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Abstract: Loop subdivision is a significant surface scheme with wide applications in fields like
computer graphics and wavelet. As a type of stationary scheme, Loop subdivision cannot adjust
the limit surface directly. In this paper, we present a new way to solve this problem by proposing a
symmetric non-stationary Loop subdivision based on a suitable iteration. This new scheme can be
used to adjust the limit surfaces freely and thus can generate surfaces with different shapes. For this
new scheme, we show that it is C2 convergent in the regular part of mesh and is at least tangent plane
continuous at the limit positions of the extraordinary points. Additionally, we present a non-uniform
generalization of this new symmetric non-stationary subdivision so as to locally control the shape of
the limit surfaces. More interestingly, we present the limit positions of the initial points, both for the
symmetric non-stationary Loop subdivision and its non-uniform generalization. Such limit positions
can be used to interpolate the initial points with different valences, generalizing the existing result.
Several numerical examples are given to illustrate the performance of the new schemes.

Keywords: symmetric non-stationary Loop subdivision; shape control; smoothness; limit position;
interpolation; local control

1. Introduction

As an efficient tool to generate smooth surfaces, subdivision schemes have been widely
used in fields like computer graphics, animation, and games. In general, subdivision
schemes can be divided into stationary and non-stationary ones, depending on whether the
subdivision rules are relevant with the recursion level or not. Compared with the stationary
ones, like the schemes in [1], the non-stationary schemes have the advantage of being able
to generate richer function spaces and more flexible surfaces with different shapes.

In connection with the design and application of non-stationary subdivision, there
have been interesting works. In fact, apart from the non-stationary curve subdivision, like
those in [2,3], there have been significant works on non-stationary surface subdivision.
For this, Novara et al. [4] proposed a non-stationary interpolatory scheme reproducing
surfaces like the torus and the ellipsoid, which improves the smoothness and accuracy
of the modified butterfly subdivision [5]. Fang et al. [6] presented a generalized order
d exponential spline surface subdivision which can generate surfaces like the torus and
the sphere. Badoual et al. [7] constructed a non-stationary generalized Loop subdivision
for chemical imaging. For other non-stationary surface subdivisions, see also [8–11] and
references therein.

The above schemes can be seen as being obtained based on a fixed point iteration
coming from the generation of exponential polynomials [10] and thus can generate this
kind of polynomial. In fact, besides this kind of non-stationary subdivision, there are also
non-stationary subdivisions which are based on other kinds of iterations, such as those
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in [12,13]. Yet, such schemes are curve but not surface subdivisions. Zhang et al. [10]
presented the first surface subdivision from this point of view and derived a non-stationary
Catmull–Clark subdivision with shape control. However, the obtained non-stationary
Catmull–Clark subdivision lacks further analysis like the analysis of the limit positions of
initial points.

Therefore, in this paper, we try to construct and analyze a new non-stationary surface
subdivision, i.e., a symmetric non-stationary Loop subdivision [14]. This new scheme
can adjust the shape of the limit surface due to its free parameter. For such a scheme,
we show that it is C2 convergent in the regular part of the mesh and has tangent plane
continuity at the limit positions of extraordinary points. Thus, this new scheme can gener-
ate surfaces with different shapes from a simple initial mesh while keeping a satisfactory
smoothness property. Such a non-stationary subdivision is obtained in a way similar to
the non-stationary scheme in [10]. Specifically speaking, with a suitably chosen iteration
and a function of this iteration, we properly modify the Loop subdivision rules in the
regular part of the mesh and design the subdivision rules in the neighborhoods of extraor-
dinary points in order to obtain the desired symmetric non-stationary Loop subdivision.
More interestingly, in the spirit of the push-back operation [15], we also derive the limit
positions of the initial points, which generalizes the existing result and can be used to
interpolate the initial points with certain valence. Furthermore, we also present a non-
uniform generalization which can locally adjust the shape of the limit surface and also
derive the corresponding limit positions of the initial points. With such limit positions, this
non-uniform generalization can be used to interpolate points with different valences.

