, or unstable conditions, and modeling, analyzing, and controlling motion
in various situations. They also present successful experimental results. The next work,
titled “A method for determination of optimal gaits with application to a snake-like serial-link
structure” by Hicks and Ito (2005) [11] introduces a strategy for identifying the most effi-
cient gaits for serpentine robotic systems. The authors use optimization and simulation
algorithms to identify the best walking parameters and confirm the success of the proposed
method through simulation results. In the work titled “Geometric motion planning analysis for
two classes of underactuated mechanical systems” by Shammas, Choset, and Rizzi (2007) [12],
the authors develop gaits for two different types of underactuated mechanical systems:
primarily kinematic and purely mechanical systems. They define inputs as gaits, which
are a series of regulated shape changes in a multi-bodied mechanical system. A similarly
important work is the article called Geometric motion planning: The local connection, Stokes’
theorem, and the importance of coordinate choice by Hatton and Choset (2011) [13], where the
authors introduce two tools for understanding the fundamental principles of movement:
connection vector fields and connection height functions. Connection vector fields de-
pict the geometric link between internal shape changes and the resulting body velocities
of a system.

The last decade in the field of application of geometric mechanics in the description of
biologically inspired locomotion systems was also rich in interesting works and solutions.
For example, the work titled “Locomotive reduction for snake robots” by Xiao et al. (2015) [14]
introduces locomotive reduction, a simplifying approach that simplifies the control of
a redundant snake robot to that of maneuvering a differential-drive vehicle. The next
work titled “Geometric motion planning for systems with toroidal and cylindrical shape spaces”
by Gong et al. (2018) [15] focuses on understanding the topology of the form space and
develops geometric tools for systems with toroidal and cylindrical shape spaces. In the work
titled “A hierarchical geometric framework to design locomotive gaits for highly articulated robots”
by Chong et al. (2019) [16], the authors implement a hierarchic framework that decomposes
a high-dimensional system into subsystems; they primarily focus on the movement of
mechanical systems in two dimensions, in pairs, to achieve the desired movement of
the robot. Similarly, in the work titled “Geometric phase predicts locomotion performance in
undulating living systems across scales” by Rieser et al. (2019) [17], the authors focus on the
geometric framework and the overall simplification of the calculations of the movement of
biologically inspired robotic systems without limbs in different scales. The authors conclude
that undulating locomotion in a damp environment can be applied to small organisms in
viscous substances and animals navigating in viscous liquids like sand. It is therefore easy
to describe the dynamics of these systems through sinusoidal modes. In the article titled
“Guided Motion Planning for Snake-like Robots Based on Geometry Mechanics and HJB Equation”
by Guo et al. (2018) [18], a method is proposed, through which the movement planning of a
snake-like robot is realized, which is based on the re-composition of the multi-dimensional
configuration space into low-dimensional fiber bundle topological space and gait space.
The work thus derives a kinematic connection that maps the movement very well. In the
work titled “Moving sidewinding forward: optimizing contact patterns for limbless robots via
geometric mechanics” by Chong et al. (2021) [19], the authors deal with contact planning and
the subsequent design of a framework for the design and optimization of contact patterns
for generating efficient locomotion in the desired directions. The work is based on previous
works in the field of geometric mechanics and introduces the optimization of the function
that connects the contact state space and the position space. Another important work is
“Coordinating tiny limbs and long bodies: Geometric mechanics of lizard terrestrial swimming” by
Chong et al. (2022) [20], where the authors use the theory of geometric mechanics and its
possibilities to explain observations in biological experiments. In this work, it was found
that movement using body undulation with an advancing wave refers to the situation
when this wave is generated by the whole body and not from the limbs (in the case of a
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static wave), and therefore, lizards living in the soil move in the “terrestrial swimming”
manner defined by the authors. The interaction between the body and the environment
during movement plays a crucial role.

Within our service robotics and mechatronics laboratory, geometric modeling tech-
niques are used. Since 2014, our team has been evaluating and researching the geometric
mechanics-based locomotion principles of biologically inspired robotic systems. As shown
by several publications on the subject, we concentrate on locomotion based on body shape
changes utilizing gradual cyclic waves as well as locomotion of articulated systems where
a change in the limb position is applied in accordance with a predetermined movement
function [21–23].

The suitability of the use of a geometric framework thus consists of its application in
solving the problems of mobile robotics, in which the solution of mechanical problems is left
to classical mechanics. It is especially suitable for use in locomotion situations with cyclic
symmetric movement functions. In the following section, we will introduce basic concepts
from the field of geometric mechanics that must be understood for the correct interpretation
of mathematical notation. In geometric mechanics, there are many mathematical terms that
represent, in most cases, abstract forms. The part itself is the description of appropriate
basic forms using a special mathematical formalism. It expresses their mutual relations and
subsequently, more complex constructions.

The geometric mechanics method allows one to see into the geometric structure of the
equations and is used in the design, modeling, and control of motion planning. It can be
used on a variety of locomotion systems, whether they are wheeled robots, legged robots,
or underwater robots. It provides a deeper insight into the overall behavior of the system.
Advances in the use of geometric mechanics have enabled more realistic models to be
created, simulated, and then analyzed in a realistic environment.

Therefore, the aim of this study is to create a conceptual summary of the method of
solving mobile non-holonomic symmetric robotic mechanisms, such as a snake-like robot,
and to verify the suitability of using geometric mechanics.

2. Materials and Methods

The configuration of a symmetrical mechanical system is a set of variables q1, q2,
. . ., qn that uniquely specify the position of any point on the mechanical system in two-
dimensional or three-dimensional Euclidean space. These variables are called configuration
variables or generalized variables and are characterized by the fact that they uniquely
define the configuration of the mechanical system, while their n is equal to the number
of degrees of freedom of the mechanical system. In a simplified way, we can write that
the configuration space defines a set of possible arrangements of configurations q in the
previously unbounded space known to us. In this way, we can uniquely define every single
point in the configuration space that is related to the described mechanical system during
its movement. The specific definition also refers to the number of degrees of freedom as
they allow us to achieve a specific type of movement, such as translational, rotational,
and bending. We denote the configuration space by Q. Its dimension is similar to the
number of degrees of freedom of the mechanical system. The dimension, also known as the
system dimension, represents the possibilities of movement in mechanical systems and is
analogous to the dimensions in Euclidean space. We can also use generalized coordinates
within this analogy.

In geometric mechanics, the configuration space of mechanical systems is also called a
manifold and is geometrically most often represented by a curve, a circle, or a spherical
surface. In order to have a better idea when dealing with the term manifold later, we will
rigorously define it in the following subsection.

2.1. Definition of Manifold

The idea of manifold is one of the most fundamental concepts in modern mathematics,
cropping up in almost all aspects of mathematics (especially geometry and topology), many
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parts of physics, and even some parts of engineering. Basically, manifolds are just a way to
extend the idea of “surface” to more than three dimensions. Any curve that can be drawn
by hand is a one-dimensional manifold, a surface such as a sphere, disc, or torus is a two-
dimensional manifold, and the entire 3D space is an example of a three-dimensional manifold.

Variable P, put simply, the manifold Q of dimension n, is a set of points that is locally
similar to the Euclidean space Rn, that is, it is a continuous space that is locally Cartesian,
and it is possible to perform differentiation on it. A manifold is therefore not a set of rational
numbers. However, the rigorous definition of manifold says that the manifoldQ is a set for
which every point P lies in some open set U , which is continuously uniquely mapped onto
an open subset Rn. The symbolic notation of this expression is as follows:

∀P ∈ Q∃U ⊂ Q such that P ∈ U , (1)

and, ∃ continuously ϕ : U → Rn such that U ←→ ϕ(U ) is uniquely, (2)

Within this manifold definition, ϕ is a coordinate representation, (U , ϕ) is a map, and
n is the manifold’s dimension. However, the mentioned representation ϕ introduces a local
coordinate system on the set U , which is the inverse image ϕ−1 of the Cartesian system
Rn or:

ϕ(P ∈ U ) ≡
(

x1, . . . , xn
)
∈ Rn, (3)

The entire manifold represents a complete set, usable for the given purpose of the
application; for this reason, the entire manifold is covered by an atlas or a set of maps.
However, local map overlays are required to be smooth enough, as shown in Figure 1.
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The manifold is graphically illustrated on the example of a terrestrial globe, where the
surface of the globe is an example of a simple manifold. From a geometric point of view,
it is a sphere, i.e., a two-dimensional curved continuous surface, on which we can locally
introduce specific maps of coordinates for individual regions. Together, the maps form
an atlas that covers the entire surface of the globe. The advantage is that trajectories, as
well as speeds and accelerations, can be studied on local maps. This means that derivative
and integration operations can be performed locally. A manifold is therefore a space that
looks like a piece of n-dimensional Cartesian space around each point. One piece of such
an n-dimensional space around the selected point is called a map or local coordinates.

