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Abstract: Recently, a signal sorting algorithm based on the congruence transform has been proposed,
which is effective in dealing with the staggered Pulse Repetition Interval (PRI) signals. It can
effectively sort the staggered PRI signals and obtain the sub-PRI sequence directly without sub-PRI
ranking, and it is less affected by interfered pulses and pulse loss. Nevertheless, we find that the
algorithm causes pseudo-peaks in the remainder histogram when sorting signals such as sliding PRI,
sinusoidal PRI, etc. (collectively referred to as periodic PRI signal in this paper) and pseudo-peaks
will cause errors in signal sorting. To solve the issue of pseudo-peaks when sorting periodic PRI
signals, an improved sorting algorithm based on congruence transform is proposed. According to the
analysis of the congruence characteristics of the periodic PRI signal, a novel method is proposed to
identify pseudo-peaks based on the histogram peak amplitude and symmetric difference set. The
signal sorting algorithm based on congruence transform is improved to achieve a good sorting effect
on periodic PRI signals. Simulation experiments demonstrate that the novel algorithm can effectively
sort periodic PRI signals and improve Precall, Pd, and Pf by 6.9%, 5.1%, and 3.2%, respectively,
compared to the typical similar algorithms.

Keywords: periodic PRI signals; improved algorithm; signal sorting; congruence transform

1. Introduction

In electronic support system signal processing, radar signal sorting is a critical task.
The purpose of signal sorting is to distinguish different radar emitter signals. This is
essential for extracting features and identifying radar emitter signals [1–5]. Generally, there
are two types of radar signal sorting methods [6,7]: one involves pre-sorting algorithms
based on parameter correlation, and the other focuses on PRI sorting methods based on the
correlation of Time Of Arrival (TOA) between pulses. The process of de-interleaving pulse
sequences based on TOA and identifying modulation types based on PRI can be used to
sort multiple interleaved radar emitter signals by utilizing the relevance from the same
emitter. This is an effective method for sorting radar emitter signals.

Classical PRI sorting algorithms include the cumulative difference histogram (CDIF)
algorithm [8] and the CDIF-based sequential difference histogram (SDIF) algorithm [9]. The
two algorithms are easy to implement and have high sorting efficiency. However, they can-
not suppress harmonics generated by pulse loss and have poor sorting ability for complex
modulation signals, such as staggered PRI and sliding PRI. To overcome the problem of
pulse loss, Xie, M. proposed a first-order difference curve based on a sorted TOA difference
sequence algorithm (FDC-DTOA) which can suppress harmonics generated by pulse loss.
But it has poor sorting ability for complex modulation signals [10]. For the case of missing
and short observations, Guo, Q. proposed a radar pulse train de-interleaving method which
is particularly suitable for the interleaving of the short and highly interleaved missing pulse
train in complex electromagnetic environments. However, this method cannot sort periodic
PRI signals and the complexity of the algorithm is high [11]. The PRI transform algorithm
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has a good capability for suppressing harmonics, but it cannot sort signals with staggered
PRI, sliding PRI, or other complex modulation types [12]. To address the issue of the
poor sorting capability of the PRI transform algorithm for PRI modulated signals, Liu and
Kocamis combined the PRI transform algorithm with the sequence extraction algorithm
to estimate the frame period of staggered PRI signals. This allows for PRI assessment of
the environment after extracting sub-PRI sequences to sort staggered PRI signals [13,14].
Liu, Z.M. proposed a frequent term expansion algorithm, which can effectively identify
staggered PRI signals. But it cannot sort interleaved pulses [15]. Kang, S.Q. introduced a
measure of interest degree for association patterns based on a frequent term expansion al-
gorithm. This measure can be used to sort and identify staggered PRI signals in interleaved
pulse sequences. However, the stop condition of the algorithm is too complex, making it
difficult to implement in engineering [16]. Wang, J.L. proposed a method to establish a
pulse interval distribution matrix by connecting pulse pair intervals and individual pulses.
This achieves simultaneous harmonic suppression and frame period extraction, based on
the extended correlation method and eigenvector method [17]. However, this method
requires the ranking of the staggered PRI signal sub-sequence. In [18,19], a correlation
matching algorithm is proposed for signal detection and parameter extraction of staggered
PRI signals. The algorithm operates in an orthogonal Ramanujan subspace with fewer
non-zero elements for reducing computational complexity. However, it has limited adapt-
ability to sinusoidal PRI and sliding PRI. In [20], a framework of fuse multiple existing
pulse train de-interleaved methods is proposed, which can be used to separate individual
pulse trains included in the received pulse trains. It has the best robustness for missing
pulse and PRI jitter, and can effectively de-interleave the received pulse train with PRI
stagger and jittered PRI. Dong, H. proposed a PRI sorting algorithm based on congruence
transform by utilizing the periodicity of PRI, which can sort fixed PRI and staggered PRI
signals effectively [21]. It has good anti-pulse loss and anti-interference properties without
sub-PRIs ranking, but cannot suppress the residual histogram pseudo-peaks when sorting
periodic PRI signals.