Therefore, the contribution of this paper is as follows: (1) a non-stationary Loop
subdivision with a non-uniform generalization is presented. Such schemes can adjust the
shapes of the limit surfaces freely, which cannot be achieved using Loop subdivision [14]
or other stationary schemes; (2) compared with the existing non-stationary schemes, like
the one in [10], the limit positions of the initial points are derived in this paper, and these
generalize the results from the stationary case [16] to non-stationary and even non-uniform
cases; (3) compared with the existing methods used to interpolate initial points, like [17],
the new schemes in this paper can interpolate initial points directly and do not require
additional adjustment of the initial points, making them more efficient.

The rest of this paper is organized as follows. Section 2 is devoted to the review of
some basic knowledge about subdivision. Section 3 is devoted to the construction of this
symmetric non-stationary Loop subdivision and its analysis, including smoothness analysis
and the derivation of the limit positions of the initial points. Section 4 is devoted to local
control discussion of the symmetric non-stationary Loop subdivision. In Section 5, we
discuss the interpolation of control points with different valences. Section 6 concludes
this paper.

2. Preliminaries

This section is devoted to some basic knowledge about subdivision, which is needed
in the rest of this paper.

Given the initial data sequence q0 = {q0
α, α ∈ Z2} ∈ l0(Z2), we consider the binary

non-stationary subdivision scheme in this paper as

(Sak qk)α = qk+1
α = ∑

β∈Z2

ak
α−2βqk

β, α ∈ Z2,

where Sak is the k-level subdivision operator, and the sequence ak = {ak
α, α ∈ Z2} is the

k-level mask with finite support. We denote this scheme by {Sak}k≥0, and the corresponding
k-level symbol is the Laurent polynomial ak(z) = ∑

α∈Z2
ak

αzα.

In order to present the discussion of the smoothness of the new non-stationary Loop
subdivision clearly, we need the following definitions and results.
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Definition 1 ([18]). A non-stationary subdivision scheme {Suk}k≥0 with the k-level mask uk is
said to be asymptotically similar to the stationary subdivision scheme Su with the mask u, if the
k-level mask uk and the mask u have the same support U and satisfy

lim
k→∞

uk
α = uα, α ∈ U.

Definition 2 ([19]). A non-stationary subdivision scheme {Suk}k≥0 with the k-level symbol uk(z)
is said to satisfy approximate sum rules of order r + 1 if

µk = |uk(1)− 2|, δk = max
|η|≤r

|2−k|η|Dηuk(−1)|

with 1 = (1, ..., 1) ∈ Ns
0 and η ∈ Ns

0 satisfy

∑
k

µk < ∞, ∑
k

2krδk < ∞.

With the above two definitions, the smoothness of non-stationary subdivision in the
regular portion of the mesh can be investigated using the results from the following.

Theorem 1 ([18]). Assume that the non-stationary subdivision scheme {Suk}k≥0 satisfies approxi-
mate sum rules of order r + 1 and is asymptotically similar to a convergent stationary subdivision
scheme Su who is Cr-convergent. Then, the non-stationary scheme {Suk}k≥0 is Cr-convergent.

As for the smoothness of the non-stationary scheme near the extraordinary points, we
recall the definition of asymptotic equivalence as follows:

Definition 3 ([20]). The schemes {Suk}k≥0 and {Svk}k≥0 are asymptotically equivalent if

∑
k
||Suk − Svk ||∞ < ∞, (1)

where
||Suk − Svk ||∞ = max{ ∑

α∈Z2

|uk
α−2β − vk

α−2β| : α ∈ Ω},

with Ω being the set of extreme vertices of [0, 1]2.

Remark 1. If the condition in (1) is replaced by

∑
k

2k||Suk − Svk ||∞ < ∞,

then the two schemes {Suk}k≥0 and {Svk}k≥0 are asymptotically equivalent of order 1.

To discuss the smoothness of the non-stationary schemes, let M(0) denote the initial
mesh of arbitrary topology and M(0) consist of R(0) and E (0), which denote the neighbor-
hood of a regular vertex and an extraordinary vertex, respectively. Then, with Definition 3,
we can analyze the smoothness of the new non-stationary Loop subdivision scheme in the
neighborhoods of extraordinary points using the following result.