Each point x on this map clearly corresponds to n real numbers, i.e., its coordinates.
Thanks to this, differential and integral calculus can be meaningfully developed on it. A
manifold is a natural generalization of Rn. Locally, it is the same as Rn, but globally, it need
not be. An n-dimensional manifold can be understood as being glued together from several
pieces of Rn, i.e., maps that make up an atlas. Mechanical systems, with the exception of
pathological cases, “live” on manifolds.
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2.2. Fundamental Configuration Blocks and Operations within the Configuration Space

The first fundamental configuration blocks that are applicable within the design
description include a straight line and a curve. In their cases, the configuration space has
one dimension. Mechanically, a straight line can be expressed using a prismatic joint, and
in the case of a curve, it is possible to use a tracking ball whose movement along the curve
is limited. The symbolic notation R1 makes it possible to designate such one-dimensional
systems whose elements are real numbers. The second fundamental configuration block
belongs to the circle denoted by the symbolic notation S1. In terms of application, it is
represented by a cyclic movement. The set is represented by a spherical surface with one
dimension. Structurally, such a block can be expressed by a wheel, a joint, or a closed loop.
In these applications, a rotating circular space occurs, which is repeated cyclically. The main
feature for identifying the configuration block labeled S1 is the space’s cyclicity, Figure 2.
This means that this type of block can also include a system that does not physically have a
circular shape but only has a cyclical course. For this reason, this category does not include
mechanical joint systems that cannot fully rotate cyclically, i.e., their ability to rotate is
only partial.
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Figure 2. A physical representation of the configuration space of a type R1 (a) and S1 (b).

Another configuration block can be created by combining a straight line and a circular
configuration block. This gives us an extended configuration block that enables the use of
configuration spaces for much more complex mechanical systems. The simplest of these
systems is the configuration block R2 represented by a plane. This configuration block
was created by applying the Cartesian product R2 = R1×R1 of two configuration blocks
represented by lines. In reality, it can be a surface on which a mobile robot moves or a
connection with a pair of prismatic joints. Similarly, as in the previous case, by applying
the Cartesian product to two configuration blocks R1 × S1, which are represented by a line
and a circle, we obtain a configuration block geometrically corresponding to the shape of a
cylinder. Mechanically, such a block is represented by a combination of a prismatic and a
rotary joint. By combining two configuration blocks in the shape of a circle, one obtains an
extended configuration block T2 = S1 × S1, geometrically represented by a torus. In the
mechanical application, it is a pair of rotary cyclic joints, as shown in Figure 3.
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2.3. Lie Groups

In general, groups are important algebraic systems within mathematics. Formally,
they have a good application, for example, in the description of symmetries. The group
(G,△) can be rigorously defined as an algebraic system with a binary operation △ on
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the set A, where ∃e ∈ G is a neutral element of this binary operation. The associativity
condition must also be fulfilled for the binary operation△:

(∀x, y, z ∈ A)((x△ y)△ z = x△ (y△ z)), (4)

Furthermore, it must be true that for every element x ∈ G, there is an inverse element
with respect to the operation△. If the binary operation△ on the given group is additionally
commutative,

(∀x, y ∈ A)((x△ y) = (y△ x)), (5)

we call such a group an Abelian group.
However, if we operate on the set R using the binary operations of addition, mul-

tiplication, or composition of functions, the notation of such algebraic systems has the
following form: (R,+) for addition, (R, ·) for multiplication, and

(
RR, ◦

)
for the composi-

tion of functions. Within algebraic systems, it is also possible to perform the so-called null
operations. To clarify, for example, addition and multiplication are binary operations, and
the numbers 0 and 1 are null operations on the setR, where 0 is the additive identity, while
1 is the multiplicative identity. Analogously, we can write that we have a set G, which we
call a group if a group operation is defined as one that assigns exactly one element to each
ordered pair of G. It therefore applies to group G:

x, y ∈ G, x ◦ y = z ∈ G, (6)

For an algebraic system to be a group, the following conditions must be fulfilled:

• Associativity for the binary operation ◦

(∀x, y, z ∈ G)((x ◦ y) ◦ z = x ◦ (y ◦ z)), (7)

• The existence of a neutral (unit) element e ∈ G for the operation ◦ if and only if:

(∀x ∈ G)((x ◦ e) = (e ◦ x) = x), (8)

• The existence of an inverse element x−1 ∈ G for every x ∈ G:(
x ◦ x−1

)
=
(

x−1 ◦ x
)
= e. (9)

In our case, we are mainly interested in algebraic systems from the point of view of
geometry. For this specific view, there is a special class of groups called Lie groups. These
are objects in which two different aspects, algebraic and geometric, coexist at the same time.
In the main sense, they are groups, but they are also smooth varieties at the same time.
If the group elements were not formed by a discrete set but by a continuum, it would be
possible to introduce points, i.e., their coordinates in the geometric sense of the word. In
calculations, there are often situations where we need to perform algebraic operations such
as addition and multiplication within a certain configuration space while operating on a
set of real numbers. We conduct these operations to determine the absolute configuration
of a component positioned relative to a separate component or to identify the relative
configuration of two separate components positioned based on an absolute expression. For
example, a Lie group with an additive binary operation on a configuration block of one
dimension, namely a line, has a symbolic notation of the form

(
R1,+

)
. Another example is

the special orthogonal group SO(n), which is a rotation group in an n-dimensional space.
If the space has two dimensions, the rotation is defined by matrix formal notation:

R ∈ SO(2) =
[

cos θ −sin θ
sin θ cos θ

]
, (10)
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θ represents the rotation angle in matrix notation. This matrix is cyclic, smooth, and
unique with respect to the rotation angle; so, it naturally corresponds to the definition of
the manifold S1.

2.4. Special Euclidean Group SE(2)
The SE(2) group encompasses the operations of rotation and translation within its

structure. The movements can be categorized as “clean,” showing no signs of irregularity.
Part of the Euclidean group SE(2) is the orthogonal group SO(2), which represents a
rotation in the planar-plane within the entire algebraic-structure. The resulting shape can
be expressed as a semi-direct product of the orthogonal two-dimensional group and the
planar configuration space SO(2)⋊R2, showcasing the interaction between rotational
and translational components of the mechanism. For planar systems, the elements of the
Euclidean group SE(2) have four possible interpretations:

• The first interpretation refers to the position of the rigid body and its orientation at the
same time.

• The second interpretation refers to the position of the coordinate frame.
• The third interpretation concerns the movement actions of both the rigid body and the

coordinate frame.
• The fourth interpretation refers to the action of identifying a point in another coordi-

nate system relative to the coordinate frame.

It is necessary to state that the first two interpretations are closely related to each
other as the position and orientation of rigid bodies are essentially identified by local
coordinate systems aligned with the longitudinal and transverse axes of individual links.
So, for both of these interpretations, we can say that the group SE(2) describes all possible
configurations of the body in 2-dimensional space. The third and fourth interpretations of
the SE(2) group are not only related to space, but also to the Lie group, which creates a
certain configuration with each specific action. The geometric meaning of these operations
is in the form of rotation and displacement using a homogeneous matrix, where

[
x y

]T is
the displacement vector and the orthogonal group SO(2) is the submatrix consisting of
the first and second rows and first and second columns. The aforementioned actions are
divided into right actions and left actions. We denote the left action as Lhg = h ◦ g and the
right action as Rhg = g ◦ h, where the element h acts on the element g. Since the group
SE(2) is not commutative like, for example, Abelian groups, the right and left group actions
are also not equivalent. Expressing the action in matrix form, where h, g ∈ SE(2) is the
following for the elements h (represents the initial configuration of the body with respect to
the origin of the coordinate system) and g (represents the transformation):

g(x, y, θ) =

cos θ −sin θ x
sin θ cos θ y

0 0 1

, h(u, v, β) =

cos θβ −sin θβ u
sin θβ cos θβ v

0 0 1

, (11)

The realization of the left action is the multiplication of the given matrices in the
specified order (the left action of the group element h to the group element g).

hg =

cos θβ −sin θβ u
sin θβ cos θβ v

0 0 1

cos θ −sin θ x
sin θ cos θ y

0 0 1

, (12)

hg =

cos θ(θ + β) −sin θ(θ + β) xcos θβ− ysin θβ + u
sin θ(θ + β) cos θ(θ + β) xsin θβ + ycos θβ + v

0 0 1

, (13)
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This resulting left action matrix represents the new rigid body position configuration.
The notation of this new position takes the form of a line vector, as shown in Figure 4a.[

xcos θβ− ysin θβ + u, xsin θβ + ycos θβ + v, (θ + β)
]
, (14)
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The realization of the right action of group element h on element g is as follows:

gh =

cos θ −sin θ x
sin θ cos θ y

0 0 1

cos θβ −sin θβ u
sin θβ cos θβ v

0 0 1

, (15)

gh =

cos θ(θ + β) −sin θ(θ + β) x + ucos θ − vsin θ
sin θ(θ + β) cos θ(θ + β) y + usin θ + vcos θ

0 0 1

, (16)

This resulting right action matrix represents the new rigid body position configuration.
The notation of this new position takes the form of a line vector:[

x + ucos θ − vsin θ, y + usin θ + vcos θ, (θ + β)
]
, (17)

By using the right action, we have thus achieved the placement of the body’s local
coordinate system in a new position represented by the position vector. The graphic
interpretation of the action is shown in Figure 4b. For the points p of the rigid body, which
are characterized by the coordinates

[
pb

x pb
y

]
against the moving coordinate system and

if the configuration of the rigid body is g, a special calculation of the action on the group
SE(2) is provided in the following form: ∅

px
py

0 0 1

 =

cos θ −sin θ x
sin θ cos θ y

0 0 1

 ∅
pb

x
pb

y
0 0 1

, (18)

px
py
1

 =

cos θ −sin θ x
sin θ cos θ y

0 0 1

pb
x

pb
y

1

, (19)

It is clear from the matrix (19) that only the positions of the points, but not the orienta-
tion, are not considered. This process of mapping from g to global system coordinates is
known as direct kinematics.

Using the Euclidean group SE(2) to make a mathematical model of a certain mecha-
nism is helpful because it takes into account how the rigid bodies in the mechanism are



Symmetry 2024, 16, 376 10 of 33

positioned in relation to each other using the group’s action. For example, the individual
displacements in the group

(
R2 × S1) have a reference to the global coordinate framework

regarding the SE(2) group, and the displacements have a reference to the initial coordinate
framework. If h = g−1, then the result of the right and left actions of the group is the unit
element of the group SE(2), i.e., the beginning of the SE(2) group configuration space.

g ◦ g−1 =

cos θ −sin θ x1
sin θ cos θ y1

0 0 1

 ◦
 cos θ sin θ −x1cos θ − y1sin θ
− sinθ cos θ x1sin θ − y1cos θ

0 0 1

, (20)

g ◦ g−1 =

1 0 0
0 1 0
0 0 1

, (21)

2.5. Function, Curve, and Vectors on the Manifold

For further work with the manifold structure, we will define basic concepts such
as functions, curves, and vectors on the manifold, which will help better understand
the interrelationships between the formal description and the physical interpretation on
a rigid body. For the function f on the manifold Q, it is true that the representation
f : Q −→ R is also a situation where each point P ∈ Q is assigned a real number f (P). In

the local coordinates of the map (U , ϕ), the function f can be represented by its coordinate
definition f

(
ϕ−1) = f

(
x1, x2, . . . , xn). Working with functions on the manifold is intuitive

as physical interpretation is relatively frequent. To define the curve γ(t) on the manifold Q,
it is necessary to emphasize that it is a differentiable representation γ : R −→ Q . So, the
parametric curve γ(t) is a smooth representation of Ω −→ Q , where Ω ⊂ R is an open
interval. In the local map (U , ϕ), the surroundings of the point P ∈ Q is parameterized
by the coordinates

(
x1, x2, . . . , xn); so, the curve γ(t) is locally defined by the functions(

x1(t), x2(t), . . . , xn(t)
)
. For our practical implementation, the curve on the manifold

represents the possible trajectory of the center of gravity movement, joint coordinates, joint
rotation, and a number of other interpretations. Another important concept is defining a
vector on a manifold. The vector v at the point P located on the manifold Q is given by the
tangent to the curve γ(t) located on the manifold Q, while the curve passes through the
point P. It is characteristic of the vector v that has a direction determined by the curve γ(t)
and a magnitude corresponding to the magnitude of the change γ(t) at time t. If several
different curves with different parametrization pass through the point P, then the set of all
vectors determined by these curves is called the tangential space TPQ. For the vectors v,
it is true that they lie in the tangential space TPQ, which is a linear space and not on the
manifoldQ. The application of these vectors is, for example, in the description of kinematic
quantities of speed. Dealing with the speeds of the mechanical system is an essential part
of the overall analysis of the behavior of the mechanism. The configuration of the body
thus changes not only on the basis of the position coordinate q, but also on the basis of the
velocity coordinate

.
q.

2.6. Velocities of the Mechanical Systems and Tangent Spaces

When focusing on the analysis of a symmetric mechanical system, it is important
to focus not only on the current position coordinates q but also on their first derivatives
representing the velocity coordinates

.
q. Their change simultaneously changes the overall

configuration of the investigated mechanism, which actually defines its current state.
After choosing a suitable configuration space for the mechanical system, the next step in
modeling its behavior is determining the velocities, i.e., the speed and direction in which the
mechanical system moves. In general, velocities can be interpreted geometrically as tangent
vectors to the configuration of the system, corresponding to infinitesimal changes in the
configuration over time. With regard to geometric mechanics, velocity vectors are elements
of tangential space, which can be imagined as a tangent plane to a specific manifold. If we
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focus on the concept of space, we will find that it is closely connected to the definition of its
dimension; that is, it depends on the dimension of the manifold. The difference is that if we
consider the manifold S1, then, the geometric representation of such a configuration space
is in the shape of a circle. In this case, the velocity vector on this manifold is geometrically
represented by a tangent to the circle. The tangent space thus has one dimension. If we
work with a manifold with a higher number of dimensions, such as the torus T2 = S1 × S1,
then, in this case, the velocity vector is located in the tangential space, which is represented
by the contact plane. The set of all such n-dimensional tangent spaces is a new configuration
space, i.e., a new manifold, which, however, is called a tangent manifold “tangent bundle”
T Q. If we understand the configuration of the coordinate system q as a point on the
manifold Q, then its velocity

.
q is the direction, and the speed with which this point

moves through the manifold is the vector that we can think of as “connected” to the
manifold in the current configuration. The velocity vectors that a mechanical system can
have at a given configuration q are parts of a vector space named the tangent space at
Q in that configuration, TqQ, which generally contains all possible differential changes in
configuration from point q. Tangent spaces on an n-dimensional manifold are Rn vector
spaces and can be conceptualized of as “linearization” of the manifold or vector spaces
that come closest to the manifold at each point. The term “tangent space” reflects the idea
that small changes in configuration are always in the direction contained on the manifold
and are thus “tangent lines” to it. Like manifolds, tangent spaces and the vectors they
contain exist as geometric objects that are independent of any coordinates used to describe
them. However, to perform calculations on these vectors, it is useful to assign a basis to the
tangent space so that each vector is parameterized by a set of real numbers. In the case of
Rn varieties, the velocity calculation is simpler. Rigorously, we can characterize the tangent
bundle T Q as the union of all tangent spaces TPQ at all points P on the manifold Q, that
is, T Q ≡ ⋃

P∈Q
TPQ. Each point on the new manifold T Q represents a specific tangent

vector v ∈ T PQ. For a tangent bundle, there exists a point W ∈ T Q, which determines
the vector v ∈ T PQ and a point P ∈ Q, where the vector v is tangent to the manifold
Q. There is also a representation π : T Q −→ Q , while π(W) = P holds. Furthermore,
for the tangent bundle, the point P ∈ Q has the components of local coordinates in the
form xi and the components of the vector v have the form vi in the basis

{
∂

∂xi

}
. For an

existing point W ∈ T Q, it holds that it has natural components of coordinates in the form(
x1, x2, . . . , xn, v1, v2, . . . , vn), while the representation π is in coordinates defined simply

as π
(

x1, x2, . . . , xn, v1, v2, . . . , vn) = (x1, x2, . . . , xn).
2.7. Lifted Actions with Vectors in the Tangent Manifold

During operations of addition and comparison of velocity vectors in individual tangent
spaces and at the same time, in the tangent manifold, we will introduce a new type of
method, the so-called “lifted actions”. These are directly associated with transformations.
Similar to how the left and right actions apply to the Lie groups for the initial configuration
g, it is analogously true that the lifted actions also have a left and right variant. For example,
on a Lie group, a left action Lh applied to the initial configuration g using a left-lifted
action TgLh will allow a vector from the initial tangent space TgG to be transformed into
equivalent vectors in the final tangent space ThgG.

TgLh : TgG −→ ThgG, (22)

Similarly, for the right-lifted action:

TgRh : TgG −→ TghG, (23)
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Lifted actions can be calculated as differentials corresponding to the respective actions:

TgLh =
∂(Lhg)

∂g
, (24)

TgRh =
∂(Rhg)

∂g
, (25)

∂(Lhg)
∂g

=
∂(Rhg)

∂g
=

∂([h1, h2] + [g1, g2])

∂[g1, g2]
=

 ∂(h1+g1)
∂g1

∂(h1+g1)
∂g2

∂(h2+g2)
∂g1

∂(h2+g2)
∂g2

, (26)

2.8. Velocities of a Rigid Body

In general, velocities can be interpreted geometrically as tangent vectors to the configu-
ration of the system, corresponding to infinitesimal changes in the configuration over time.
The special Euclidean group SE(2) describes the configuration of a rigid body. As already
mentioned, the speed of a mechanical system can be defined by how fast the group’s
operations are performed. Let the inertial coordinate system and the local coordinate
system be given, and let the motion of the rigid body be described by a trajectory on the
SE(2) group, i.e., t→ g(t) = {x(t), y(t), θ(t)}, where t is time. In a group statement, this
can be expressed as:

t→ g(t) =

cos θ − sinθ x(t)
sin θ cos θ y(t)

0 0 1

, (27)

where it is assumed that the curve g(t) is differentiable.
The velocities on Lie groups are defined by the velocity with which the infinitesimal

actions of the group are applied to the configuration. Let the group (body) move by
infinitesimal time δ(t):

gδ = g−1(t)g(t + δt), (28)

Then the group velocity ξ is calculated as the difference between gδ and the unit element
of the group e, which is divided by the time for which the displacement gδ was performed:

ξ = lim
δ t→0

gδ − e
δt

, (29)

If there is a difference between the left and right actions of the group g(t + δt), then
the relation g−1(t)g(t + δt) is the right shift from g(t) to g(t + δt) and then:

ξ = lim
δ t→0

gδ − e
δt

= lim
δ t→0

g−1(t)g(t + δt)− g−1gδ

δt
= (30)

= g−1(t) lim
δ t→0

g(t + δt)− gδ

δt
=g−1(t)

.
g(t) =

→
ξ , (31)

defines the right group velocity
→
ξ .