Theorem 2 ([7]). Let S be a non-stationary subdivision scheme whose action in E (0) is described
by the matrix sequence {Sk}k≥0. Moreover, let S̄ be a stationary subdivision scheme that in E (0) is
identified by the matrix S. Assume that

(i) S̄ is C1-convergent in R(0) with symbol c(z) containing the factor (1 + z1)(1 + z2) and G1

convergent in E (0);
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(ii) Sk is defined in R(0) by the symbol {ck(z)}k≥0, where each ck(z) contains the factor
(1 + z1)(1 + z2);

(iii) S is asymptotically equivalent of order 1 to S̄ in R(0);
(iv) In E (0), the matrices {Sk}k≥0 and S satisfy, for all k ≥ 0, ||Sk − S||∞ ≤ C

σk , where C is some
finite positive constant and σ > 1

λ1
> 1 with λ1 ∈ R+ being the subdominant eigenvalue of

S, which is double and non-defective.

Then, the subdivision surface generated by S is convergent in E (0) and produces tangent plane
continuous surfaces at the limit positions of the extraordinary points.

3. The Symmetric Non-Stationary Loop Subdivision

In this section, we construct and analyze the new symmetric non-stationary Loop
subdivision. To this purpose, we first give a brief review on the Loop subdivision.

3.1. Review of Loop Subdivision

Let Sa denote the Loop subdivision scheme. In fact, in the regular part of the mesh,
the Loop subdivision Sa can be given in terms of the following symmetric mask (symmetric
about the origin)

a =


0 0 1

16
1
8

1
16

0 1
8

3
8

3
8

1
8

1
16

3
8

5
8

3
8

1
16

1
8

3
8

3
8

1
8 0

1
16

1
8

1
16 0 0

,

with the corresponding symbol

a(z) = 4(
1 + z1

2
)2(

1 + z2

2
)2(

1 + z2z1

2
)2z−2

1 z−2
2 . (2)

For the subdivision rules in the neighborhood of an extraordinary point of valence n,
by p0 we denote the vector that collects the points in the 1-ring neighborhood of such an
extraordinary point. Then, the Loop subdivision scheme can be described by pk+1 = S̃pk [21].
Here, S̃ is the local subdivision matrix

S̃ =

(
1 − nα α

β B̃

)
, (3)

where

α =


3

16
, n = 3

3
8n

, n > 3
, α = (α, · · · , α), β = (

3
8

, · · · ,
3
8
)⊤,

and B is the n × n circulant matrix B̃ = circ(b0, b1, · · · , bn−1) with b0 = 3
8 , b1 = 1

8 ,
b2 = · · · = bn−2 = 0, bn−1 = 1

8 .
As is known, the Loop subdivision scheme Sa is C2 convergent in the regular part of

the mesh and C1 convergent at the limit positions of extraordinary points.

3.2. Construction of the Symmetric Non-Stationary Loop Subdivision

Now, we present the construction of the new symmetric non-stationary Loop subdivi-
sion, which is denoted by {Sak}k≥0.

Since we see the non-stationary subdivision {Sak}k≥0 as one based on some iteration
and a function of this iteration, we first give the function φ(x) = x

5 with the fixed point
x∗ = 0. The corresponding iteration process is

vk+1 = φ(vk) =
vk

5
, v0 ∈ R.



Symmetry 2024, 16, 379 5 of 13

Let h(vk) = 1
8 (1 + vk) be the function of this iteration. Then, in the regular part of the mesh,

the new non-stationary Loop subdivision {Sak}k≥0 can be characterized in terms of the
following k-level symmetric mask (symmetric about the origin)

ak =


0 0 h(vk+1)

2 h(vk+1) h(vk+1)
2

0 h(vk+1) 1
2 − h(vk+1) 1

2 − h(vk+1) h(vk+1)
h(vk+1)

2
1
2 − h(vk+1) 1 − 3h(vk+1) 1

2 − h(vk+1) h(vk+1)
2

h(vk+1) 1
2 − h(vk+1) 1

2 − h(vk+1) h(vk+1) 0
h(vk+1)