Substituting the left displacement g(t + δt)g−1(t) into Equation (29) produces the left

group velocity
←
ξ :

ξ = lim
δ t→0

gδ − e
δt

= lim
δ t→0

g(t + δt)g−1(t)− gδg−1(t)
δt

= (32)

= lim
δ t→0

g(t + δt)− gδ

δt
g−1(t) =

.
g(t)g−1

(t) =
←
ξ , (33)

The group velocities
→
ξ and

←
ξ are an element of the tangent space in the unit group e,

which is called the Lie algebra. This vector space is a linearization of a group around its
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unit e in a very similar way as a tangent space is a linearization of a manifold around a
given point. The natural basis can thus be obtained from members of the 1st order of the
Taylor expansion of the group g(t), which means that the group element representing the
infinitesimal displacement is as follows:

gδ = e + ∑i
∂g
∂gi

∣∣∣∣qi
δ, (34)

The generation of the basis for the group velocities thus results from adjusting
Equation (34) after substituting into Equation (29), removing the group unit e and dividing
the remainder by δ(t):

ξ = ∑i
∂g
∂gi

∣∣∣∣
e

(
lim

δ t→0

qi
δ

δt

)
= ∑i

∂g
∂gi , (35)

The resulting matrix ξ in Appendix A represents an element of the Lie algebra. Its
three parameters ξx, ξy, and ξθ describe the group velocity of a planar rigid body in the

SE(2) group unit. Further, the left group velocity
←
ξ will be called the spatial group velocity

and will be denoted by the symbol ξs,
←
ξ = ξs, and the right group velocity

→
ξ will be called

the local group velocity ξb, i.e.,
→
ξ = ξb, and their expression will be the following:

ξs =
.
g(t)g−1(t), (36)

ξb = g−1(t)
.
g(t), (37)

Considering that the movement of a rigid body imitating the movement of a biological
model is studied and is not acted upon by any external forces, the spatial ξs and local
ξb velocities are constant during the movement. This results in two matrix differential
equations: one with spatial and the other with local velocity.

.
g(t) = ξsg(t), (38)

.
g(t) = g(t)ξb, (39)

To obtain the solution of Equation (38), assuming that g(t),
.
g(t), ξ are scalars, we will

proceed with the following relations. We obtain and modify the differential equation of the
first order, where the initial condition is g(0) = g0.

.
g(t) = ξg(t), (40)

g(t) = eξtg0, (41)

Matrix equations also have analogous solutions of Equations (40) and (39):

g(t) = exp(ξst)g(0), (42)

g(t) = g(0)exp
(

ξbt
)

, (43)

The set of all these solutions g(t) to the differential equation
.
g(t) = ξsg(t)

∨ .
g(t) = g(t)ξb

for all possible initial conditions g(0) is called the flow of the vector field. We can interpret
these solutions as a representation that any point g(0) moves along the integral curve g(t)
from the point g(0) to the point exp θ(ξst)g(0)

∨
g(0)expθ

(
ξbt
)

. Formally, we can express

it as Φξ : RxG → G and (t, g) → Φ(exp θ(tξ), g). The trajectories g(t) induced by the
vector field’s flow are called integral curves (i.e., curves that do not leave the unit group e at
time t,0). Only one integral curve starts from the point e, and it is called a one-parameter
subgroup. The manifold of the group SE(2) is thus filled with an infinite system of curves
g(t), while these curves do not intersect anywhere, and the velocity of movement along
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them is determined by the group velocity ξ, which is constant. The integral curve g(t),
which starts from the unit of the group e, is called a one-parameter subgroup of the group
SE(2). Its entire course is fully determined by where and how quickly it leaves the unit of
group e at time t = 0, i.e., by its tangent vector

.
g(t) = ξ in the unit group e. Its solution has

the following form:

g(t) = exp(ξt) = I + ξt +
ξ2

2!
t2 +

ξ3

3!
t3+, (44)

The overall expression in x(t) and y(t) coordinates can be found in Appendix B. The
final form of these equations is as follows:

x(t) = (cos ξθt− 1)
ξy

ξθ
+

ξx

ξθ
sin ξθt, (45)

y(t) = (sin ξθt)
ξy

ξθ
+

ξx

ξθ
(1− cosξθt), (46)

θ(t) = ξθt, (47)

From Equations (45) and (47), it is possible to notice that it is actually a representation
of the group velocities ξx, ξy, and ξθ in the Lie algebra to the configurations (positions) x(t),
y(t), and θ(t) on the Lie group. This representation is called the exponential representation
and is defined as:

exp : se(2)→ SE(2), (48)

ξ → exp(ξ) == eξ , (49)

The image of the element ξ on the one-parameter subgroup g(t) is assigned a point to
which we arrive at time t = 1 if at time t = 0, we start from point e with the initial velocity
ξ and for the entire time we go uniformly in a straight-line geodetics, as shown in Figure 5.
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2.9. Left- and Right-Lifted Actions

It is characteristic of the left-lifted action that it preserves the expression of the velocity
of the rigid body regarding the local coordinate system, the velocity of which is expressed
in two different approaches. One possible way is to describe the velocity of the body in the
plane using a forward, rotational, or lateral component. For the right-lifted action TgRh, in
turn, it is true that it preserves the expression of the spatial velocity and its simplification
of the calculation at fixed points relative to the rigid body.

TgLh =
∂(hg)

∂g
=


∂(xcos β−ysin β+u)

∂x
∂(xcos β−ysin β+u)

∂y
∂(xcos β−ysin β+u)

∂θ

∂(xsin β+ycos β+v)
∂x

∂(xsin β+ycos β+v)
∂y

∂(xsin β+ycos β+v)
∂θ

∂(θ+β)
∂x

∂(θ+β)
∂y

∂(θ+β)
∂θ

, (50)

TgLh =
∂(hg)

∂g
=

cos θβ −sin θβ 0
sin θβ cos θβ 0

0 0 1

, (51)
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The rigid body is moved from the g configuration to the center of the inertial coordinate
system by the left lift action. Velocity vectors on a group are said to be equivalent if their
configuration velocities are equal to the configuration velocity of the group velocity ξb or ξs.
The use of this fact will make it possible to find the relationship between the vectors on
the group and consequently, the lifted action. Let the group velocity ξb and the velocity
vector

.
g be in the configuration g = (x, y, z). Applying the left action h = (u, v, β) to

the configuration g leads to the new configuration Lhg = hg. The velocity vector in this
configuration is denoted as

(
h

.
g
)
. It is necessary to find the relationship (lifted action)

between the velocity vector
(
h

.
g
)

and the velocity vector
.
g. By comparing the group

velocities ξb from both configurations, we obtain the following:

.
g = gξb ⇒ ξb = g−1 .

g, (52)

.
(hg) = hgξb ⇒ ξb(hg)−1(h .

g
)
, (53)

(hg)−1(
.

hg) = g−1 .
g, (54)

(
.

hg) =
[
(hg)g−1

] .
g, (55)

(hg)g−1 =

cos β − sinβ u
sin β cos β v

0 0 1

, (56)

(
.

hg) =
[
(hg)g−1

] .
g =

cos β − sinβ u
sin β cos β v

0 0 1


−

.
θ sinθ −

.
θ cosθ

.
x

.
θcos θ −

.
θ sinθ

.
y

0 0 0

, (57)

[
(hg)g−1] .

g =

=


−

.
θ cos β sin θ −

.
θ sin β cos θ −

.
θ cos θ β cos θ +

.
θ sin θ β sin θ − .

x cos θβ− .
y sin β

−
.
θ sin β sin θ +

.
θ cos β cos θ −

.
θ sin β cos θ −

.
θ cos β sin θ

.
x sin β +

.
y cos β

0 0 0

,
(58)

(
.

hg) =
[
(hg)g−1

] .
g =

−
.
θ sin(θ − β) −

.
θ cos(θ − β) − .

x cos β− .
y sin β

.
θ cos(θ − β) −

.
θ sin(θ − β)

.
x sin β +

.
y cos β

0 0 1

 (59)

The dependence between velocities
.

(hg) .
x,

.
(hg) .

y,
.

(hg) .
θ

a
.
x,

.
y, a

.
θ can be expressed in

the following way:
.

(hg) .
x = − .

xcos θβ− .
ysinβ, (60)

.
(hg) .

y =
.
xsin θβ +

.
ycosβ, (61)

.
(hg) .

θ
= 1, (62)

In matrix form, the relationship between velocities is expressed as:
.

(hg) .
x.

(hg) .
y.

(hg) .
θ

 =

cos β −sinβ 0
sin β cos β 0

0 0 1




.
x
.
y
.
θ

, (63)

or by symbolic notation:
.