2 h(vk+1) h(vk+1)
2 0 0

,

with the corresponding k-level symbol

ak(z1, z2) = 4(
1 + z1

2
)(

1 + z2

2
)(

1 + z1z2

2
)(h(vk+1)(1 + z1 + z2

+ z1z2
2 + z2

1z2 + z2
1z2

2) + (1 − 6h(vk+1))z1z2)z−2
1 z−2

2 .
(4)

For the subdivision rules in the neighborhood of an extraordinary point of valence n,
the corresponding local subdivision matrix S̃k can be written down as

S̃k =

(
1 − nαk αk

βk B̃k
j

)
, (5)

where

αk =
3
m

h(vk+1), αk = (αk, · · · , αk), βk = (
1
2
− h(vk+1), · · · ,

1
2
− h(vk+1))⊤,

with m =

{
2, n = 3

n, n > 3,
, and B̃k is the n× n circulant matrix B̃k

= circ(bk
0, bk

1, · · · , bk
n−1) with

bk
0 = 1

2 − h(vk+1), bk
1 = h(vk+1), bk

2 = · · · = bk
n−2 = 0, bk

n−1 = h(vk+1). The corresponding
stencils used to generate a ’vertex’ point with valence n and an ’edge’ point are as shown
in Figure 1.

Figure 1. Stencils for the scheme {Sak}k≥0 to generate a ’vertex’ point (left) and an ’edge’ point (right).

Note that, when n = 6, the stencil used for generating new ’vertex’ points reduces
to the one used in the regular part. When v0 = 0, we have vk = 0 for k ∈ N0. Thus, the
k-level symbol ak(z) in (4) and the local subdivision matrix in (5) are actually the stationary
counterparts in (2) and (3), respectively, meaning that the new scheme {Sak}k≥0 becomes
the classical Loop subdivision Sa. Thus, since lim

k→∞
vk = 0, the scheme {Sak}k≥0 reduces

to the Loop subdivision Sa as k → ∞. Since h(vk) = 1
8 (1 + vk), for the k-level mask ak,

we have (ak)i,j = ai,j + svk+1 with s ∈ R. The local subdivision matrix S̃k has the same
property. In this way, for the new scheme {Sak}k≥0, it can actually be seen as the Loop
subdivision Sa plus some perturbation.
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3.3. Smoothness Analysis

For the smoothness of the scheme {Sak}k≥0, we first analyze its smoothness in the
regular part of the mesh and then near the extraordinary points.

In fact, based on the definitions and theorems in Section 2, we can show the following
result for the smoothness of the scheme {Sak}k≥0 in the regular part of the mesh.

Theorem 3. The new symmetric non-stationary Loop subdivision {Sak}k≥0 is C2 convergent in
the regular part of the mesh.

Proof. Since lim
k→∞

vk = 0, it can be seen that lim
k→

ak(z) = a(z). Thus, the scheme {Sak}k≥0 is

asymptotically similar to Sa.
Now, we show that the scheme {Sak}k≥0 has approximate sum rules of order 3, and

then, by Theorem 1, it is C2 convergent, since the Loop subdivision Sa is C2 convergent in
the regular part of the mesh.

Let Z = {(1,−1), (−1, 1), (−1,−1)}. Then, from the k level symbol ak(z) in (4), it can
be computed that for η ∈ N2,

δk = max
|η|≤2

|Dηak(ξ1, ξ2)| = 2|h(vk+1)− 1
8
| = 1

4
|vk+1 − 0|, (ξ1, ξ2) ∈ Z .

For the iteration vk+1 = φ(vk), we have

|vk+1 − 0| = |φ(vk)− φ(0)| ≤ L|vk − 0| ≤ · · · Lk−1|v1 − 0| ≤ c1Lk, (6)

where L = 1
5 , and c1 is independent of k. Therefore, it can be computed that

∞

∑
k=1

22kδk = c1

∞

∑
k=1

(2L)k < ∞.

Thus, by Definition 2, the scheme {Sak}k≥0 has approximate sum rules of order 3, and it is
C2 convergent in the regular part of mesh.