(hg) = TgLh
.
g, (64)

Any left action Lh that rotates the local coordinate system by an angle β accompanies
the lifted action TgLh by rotating the velocity vector by the same value. In addition, the
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left-lifted action has an interesting property where h is equal to g−1. By combining Lg−1 and
TgLg−1 , a solid body is taken from g and placed at the origin of the coordinate system with
an equivalent velocity, thus aligning the local coordinate frame with the global frame. For
the velocity of such a body:

ξ = TgLg−1
.
g, (65)

After inverting relation (65), we can obtain the world velocities:

.
g =

(
TgLg−1

)−1
ξ = TeLgξ, (66)

For the right-lifted action TgRh, in turn, it is true that it preserves the expression of
the spatial velocity and its simplification of the calculation at fixed points relative to the
rigid body. Just as the left-lifted action TgLh was obtained, it is also possible to determine
the right-lifted action TgRh on the group SE(2). Let the group velocity ξs and the velocity
vector

.
g be in the configuration g = (x, y, θ). Applying the right action h = (u, v, β) to

the configuration g leads to the new configuration Rhg = gh. The velocity vector in this

configuration is denoted as (
.

gh). It is necessary to find the relationship (lifted action)

between the velocity vector (
.

gh) and the velocity vector
.
g. By comparing the group

velocities ξs of both configurations, we obtain the following:

.
g = ξsg⇒ ξs =

.
gg−1, (67)( .

gh
)
= ξsgh⇒ ξs = (gh)

(
g

.
h
)−1

, (68)( .
gh
)
(gh)−1 =

.
gg−1, (69)

For searched vector
( .

gh
)

, a
.
g is valid:( .

gh
)
=

.
g
[

g−1(gh)
]
, (70)

( .
gh
)
=

−
.
θ sinθ −

.
θ cosθ

.
x

.
θcos θ −

.
θ sinθ

.
y

0 0 0


cosβ −sinβ u

sinβ cosβ v
0 0 1

 = (71)

=

−
..

θsin θ cosβ−
.
θ cosθsin β

.
θsin θsin β−

.
θcos θcos β −u

.
θsin θ − v

.
θcos θ +

.
x

.
θcos θcos β−

.
θsin θsin β −

.
θ cosθsin β−

.
θ sin θcos β u

.
θcos θ − v

.
θsin θ +

.
y

0 0 1

, (72)

( .
gh
)
=

−
.
θsin(θ + β) −

.
θcos(θ + β)

.
x− (usin θ + vcos θ)

.
θ

.
θcos(θ + β) −

.
θsin(θ + β)

.
y + (ucos θ − vsin θ)

.
θ

0 0 1

, (73)

The resulting relationship of the right-lifted action by components is as follows:( .
gh
)

.
x
=

.
x− (usin θ + vcos θ)

.
θ, (74)

(
g

.
h
)

.
y
=

.
y + (ucos θ − vsin θ)

.
θ, (75)(

g
.
h
)

.
θ
= 1, (76)
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In matrix form, the relationship between velocities is expressed as:
( .

gh
)

.
x( .

gh
)

.
y( .

gh
)

.
θ

 =

1 0
.
x− (usin θ − vcos θ)

.
θ

0 1
.
y− (ucos θ − vsin θ)

.
θ

0 0 1




.
x
.
y
.
θ

, (77)

TgRh =

1 0
.
x− (usin θ + vcos θ)

.
θ

0 1
.
y + (ucos θ − vsin θ)

.
θ

0 0 1

, (78)

( .
gh
)
= TgRh

.
g, (79)

The right-lifted action preserves the spatial velocity ξs. This group velocity is the
velocity of an imaginary point of a rigid body, which, at a given moment, passes through
the beginning of the inertial coordinate system, and its value is calculated according to the
following equation:

ξs = TgRg−1
.
g, (80)

By inverting the equation, the spatial velocity becomes the world velocity for any local
rigid body coordinate system:

.
g =

(
TgRg−1

)−1
ξs = TeRgξs, (81)

2.10. Spatial Velocity and Its Determination Using Adjoint Operators

After applying the right action RhG to the Euclidean group SE(2), the local coordinate
system is located in the position and orientation of the group element h with respect to the
group element g. When determining such a local coordinate system, for example, regarding
articulated systems, it is subsequently appropriate to determine its velocity as a function of
the group element

.
g. This speed can also be expressed using standard kinematic equations:

( .
gh
)
=

1 0 −(usin θ + vcos θ)
0 1 ucos θ − vsin θ
0 0 1

 .
g, (82)

We can also express this velocity using the right-lifted action as follows:

TgRh = ∂(gh)
∂g =

=


∂(x+ucos θ−vsin θ)

∂x
∂(x+ucos θ−vsin θ)

∂y
∂(x+ucos θ−vsin θ)

∂θ

∂(y+usin θ+vcos θ)
∂x

∂(y+usin θ+vcos θ)
∂y

∂(y+usin θ+vcos θ)
∂θ

∂(θ+β)
∂x

∂(θ+β)
∂y

∂(θ+β)
∂θ

,
(83)

TgRh =

1 0 −(usin θ + vcos θ)
0 1 ucos θ − vsin θ
0 0 1

, (84)

As shown above, Equations (82) and (84) are the same. However, the difference is that by
using the right-lifted action, its spatial velocity ξs is preserved. The spatial velocity ξs can
be defined as the velocity of a rigid body of an imaginary point located on the rigid body at
the moment it passes through the origin of the coordinate system. It is represented in the
body’s local coordinate system, and we can calculate it using the following equation:

ξs = TgRg−1
.
g, (85)
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If we perform the inversion of Equation (85) by simple processing, we arrive at a relation
that expresses the world speed

.
g for any local coordinate system, as follows:

.
g =

(
TgRg−1

)−1
ξs = TeRgξs, (86)

The spatial velocity of a body is a suitable mathematical construction connected together
with the world velocity and the velocity of the body. Adjoint operators are used for trans-
formations between the spatial velocity ξs and the body’s own velocity ξ and vice versa.
These adjoint operators consist of a pair of lifted actions, and together, they can form adjoint
actions of Lie groups. For example, the adjoint operation Adg is used to map the body
velocity ξ to the spatial velocity ξs:

ξs =

Adg︷ ︸︸ ︷(
TgRg−1

)(
TeLg

)
ξ, (87)

The inverse adjoint operation Ad−1
g is used for the inverse mapping of the spatial velocity

ξs to the body velocity ξ:

ξb =

Ad−1
g︷ ︸︸ ︷(

TgLg−1

)(
TeRg

)
ξs, (88)

The velocity vector
.
g in configuration g has the same value in the relations

.
g = gξb and

.
g = ξsg. By comparing these two relationships, we obtain the following:

gξb = ξsg, (89)

Their mutual dependence is obtained, as follows:

ξb = g−1ξsg, (90)

After subsequent modifications implemented in Appendix C, we obtained the final shape
of the individual components of the vector ξb:ξb

1
ξb

2
ξb

3

 =

 cos θ sin θ xcos θ − ysin θ
−sin θ cos θ xsin θ + cos θ

0 0 1

ξs
1

ξs
2

ξs
3

, (91)

The same applies to the inverse relationship.

ξs = gξbg−1, (92)

where the entire form is detailed in Appendix C.ξs
1

ξs
2

ξs
3

 =

cos θ −sin θ y
sin θ cos θ −x

0 0 1

ξb
1

ξb
2

ξb
3

, (93)

An adjoint operation is described by the following equation:

Adg =

cos θ −sin θ y
sin θ cos θ −x

0 0 1

, (94)
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The adjoint action Adg on the Euclidean group SE(2) maps the velocity of the rigid
body ξ into the spatial velocity ξs of the rigid body:

ξs =

TgRg−1︷ ︸︸ ︷1 0 y
0 1 −x
0 0 1


Te Lg︷ ︸︸ ︷cos θ −sin θ 0

sin θ cos θ 0
0 0 1

ξx
ξy
ξθ


︸ ︷︷ ︸

.
g

, (95)

ξs =

Adg︷ ︸︸ ︷cos θ −sin θ y
sin θ cos θ −x

0 0 1

ξx
ξy
ξθ

, (96)

Similarly, the inverse adjoint action Ad−1
g on the Euclidean group SE(2) has the effect of

mapping the spatial velocity ξs of the rigid body to the velocity of the rigid body ξ:

ξ =

Tg Lg−1︷ ︸︸ ︷ cos θ sin θ 0
−sin θ cos θ 0

0 0 1


TeRg︷ ︸︸ ︷1 0 −y

0 1 x
0 0 1

ξs
x

ξs
y

ξs
θ


︸ ︷︷ ︸

.
g

, (97)

ξ =

Ad−1
g︷ ︸︸ ︷ cos θ sin θ xsin θθ − ycos θ

−sin θ cos θ xcos θ + ysin θ
0 0 1

ξs
x

ξs
y

ξs
θ

, (98)

3. Results

This section will be devoted to the modeling and analysis of the planar locomotion of a
symmetric serpentine robot with lateral shear constraints provided by passive wheels. The
snake robot, which is composed of three links, performs lateral movements. Its undulating
locomotion movement will be ensured by changing the size of the angles (α1, α2), while it
has fixed wheel axles perpendicular to the body, as shown in Figure 6. The kinematic snake’s
location in the plane is denoted by the variables (x, y,θ) ∈ SE(2), and its configuration
space is as follows:

Q = G×M = SE(2)× (S× S), (99)

The chosen kinematic snake has three degrees of freedom given by (x, y,θ) and the
two shape variables (α1, α2).

Symmetry 2024, 16, x FOR PEER REVIEW 20 of 34 
 

 

 
Figure 6. A simplified diagram of a symmetric three-link kinematic snake. 

3.1. Calculation of the Position of the Coordinate Systems of the Symmetric Three-Link 
Kinematic Snake 

The coordinate systems will be marked on the simplified diagram of the kinematic 
snake in Figure 7, and the position calculation will be carried out from the middle link, in 
which the local coordinate system for the entire system with the origin in 𝑔ଶ is deter-
mined, the shape of which is as follows: 

𝑔ଶ = ൥cos 𝜃 −sin 𝜃 𝑥sin 𝜃 cos 𝜃 𝑦0 0 1൩ , (100)

In order to be able to calculate the individual positions of the first and third link, first, the 
position of the end of the second link h2 with respect to 𝑔ଶ is calculated by moving it in 
the direction of the x-axis to the right by a distance L/2: 

ℎଶ௚మ = 𝑔ଶ ൦1 0 𝐿20 1 00 0 1൪ , (101)

ℎଶ௚మ = ൥cos 𝜃 −sin 𝜃 𝑥sin 𝜃 cos 𝜃 𝑦0 0 1൩ ൦1 0 𝐿20 1 00 0 1൪ = ⎣⎢⎢
⎢⎡cos 𝜃 −sin 𝜃 𝑥 + 𝐿2 cos 𝜃sin 𝜃 cos 𝜃 𝑦 + 𝐿2 sin 𝜃0 0 1 ⎦⎥⎥

⎥⎤ , (102)

The resulting position of the end of the first link is as follows: ℎଵ௚మ = ℎଶ௚మ. 𝑓ଵ௛మ. 𝑔ଵ௙భℎଵ௚భ, (103)

 
Figure 7. Designation of coordinate systems on the three-link kinematic snake. 

Figure 6. A simplified diagram of a symmetric three-link kinematic snake.



Symmetry 2024, 16, 376 20 of 33

3.1. Calculation of the Position of the Coordinate Systems of the Symmetric Three-Link
Kinematic Snake

The coordinate systems will be marked on the simplified diagram of the kinematic
snake in Figure 7, and the position calculation will be carried out from the middle link, in
which the local coordinate system for the entire system with the origin in g2 is determined,
the shape of which is as follows:

g2 =

cosθ −sinθ x
sinθ cosθ y

0 0 1

, (100)

In order to be able to calculate the individual positions of the first and third link, first, the
position of the end of the second link h2 with respect to g2 is calculated by moving it in the
direction of the x-axis to the right by a distance L/2:

h2g2
= g2

1 0 L
2

0 1 0
0 0 1

, (101)

h2g2
=

cosθ −sinθ x
sinθ cosθ y

0 0 1

1 0 L
2

0 1 0
0 0 1

 =

cosθ −sinθ x + L
2 cosθ

sinθ cosθ y + L
2 sinθ

0 0 1

, (102)

The resulting position of the end of the first link is as follows:

h1g2 = h2g2
. f1h2 .g1 f1 h1g1 , (103)

h1g2 =

 cos(θ + α1) −sin(θ + α1) x + L cos(θ + α1) +
L
2 cosθ

sinθ(θ + α1) cosθ(θ + α1) y + L sin(θ + α1) +
L
2 sin θ

0 0 1

, (104)

We calculate the position at the other end of the second link in the same way as h2g2
, but by

moving it to the left in the direction of the x0 axis L/2:

f2g2
= g2

1 0 − L
2

0 1 0
0 0 1

 =

cosθ −sinθ x− L
2 cosθ

sinθ cosθ y− L
2 sinθ

0 0 1

, (105)

The resulting position of the end of the second link is as follows:

f3g2 = f2g2
.h3 f2 .g3h3 f3g3 , (106)

f3g2 =

 cos(α2 − θ) sin(α2 − θ) x− L cos(α2 − θ)− L
2 cosθ

−sin(α2 − θ) cos(α2 − θ) y + L sin(α2 − θ)− L
2 sinθ

0 0 1

, (107)

In the case of a multi-link serpentine robot, the same procedure would, of course, be
followed, while the obtained expressions for the positions of the coordinate systems become
more complex with each additional member added. The key point is that the configurations
of any members can be readily represented as a sequence of relative positions of the
coordinate systems that result in these expressions, as shown in Figure 7.
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3.2. Calculation of Local Velocities of a Three-Link Kinematic Snake

When modeling these systems, it is important to consider the functional relationship
between the local velocity of each member in the kinematic chain and the total local
velocity ξ, and its shape velocity

.
r is sought. This dependence on the three-member system

is investigated. The local coordinate system for the entire system is fixed to the middle
member with the origin at g2. This choice of the local coordinate system of the system gives
a trivial Jacobian at the point g2:

ξg2 =

Jb
g2︷ ︸︸ ︷1 0 0 0 0

0 1 0 0 0
0 0 1 0 0




ξx

ξy

ξθ
.
α1.
α2

 =
[
I3×3 03×2][ξ

.
r

]
, (108)

This will ensure the calculation of the velocity of other members of the chain. In order to
determine the local velocity of snake body member 1, the local velocity of the end of snake
body member 2 must first be found and used to calculate the local velocity of the nearer
end of snake body member 1, which has a rotational speed α1 with respect to h2:

ξh2 = Ad−1
h2,g2

ξg2 =

 cos θ sin θ xsin θ − ycos θ
−sin θ cos θ xcos θ + ysin θ

0 0 1

ξg2 =

1 0 0
0 1 L

2
0 0 1

ξx

ξy

ξθ

, (109)

ξh2 =

 ξx

ξy + ξθ L
2

ξθ

, (110)

Finally, the local velocity in h1 is calculated as:

ξh1 = Ad−1
h1,g1

ξg1 =

1 0 0
0 1 L

2
0 0 1


−

ξxcos α1+
(

ξy + ξθ L
2

)
sinα1

ξxsin α1 +
L
2
(
ξθ +

.
α1
)
+
(

ξy + ξθ L
2

)
ξθ +

.
α1

cos α1

, (111)

ξh1 =


ξxcos α1+

(
ξy + ξθ L

2

)
sinα1

−ξxsin α1 + L
(
ξθ +

.
α1
)
+
(

ξy + ξθ L
2

)cosα1

ξθ +
.
α1

, (112)

Similarly, when the local velocity of snake body member 3 is calculated, first, the local
velocity of the other end of snake body member 2 is calculated, and then, it is transformed
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into the local velocity of the nearer end of snake body member 3. The local velocity of the
other end of snake body member 2 is equal to:

ξ f2 = Ad−1
f 2,g2

ξg2 =

1 0 0
0 1 − L

2
0 0 1

ξx

ξy

ξθ

 =

 ξx

ξy − ξθ L
2

ξθ

, (113)

ξ f3 =


ξxcos α2−

(
ξy − ξθ L

2

)
sinα2

ξxsin α2 − L
(
ξθ − .

α2
)
+
(

ξy − ξθ L
2

)cos α2

ξθ − .
α2

, (114)

It applies to local velocities ξg1 , ξg2 , and ξg3 and is adjusted to the Jacobian form:

ξg1 =

Jb
g1︷ ︸︸ ︷ cos α1 sin α1

L
2 sin α1 0 0

− sinα1 cos α1
L
2 (1 + cos α1)

L
2 0

0 0 1 1 0




ξx

ξy

ξθ
.
α1.
α2

 , (115)

ξg2 =

Jb
g2︷ ︸︸ ︷1 0 0 0 0

0 1 0 0 0
0 0 1 0 0




ξx

ξy

ξθ
.
α1.
α2

, (116)

ξg3 =

Jb
g3︷ ︸︸ ︷cos α2 − sinα2

L
2 sin α2 0 0

sin α2 cos α2 − L
2 (1 + cos α2) 0 L

2

0 0 1 0 1




ξx

ξy

ξθ
.
α1.
α2

, (117)

For the three-link kinematic snake, three non-holonomic constraints are obtained without
sideslip of the wheels. The individual y components of the Jacobians Jy

gi = 0 are expressed
in the Pfaffian form:

0
0
0

 =

− sinα1 cos α1
L
2 (1 + cos α1)

L
2 0

0 1 0 0 0
sin α2 cos α2 − L

2 (1 + cos α2) 0 L
2




ξx

ξy

ξθ
.
α1.
α2

, (118)

By modifying the previous equation, the resulting relationship between the positional and
shape variables of the kinematic snake is obtained, as follows:

ξ =
1
D

 L
2 (cos α2 + 1) L

2 (cos α1 + 1)
0 0

sin α2 sin α1


︸ ︷︷ ︸

A

.
r, (119)

D = sin α1 − sin α2 + sin(α1 − α2). (120)

3.3. Depiction of Local Connections Using Vector Fields

The local connection of the three-link kinematic snake is displayed using vector fields.
In addition to displaying the individual components of the local connection, the vector
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fields also contain a generated gait ϕ, which represents the association between the shape
variables, i.e., the rotations of the snake’s joints. Gait, which generates the lateral movement
of the snake robot Figure 8, has the following form:

ϕ : α1 = 40sin t, α2 = −40sin(t + 25) , (121)

The rotation speed of the joints is obtained by differentiating the rotation angles with
respect to time, Figure 9:

.
α1 = 40cos t,

.
α2 = −40cos(t + 25), (122)

After defining the gait, the curve can be displayed in individual vector fields.
Figures 10–12 show how the kinematic snake will move in the direction of the x, y, and