As for the smoothness of the new scheme {Sak}k≥0 near an extraordinary point of
valence n, we have the following result:

Theorem 4. The scheme {Sak}k≥0 is tangent plane continuous at the limit position of the extraor-
dinary point of valence n.

Proof. We prove this result by verifying all the conditions in Theorem 2. The Loop subdivi-
sion scheme Sa is C2 convergent in the regular part of the mesh and G1 convergent in the
neighborhood of extraordinary points. The symbol a(z) contains (1 + z1)(1 + z2). Thus,
condition (i) is verified. The k-level symbol ak(z) also contains (1 + z1)(1 + z2), and thus,
condition (ii) is verified.

Now, we verify condition (iii). In fact, following (6), it can be seen that there exists a
constant c2 independent of k such that |vk − 0| ≤ c2Lk|v0 − 0|. Thus, it can be computed that

|h(vk+1)− 1
8
|, |αk − α| ≤ c3Lk, (7)

where c3 is a constant independent of k. Then, we have

||Sak − Sa||∞ ≤ c3Lk, ∑
k

2k||Sak − Sa|| ≤ c3 ∑
k
(2L)k < ∞.

Thus, {Sak}k≥0 is asymptotically equivalent to Sa of order 1 and condition (iii) is verified.
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Now, we verify condition (iv) of Theorem 6. Let

Bj =

( 1
n − α α

3
8n bj

)
, Bk

j =

( 1
n − αk αk

1
2n − h(vk+1)

n bk
j

)
, j = 0, ..., n − 1.

Then, the local subdivision matrices S̃ and S̃k can be transformed into the block-circulant
ones [21],

S := circ(B0, ..., Bn−1) and Sk := circ(Bk
0, ..., Bk

n−1).

For Bk
j , j = 0, ..., n − 1, following the proof of Theorem 4.1 in [10] and by (7), we can

compute that
||Bk

i − Bi||∞ ≤ c5|vk − 0| ≤ c5Lk, i = 0, · · · , n − 1,

where c5 is a constant independent of k. Thus, for Sk − S, there exists a constant c6 indepen-
dent of n and k such that

||Sk − S||∞ ≤
n−1

∑
i=0

||Bk
i − Bi||∞ ≤ c6|vk − 0| = c7Lk.

Since the matrix S̃ has a subdominant eigenvalue 1
4 ≤ λ < 1 with algebraic and geo-

metric multiplicity 2, we have 1
L > 4 ≥ 1

λ , and thus, condition (iv) of Theorem 6 can
be verified. Therefore, {Sak}k≥0 is tangent plane continuous at the limit position of this
extraordinary point.

Figure 2 gives an example showing the surfaces obtained by the scheme {Sak}k≥0 with
different values of v0 from the initial mesh (left). From Figure 2, we can see the change of
the shape of the obtained surface with the change of v0.

Figure 2. Initial mesh with control points of valence 3 (left) and the corresponding limit surfaces
generated by {ak}k≥0 with v0 = −8,−4, 0 (left to right for the right 3 surfaces).

3.4. Limit Positions of Initial Points

Now, we derive the limit positions of initial points in the spirit of the push-back
method [10]. In fact, for the Loop subdivision Sa, the limit position of initial points is [16]

P∞
0 = (1 − nγ)P0

0 + γ
n

∑
i=1

P0
i , (8)

where γ = ( 3
8α + n)−1. Next, we generalize this result to the non-stationary case by deriving

the limit positions of initial points for the new scheme {Sak}k≥0. From this we obtain the
following result:

Theorem 5. For the new scheme {Sak}k≥0, the limit position of the initial point P0
0 with 1-ring

neighborhood points P0
j , j = 1, ..., n, is

P∞
0 = λ

n

∑
j=1

P0
j + (1 − nλ)P0

0 , (9)
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where

λ =
∞

∑
k=0

αk
k

∏
j=1

(
5m − 3n

8m
− 3n − m

8m
v0

5j ), with m =

{
2, n = 3

n, n > 3.
(10)

Proof. In fact, following the subdivision rules of {Sak}k≥0, we can compute the distance
between Pk+1

0 and Pk
0 as

Pk+1
0 − Pk

0 = (1 − nαk)Pk
0 + αk

k

∑
j=1

Pk
j − Pk

0 = αk
n

∑
j=1

(Pk
j − Pk

0 ) = αk Ak,

where Ak :=
n
∑

j=1
(Pk

j − Pk
0 ).