θ axes. If the arrows of the vector field
→
A

ξx
are in the opposite direction of the sense of the

generated gait, then the kinematic snake will move in the negative direction, and in the
opposite case, the snake will move in the positive direction. Arrows that land perpendicular
to the gait curve only cause the snake to turn. The vector field of the local connection
→
A

ξy
is a zero-vector field, which results from the conditions of non-holonomy. In the case

of the arrows of the local connection vector field
→
A

ξθ

, which are parallel to the gait curve,
they only cause the snake’s joints to rotate, and the snake does not rotate in the direction
perpendicular to the curve.
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4. Conclusions

Based on the results from Section 3.3, where the simulation results were presented,
we can conclude that when applying the serpentine lateral movement to the symmetrical
kinematic snake, the individual vector fields, together with the drawn movement curves,
give us information about the real behavior in individual sections of the movement. In-
dividual sections of the curve are represented by points 1, 2, 3, 4, and 5. The key input in
this case is the shape of the function ϕ. The gradual shape change of the robotic snake’s
body is realized by simultaneously setting the rotation angles α1 and α2 in the snake’s
joints. The results show a simplified diagram of the layout of individual links and their
sizes and angles in the joints of the model. The current gradual change of rotation in time
is interpreted in the output results figures. The green color identifies the total cycle of
change of rotation of both angles, which corresponds to a time of 6.5 s for both angles
simultaneously. Similarly, for the angular speeds of rotation of the joints, in the result
figure, we can see the cyclic character of the change in the angular speeds

.
α1 and

.
α2. When

comparing these shape parameters, it is clear that the magnitude of the speed in the initial
phases of the movement is greater. At the same time, however, it is necessary to take into
account the influence of non-holonomic restrictions on the movement of the snake, which
will be manifested by the impossibility of direct movement in the perpendicular direction
at the location of the individual wheels.

The total movement of the robot globally expresses the vector field of the connection
in the direction of the x and y axes and the angle θ. Is presented in the results the vector
field together with the gait curve, on which the positions of the points within one cycle
are highlighted in black. It is the position of the points on the gait curve and the influence
of the vectors at the location of the given point that represent the overall character of the
symmetrical movement. The effect of the non-holonomic constraint can be seen in results
too, where no vector field acts in the corresponding plane during the cycle of the gait curve.
For a proper understanding, the overall rotation of the central link at the center of gravity,
i.e., the overall orientation of the entire body of the snake and its gradual change during
one cycle of the curve.

A three-link robotic snake with non-holonomic constraints, which has two action
quantities of rotation changes α1 and α2 at the joints, moves in a lateral cyclic motion,
while the changes of the shape of the body based on the change of the shape variables are
equal to the respective phases of the movement in points 1 to 5, Figure 13. Finally, we can
observe the change in the coordinates of the global variables x, y, and θ angle during the
simulation verification. It can be seen in Figure 14 that the movement of turning the angle
is repeated cyclically. Movement in the y-axis direction is forbidden precisely because of
non-holonomic constraints. For this reason, the value Y of the transformation is equal to
the constant 0.
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The most important research findings can be summarized in the following points:

1. To implement the locomotion of a three-link snake robot of the under-actuated type,
the shape of the robot is changed in order to achieve the required movement function
through the rotation of the joints.

2. During the locomotion of the mechanism, there is also a cyclical change of an-gular
velocities when it is found that the velocities are greater in the initial phases of
the movement.

3. From the results of the simulation of a three-link snake robot during the cyclic phases
of locomotion, it follows that visualizing the local connection through a vector field
clearly contributes to the body shape changes. Moreover, it is related to the overall
control of the mechanism and depends on the input geometric parameters.

4. The equation of the input movement curve is an important influencing parameter for
the overall resulting shape of the movement of the mechanism.

Based on these findings, we can conclude that when modeling a mobile robotic mech-
anism with non-holonomic constraints, we must pay attention not only to non-holonomic
constraints but also to the classification of shape variables, the shape of motion func-
tions, and the overall geometric symmetry of the mechanism. Based on this, we can, to
a certain extent, generalize the use of the given method to multi-element systems with
non-holonomic constraints.

The advantages of using a geometric approach to describe the principle of locomo-
tion of a biologically inspired snake robot are clearly visible in the graphic representation
and in the simplification of the mathematical description of the symmetric mechanical
system. Geometric mechanics provides a mathematical framework for accurately describ-
ing the motion and kinematic properties of a robot. Using geometric tools such as Lie
groups and algebras, it is possible to mathematically model and analyze the movement
of a robot in space, and it is also possible to analyze the movement of different types of
robots, regardless of their specific construction and mechanical parameters. In addition,
it allows for optimizing the design of the robot’s movement and searching for efficient
trajectories. Using the principles of differential geometry and variation, it is possible to
evaluate the energy requirements, stability, and other properties of the robot’s movement.
All this makes geometric mechanics a powerful tool for describing locomotion and its
physical understanding.
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Appendix A

An illustrative example of the calculation of the first two terms of gδ of the Taylor
series is:

gδ =

 1 0 0
0 1 0
0 0 1

 +

∂


cos θ −sin θ x
sin θ cos θ y
0 0 1


∂x

∣∣∣∣∣∣∣∣∣∣∣∣
δx +

∂


cos θ −sin θ x
sin θ cos θ y
0 0 1


∂y

∣∣∣∣∣∣∣∣∣∣∣∣
δy

+

∂


cos θ −sin θ x
sin θ cos θ y
0 0 1


∂θ

∣∣∣∣∣∣∣∣∣∣∣∣
δθ

(A1)

gδ =

1 0 0
0 1 0
0 0 1

+

0 0 1
0 0 0
0 0 0

δx +

0 0 0
0 0 1
0 0 0

δy +

0 −1 0
1 0 0
0 0 0

δθ , (A2)

By substituting Equation (A2) into Equation (29) and after a small modification, we
obtain the following:

ξ =

1 0 0
0 1 0
0 0 1

+

0 0 1
0 0 0
0 0 0

δx +

0 0 0
0 0 1
0 0 0

δy +

0 −1 0
1 0 0
0 0 0

δθ −

1 0 0
0 1 0
0 0 1


δt

(A3)

ξ = lim
δ t→0

0 0 1
0 0 0
0 0 0

δx + lim
δt→0

0 0 0
0 0 1
0 0 0

δy + lim
δt→0

0 −1 0
1 0 0
0 0 0

δθ (A4)

After the adjustments, the matrix shape is as follows:

ξ = lim
δt→0

δy

δt

0 0 1
0 0 0
0 0 0

 δx

δt
+

0 0 0
0 0 1
0 0 0

 lim
δt→0

δy

δt
+

0 −1 0
1 0 0
0 0 0

 lim
δt→0

δθ

δt
, (A5)

ξ =

0 0 1
0 0 0
0 0 0

ξx +

0 0 0
0 0 1
0 0 0

ξy +

0 −1 0
1 0 0
0 0 0

ξθ =

 0 −ξθ ξx
ξθ 0 ξy
0 0 0

, (A6)
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Appendix B

Based on Equation (44), we express the position of the object in coordinates x(t) and
y(t) as follows:

g(t) = expθ
(
tξ̂
)

= exp


 0 −ξθ ξx

ξθ 0 ξy
0 0 0

t

 = exp

 0 −ξθ ξx
ξθ 0 ξy
0 0 0

t

=

 1 0 0
0 1 0
0 0 1

+ 1
1!

 [
0 −ξθ

ξθ 0

] [
ξx
ξy

]
0 0 0

t

+ 1
2!


[
−(ξθ)

2 0
0 −(ξθ)

2

] [
−ξθ ξx
ξθ ξy

]
0 0 0

t

+ 1
3!


[

0 (ξθ)
3

−(ξθ)
3 0

] [
−(ξθ)

2 ξx

−(ξθ)
2 ξy

]
0 0 0

t

+ 1
4!


[

(ξθ)
4 0

0 (ξθ)
4

] [
(ξθ)

3 ξx

−(ξθ)
3 ξy

]
0 0 0

t

+ 1
5!


[

0 −(ξθ)
5

(ξθ)
5 0

] [
(ξθ)

4 ξx

(ξθ)
4 ξy

]
0 0 0

t

+ 1
6!