For Ak, it can be computed that

Ak =
n

∑
j=1

Pk
j − nPk

0

= [(
1
2
− h(vk))(Pk−1

0 + Pk−1
1 ) + h(vk)(Pk−1

2 + Pk−1
n )] + · · ·

+ [(
1
2
− h(vk))(Pk−1

0 + Pk−1
i ) + h(vk)(Pk−1

i+1 + Pk−1
i−1 )] + · · ·

+ [(
1
2
− h(vk))(Pk−1

0 + Pk−1
n−1) + h(vk)(Pk−1

n + Pk−1
n−2)]

+ [(
1
2
− h(vk))(Pk−1

0 + Pk−1
n ) + h(vk)(Pk−1

1 + Pk−1
n−1)]

− n[(1 − nαk−1)Pk−1
0 + αk−1

n

∑
j=1

Pk−1
j ]

= n(
1
2
− h(vk))Pk−1

0 + (
1
2
+ h(vk))

n

∑
j=1

Pk−1
j − n[(1 − nαk−1)Pk−1

0 + αk−1
n

∑
j=1

Pk−1
j ]

= (
5m − 3n

8m
− 3n − m

8m
v0

5k )Ak−1.

In this way, we have

Pk+1
0 − Pk

0 = αk Ak = · · · = αk
k

∏
j=1

(
5m − 3n

8m
− 3n − m

8m
v0

5j )A0.

Therefore, the corresponding limit position is

P∞
0 = P0

0 +
∞

∑
k=0

(Pk+1
0 − Pk

0 ) = P0
0 +

∞

∑
k=0

αk Ak = P0
0 +

∞

∑
k=0

αk
k

∏
j=1

(
5m − 3n

8m
− 3n − m

8m
v0

5j )A0

= λ
n

∑
j=1

P0
j + (1 − nλ)P0

0 ,

where λ =
∞
∑

k=0
αk

k
∏
j=1

( 5m−3n
8m − 3n−m

8m
v0

5j ).

From Theorem 5, it can be seen that when v0 = 0, the corresponding limit position
in (9) actually reduces to the one in (8).
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4. Discussion on the Local Control

In this section, we provide a non-uniform version of the scheme {Sak}k≥0 to locally
control the limit surface.

To achieve this, we use a method similar to the local control discussion in [10]. To be
more specific, we set different initial parameters v0

i to different initial points and use the

average of them v0
e := 1

n

n−1
∑

i=0
v0

i as the initial parameter for a new edge point generation.

As for the correspondence of the points in the coarse mesh and the ones in the refined
mesh, we use the iteration vk+1 = vk

5 for the parameters of new vertex points and new edge
points. Then, we replace αk with αk

i = 3
m h(vk+1

i ) and h(vk) with h(vk
e) in Figure 1. In this

way, we can achieve the desired non-uniform version of the scheme {Sak}k≥0, which is
not symmetric.

For such a non-uniform scheme, we point out that when k → ∞, it still tends to the
Loop subdivision Sa. The smoothness of this non-uniform scheme in the regular part of the
mesh can be calculated as in [10]. As for the smoothness near the extraordinary points, it
can be seen that all the conditions of Theorem 2 are satisfied, and thus, it still has tangent
plane continuity at the limit positions of extraordinary points.

Figure 3 shows the surfaces generated by this new non-uniform scheme starting from
the initial mesh in Figure 4 (left) with different values of the parameter v0

∗,2 corresponding
to the point indexed by ∗ and 2, while others are the same. From Figure 3, we can see the
change of the limit surface with the change of v0

∗,2 and find that the limit surface tends to
generate a cusp as v0

∗,2 increases.

Figure 3. Surfaces generated by the new non-uniform scheme with v0
∗,2 = 4, 2, 0,−4,−8 (left to right)

with other initial parameters set to 0 from the initial mesh in Figure 4 (left).