[
−(ξθ)

6 0
0 −(ξθ)

6

] [
0 −(ξθ)

5

−(ξθ)
5 0

] [
ξx
ξy

]
0 0 0

t + . . . ,

(A7)

g(t) =


[

cos ξθt sin ξθt

sin ξθt cos ξθt

]  (cos ξθt− 1) ξy
ξθ

+ ξx
ξθ

sin ξθt

(sin ξθt) ξy
ξθ

+ ξx
ξθ
(1− cos ξθt)


0 0 0

, (A8)

Appendix C

By substituting the respective matrices into the individual members and performing
matrix operations, the resulting relationship based on Equation (90) is obtained, as follows:

ξb = g−1ξsg =

 cos θ sin θ −xcos θ − ysin θ
−sin θ cos θ xsin θ − cos θ

0 0 1

 0 −ξs
3 ξs

1
ξs

3 0 ξs
2

0 0 0

 cos θ −sin θ x
−sin θ cos θ y

0 0 1

, (A9)

ξb = g−1ξsg =

 cos θ sin θ −xcos θ − ysin θ
−sin θ cos θ xsin θθ − cos θ

0 0 1

−ξs
3sin θ −ξs

3cosθ −ξs
3y + ξs

1
ξs

3cos θ −ξs
3sin θ ξs

3x + ξs
2

0 0 0

, (A10)

ξb = g−1ξsg =

A11 A12 A13
A21 A22 A23
0 0 0

 , where (A11)
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A11 = −ξs
3cos θsin θ + ξs

3sin θcos θ,

A12 = −ξs
3cos2θ − ξs

3sin2θ,

A13 = ξs
1cos θ + ξs

2sin θ + ξs
3(−ycos θ + xsin θ),

A21 = ξs
3sin2θ + ξs

3cos2θ,

A22 = ξs
3sin θcos θ − ξs

3cos θsin θ,

A23 = −ξs
1sin θ + ξs

2cos θ + ξs
3(ysin θ + xcos θ),

ξb =

 0 −ξs
3 ξs

1cos θ + ξs
2sin θ + ξs

3(xsin θ − ycos θ)

ξs
3 0 −ξs

1sin θ + ξs
2cos θ + ξs

3(xcos θ+ysin θ)

0 0 0

, (A12)

ξs = gξbg−1 ==

 cos θ −sin θ x
−sin θ cos θ y

0 0 1

 0 −ξb
3 ξb

1
ξb

3 0 ξb
2

0 0 0

 cos θ sin θ −xcos θ − ysin θ
−sin θ cos θ xsin θθ − cos θ

0 0 1

, (A13)

ξs = gξbg−1 = =

 cos θ −sin θ x

−sin θ cos θ y

0 0 1



−ξb

3sin θ −ξb
3cosθ −ξb

3(xsin θ − ycos θ) + ξb
1

ξb
3cos θ −ξb

3sin θ ξb
3(−xcos θ − ysin θ) + ξb

2

0 0 0

, (A14)

ξs = gξbg−1 =

B11 B12 B13
B21 B22 B23
0 0 0

, (A15)

where

B11 = ξb
3cos θsin θ − ξb

3sin θcos θ,

B12 = −ξb
3cos2θ − ξb

3sin2θ,

B13 = −ξb
3
(

xsin θcos θ − ycos2θ
)
+ ξb

1cos θ + ξb
3(xcos θsin θ + y θ sin2θ

)
− ξb

2sin θ,

B21 = ξb
3sin2θ + ξb

3cos2θ,

B22 = −ξb
3sin θcos θ + ξb

3cos θsin θ,

B23 = −ξb
3

(
xsin2θ − ysin θcos θ

)
+ ξb

1sin θ + ξb
3
(
−xcos2θ + y θ cos θsin θ)− ξb

2cos θ,

ξs =

 0 −ξb
3 ξb

1cos θ − ξb
2cos θ + yξb

3

ξb
3 0 ξb

1sin θ + ξb
2cos θ − xξb

3

0 0 0

, (A16)

Appendix D

Position of the first link:
f1g2 = h2g2 . f1h2 , (A17)

where f1g2 represents the transition from one link to the next by rotating by an angle α1:

f1h2 =

cosα1 −sinα1 0
sinα1 cosα1 0

0 0 1

, (A18)

after substituting into the following equation:

f1g2 =

cos θ −sinθ x + L
2 cosθ

sin θ cos θ y + L
2 sinθ

0 0 1


cosα1 −sinα1 0

sinα1 cosα1 0

0 0 1

, (A19)



Symmetry 2024, 16, 376 30 of 33

f1g2 =

cos(θ + α1) −sin(θ + α1) x + L
2 cosθ

sin(θ + α1) cos(θ + α1) y + L
2 sinθ

0 0 1

, (A20)

f1g2 =

cos(θ + α1) −sin(θ + α1) x + L
2 cosθ

sin(θ + α1) cos(θ + α1) y + L
2 sinθ

0 0 1


Next, the more distant remaining positions of the first link are determined, as follows:

g1g2 = f1g2 .g1 f1 = f1g2

1 0 L
2

0 1 0
0 0 1

, (A21)

g1g2 =

cos(θ + α1) −sin(θ + α1) x + L
2 cos(θ + α1) +

L
2 cosθ

sin(θ + α1) cos(θ + α1) y + L
2 sin(θ + α1) +

L
2 sin θ

0 0 1

, (A22)

h1g2 = g1g2 .h1g1 = g1g2 .

1 0 L
2

0 1 0
0 0 1

, (A23)

h1g2 =

cos(θ + α1) −sin(θ + α1) x + L cos(θ + α1) +
L
2 cosθ

sin(θ + α1) cos(θ + α1) y + L sin(θ + α1) +
L
2 sin θ

0 0 1

, (A24)

The positions of the coordinate systems for the third link are derived in the same way:

h3g2 = f2g2 .h3 f2 = f2g2

 cosα2 sinα2 0
−sinα2 cosα2 0

0 0 1

, (A25)

h3g2 =

 cos(α2 − θ) sin(α2 − θ) x− L
2 cosθ

−sin(α2 − θ) cos(α2 − θ) y− L
2 sinθ

0 0 1

, (A26)

g3g2 = h3g2 .g3h3 = h3g2

1 0 − L
2

0 1 0
0 0 1

, (A27)

g3g2 =

 cos(α2 − θ) sin(α2 − θ) x− L
2 cos(α2 − θ)− L

2 cosθ

−sin(α2 − θ) cos(α2 − θ) y + L
2 sin(α2 − θ)− L

2 sinθ

0 0 1

, (A28)

f3g2 = g3g2 . f3g3 = g3g2

1 0 − L
2

0 1 0
0 0 1

, (A29)

f3g2 =

 cos(α2 − θ) sin(α2 − θ) x− L cos(α2 − θ)− L
2 cosθ

−sin(α2 − θ) cos(α2 − θ) y + L sin(α2 − θ)− L
2 sinθ

0 0 1

, (A30)
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The local velocity of the nearer end of link 1 will have the following form:

ξ f1 = Ad−1
f 1, f ′1

ξ f ′1 =

 cos α1 sin α1 0
− sinα1 cos α1 0

0 0 1



ξ f ′1︷ ︸︸ ︷
 ξx

ξy + ξθ L
2

ξθ


︸ ︷︷ ︸

ξh2

+

 0
0
.
α1


, (A31)

ξ f1 =

−
ξxcos α1+

(
ξy + ξθ L

2

)
sinθα1

ξxsin α1+
(

ξy + ξθ L
2

)
cosθα1

ξθ +
.
α1

, (A32)

We calculate the local velocity ξg1 by moving L/2 in the direction of the x-axis to
the right:

ξg1 = Ad−1
g1, f 1

ξ f1 =

1 0 0
0 1 L

2
0 0 1


−

ξxcos α1+
(

ξy + ξθ L
2

)
sinα1

ξxsin α1+
(

ξy + ξθ L
2

)
cosα1

ξθ +
.
α1

, (A33)

ξg1 =

−
ξxcos α1+

(
ξy + ξθ L

2

)
sinα1

ξxsin α1 +
L
2
(
ξθ +

.
α1
)
+
(

ξy + ξθ L
2

)
ξθ +

.
α1

cos α1

, (A34)

ξh1 = Ad−1
h1,g1

ξg1 ξh1 =

=

 1 0 0
0 1 L

2
0 0 1


−

ξxcos α1+
(

ξy + ξθ L
2

)
sinα1

ξxsin α1 +
L
2
(
ξθ +

.
α1
)
+
(

ξy + ξθ L
2

)
ξθ +

.
α1

cos α1

 , (A35)

ξh1 =


ξxcos α1+

(
ξy + ξθ L

2

)
sinα1

−ξxsin α1 + L
(
ξθ +

.
α1
)
+
(

ξy + ξθ L
2

)
ξθ +

.
α1

cosα1

, (A36)

When deriving the local velocities of the third link, the same procedure will be followed:

ξh3 = Ad−1
h3,h′3

ξh′3 =

cos α2 − sinα2 0
sin α2 cos α2 0

0 0 1



ξh′3︷ ︸︸ ︷
 ξx

ξy − ξθ L
2

ξθ


︸ ︷︷ ︸

ξ f2

+

 0
0
− .

α2


, (A37)

ξh3 =


ξxcos α2−

(
ξy − ξθ L

2

)
sinα2

ξxsin α2+
(

ξy − ξθ L
2

)
cosα2

ξθ − .
α2

, (A38)
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ξg3 = Ad−1
g3,h3

ξh3 =

1 0 0
0 1 − L

2
0 0 1




ξxcos α2−
(

ξy − ξθ L
2

)
sinα2

ξxsin α2+
(

ξy − ξθ L
2

)
cosα2

ξθ − .
α2

, (A39)

ξg3 =


ξxcos α2−

(
ξy − ξθ L

2

)
sinα2

ξxsin α2 − L
2
(
ξθ − .

α2
)
+
(

ξy − ξθ L
2

)
ξθ − .

α2

cosα2

, (A40)

ξ f3 = Ad−1
f 3,g3

ξg3

=

 1 0 0
0 1 − L

2
0 0 1




ξxcos α2−
(

ξy − ξθ L
2

)
sinα2

ξxsin α2 − L
2
(
ξθ − .

α2
)
+
(

ξy − ξθ L
2

)
cosα2

ξθ − .
α2

,
(A41)
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