Figure 4. Initial mesh with indexed point (left) and the corresponding surface (right) using {Sak}k≥0

with v0 = −8.5229.

5. Interpolation of Initial Points

Based on the analysis in Sections 3, we now move a further step to discuss the interpo-
lation of initial points.

In connection with the initial points interpolation, several works have been conducted
using approximating subdivision. For example, Sun and Lu [17] presented a progressive
interpolation, while Zheng and Cai [22] proposed a two-phase subdivision to interpolate
the initial mesh based on the Catmull–Clark subdivision. Other similar works can be found
in [23,24] and the references therein.

Differently from these works, we use the limit position in (9) to interpolate initial
control points. To do this, we just need to let the initial point P0

0 equal its limit point P∞
0 ,
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i.e., P0
0 = P∞

0 , so as to obtain the value of v0. Specifically, to interpolate an initial point with
valence n from the limit position in (9), let v0 = −8.5529 when n = 3 and v0 = −8.7187
when n ̸= 3. Then, the corresponding value of λ in (10) is about 10−6.

As an example, we derive the surface crossing the initial points in the initial mesh in
Figure 2 (left). Note that any point of this initial mesh has a valence of 3, and thus, we set
v0 = −8.5529. Figure 5 shows the surface interpolating the initial mesh in Figure 2 (left)
using the new non-uniform subdivision.

Remark 2. We can also use the iteration coming from the generation of exponential polynomials,

i.e., φ(vk+1) =
√

vk

2 + 1
2 with v0 ∈ (−1, ∞), and obtain the corresponding limit position of initial

points. However, the corresponding scheme cannot reach the initial points, as this requires λ in (10)
to be 0, which is impossible for v0 ∈ (−1, ∞).

In fact, it can be seen that λ in (10) depends on the valence n. Thus, with a certain initial
parameter, the subdivision {Sak}k≥0 can only interpolate points with certain valence but
not all of them when the initial points have different valences. Figure 4 shows the surface
(right) starting from the mesh (left) using {Sak}k≥0 with v0 = −8.5229. From Figure 4, it
can be seen that the point indexed by ∗ and 1 with valence 5 cannot be interpolated.

Figure 5. Surface obtained from the initial mesh in Figure 2 (left) interpolating the initial points using
the new non-uniform subdivision with v0 = −8.5529.

Now, with the local control discussion, we provide a way to interpolate all the initial
points. To achieve this, similar to Theorem 5, we first provide the corresponding limit
positions of the initial points for this new non-uniform scheme as follows.

Theorem 6. With the non-uniform generalization of the scheme {Sak}k≥0, the limit position of the
initial point P0

0 with 1-ring neighborhood points P0
j , j = 1, ..., n, is

P∞
0 = (1 − nλ)P0

0 + λ
n

∑
j=1

P0
j ,

with

λ =
∞

∑
k=0

αk+1
0

k

∏
j=1

(
5
8
− 3n

8m
+

v0
e

8
1
5j −

3n
8m

v0
0

5j ), with m =

{
2, n = 3

n, n > 3.

Proof. In fact, from the proof of Theorem 5, the distance between Pk+1
0 and Pk

0 can be
written as

Pk+1
0 − Pk

0 = αk Ak
0,

where Ak
0 =

n
∑

j=1
(Pk

j − Pk
0 ).
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For Ak
0, it can be computed that

Ak
0 =

n

∑
j=1

Pk
j − nPk

0

=[(
1
2
−h(vk

e))(Pk−1
0 +Pk−1

1 )+h(vk
e)(Pk−1

2 +Pk−1
n )] + · · ·

+ [(
1
2
−h(vk

e))(Pk−1
0 +Pk−1

i )+h(vk
e)(Pk−1

i+1 +Pk−1
i−1 )] + · · ·

+ [(
1
2
− h(vk

e))(Pk−1
0 + Pk−1

n−1) + h(vk
e)(Pk−1

n + Pk−1
n−2)]

+ [(
1
2
− h(vk

e))(Pk−1
0 + Pk−1

n ) + h(vk
e)(Pk−1

1 + Pk−1
n−1)]

− n[(1 − nαk−1
0 )Pk−1

0 + αk−1
0

n

∑
j=1

Pk−1
j ]

= n(
1
2
−h(vk

e))Pk−1
0 + (

1
2
+h(vk

e))
n

∑
j=1

Pk−1
j − n[(1−nαk−1

0 )Pk−1
0 + αk−1

0

n

∑
j=1

Pk−1
j ],

= (
1
2
+h(vk

e)− nαk−1
0 )Ak−1

0 ,

= (
5
8
− 3n

m
+

vk
e

8
−

3nvk
0

8m
)Ak−1

0 .

In this way, we have

Pk+1
0 − Pk

0 = αk−1
0 Ak

0 = · · · = αk
0

k

∏
j=1

(
5
8
− 3n

m
+

vk
e

8
−

3nvk
0

8m
)Ak−1

0 .

Therefore, the corresponding limit position is

P∞
0 = P0

0 +
∞

∑
k=0

(Pk+1
0 − Pk

0 ) = P0
0 +

∞

∑
k=0

αk
0 Ak

0 = P0
0 +

∞

∑
k=0

αk
0

k

∏
j=1

(
5
8
− 3n

m
+

vj
e

8
−

3nvj
0

8m
)A0

= λ
n

∑
j=1

P0
j + (1 − nλ)P0

0 ,

where λ =
∞
∑

k=0
αk

0

k
∏
j=1

( 5
8 − 3n

m + v0
e

8
1
5j −

3nv0
0

8m
1
5j ).

As an example, we take the mesh with 8 points and 2 of them with valence 3, i.e., the
one in Figure 4 (left). According to Theorem 6, to interpolate the initial points, we need the
corresponding initial parameters v0

1 (to the initial points with valence n = 3) and v0
2 (to the

initial points with valence n > 3) to satisfy
f1 :=

∞

∑
k=0

(1 +
v0

1
5k+1 )

k

∏
j=1

[
1
16

+
1
5j

pv0
1

8ñ
+

1
5j

(ñ − p)v0
2

8ñ
− 9

16
v0

1
5j ] = 0,

f2 :=
∞

∑
k=0

(1 +
v0

2
5k+1 )

k

∏
j=1

[
1
4
+

1
5j

pv0
1

8ñ
+

1
5j

(ñ − p)v0
2

8ñ
− 3

8
v0

2
5j ] = 0.

(11)

Here, p = 2, and ñ = 8. It can be computed that, when (v0
1, v0

2) = (−8.52466,−8.72849),
f1, f2 in (11) is about 10−7.

Figure 6 shows the surface obtained by this new non-uniform scheme starting from
the mesh in Figure 4 (left). The initial parameters are set to be −8.52466 for points with
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valence 3 and −8.72849 for points with valence n > 3. From Figure 6, we can see that the
limit surface indeed interpolates initial points with different valences.

Figure 6. Surface obtained by this new non-uniform scheme starting from the mesh in Figure 4 (left)
with initial parameter −8.52466 for points with valence 3 and −8.72849 for points with valence n ̸= 3.

In fact, compared with the existing methods to interpolate initial points, a non-
stationary Loop subdivision with a non-uniform generalization is used directly to in-
terpolate the initial points. Thus, the new method in this paper has all of the subdivision’s
advantages, such as locality and efficiency. Therefore, this new method can be used to
construct smooth interpolating surfaces with different shapes and can even be applied in
fields like scientific visualization.

6. Conclusions

This paper proposed a symmetric non-stationary Loop subdivision controlling the
shape of the limit surface, which is based on a suitable iteration. For such a scheme, we
show that it is C2 convergent in the regular part of the mesh and tangent plane continuous
at the limit positions of extraordinary points. Additionally, the limit position of the initial
points is also given, which can be used to interpolate initial points. We also provide a
non-uniform generalization to locally control the shape of the limit surface together with
the corresponding limit position. Although this scheme can interpolate the initial points, it
still requires computation of the initial value of parameters. We hope to provide a more
simple and efficient way to interpolate the whole initial mesh and inflect the initial mesh
well. Furthermore, we also hope to discuss the corresponding applications in fields like
chemical modeling.
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