To deal with the pseudo-peaks’ problems in the signal sorting of the periodic PRI, an
improved signal sorting algorithm based on the congruence transform is proposed. Firstly,
from the point of view of periodicity, this paper establishes a periodic PRI signal model
and analyses the characteristics of the signal. Secondly, according to the analysis of the
congruence characteristics of the periodic PRI signal, a method is proposed to identify
pseudo-peaks based on the histogram peak amplitude and symmetric difference set, and
the specific flow of the improved algorithm is given. Finally, the validity of the proposed
algorithm is verified by simulation experiments.

2. Model and Analysis
2.1. Signal Model of Periodic PRI

When only TOA is considered, the pulse trains detected by the receiver can be writ-
ten as

P(t) =
N

∑
n=1

δ(t − tn) (1)

where δ(t) is the impulse function, tn is the TOA of the nth pulse, and N is the number of
pulses. The change pattern of tn reflects the type of modulation of the PRI.

When tn follows a sawtooth wave, sinusoidal or linear, the PRI modulation type of
the pulse sequence could be slip, sinusoidal, or another modulation type [22], as shown in
Figure 1.
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where tk is the TOA of the pulse sequence within the frame period, Sub(t) is the sub-pulse 
sequence, Tz is the frame period, and K > 1. 

2.2. Analysis of Periodic PRI Signal Based on Congruence Transform 
From Equation (2), the periodic PRI signal can be regarded as the superposition of 

multiple fixed PRI pulse sequences with period Tz; then, the TOA of kth fixed PRI pulse 
sequences can be written as 
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Figure 1. PRI modulation signal: (a) sliding PRI signal sequence; (b) sinusoidal PRI signal sequence.

Similar to the staggered PRI signal model mentioned in Dong, H.’s work [21], the
pulse trains with sliding PRI, sinusoidal PRI, and other PRI modulation (repeats with the
frame period Tz) can be regarded as a superposition of the fixed PRI pulse sequence with a
different start time, as shown in Figure 2.
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Figure 2. Periodic PRI signal pulse sequence.

The periodic PRI signal model is expressed as

P(t) =
K
∑

k=1

Nk
∑

nk=1
δ(t − tk − nkTz) nk = 1, 2, . . . , Nk

Tz =
K−1
∑

k=1
PRIk =

K−1
∑

k=1
(tk+1 − tk)

Sub(t) =
K
∑

k=1
δ(t − tk)

(2)

where tk is the TOA of the pulse sequence within the frame period, Sub(t) is the sub-pulse
sequence, Tz is the frame period, and K > 1.

2.2. Analysis of Periodic PRI Signal Based on Congruence Transform

From Equation (2), the periodic PRI signal can be regarded as the superposition of
multiple fixed PRI pulse sequences with period Tz; then, the TOA of kth fixed PRI pulse
sequences can be written as

TOAk(n) = tk + nTz, n = 1, 2, 3 · · · (3)

If we calculate the congruence transform of the TOA for periodic PRI signals modulo
positive integer T0, then we obtain

mod[TOAk(n), T0] = mod[tk, T0] + mod[nTz, T0] (4)

where mod[·] denotes the remainder operation.



Symmetry 2024, 16, 398 4 of 14

2.2.1. Congruence Transform of Periodic PRI Signal

When T0 = Tz, Equation (4) can be simplified as

mod[TOAk(n), T0] = mod[tk, T0] (5)

Equation (5) shows that the TOA of all pulses has the same remainder. The remainder is
related only to the TOA of the first pulse tk, and is independent of the pulse index number
n, and this process is called congruent transform in [21].

Then, congruence transform is conducted on the periodic PRI signals such as sliding
PRI with PRIs as {PRI|PRI = 100 + 2n, n = 1, 2, . . ., 5} and sinusoidal PRI with PRIs as
{PRI|PRI = 100 + 10sin (2πn/12), n = 1, 2, . . ., 12}. The results we obtained are shown in
Figure 3.
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Figure 3. Histogram of remainder for different PRI modulation types: (a) remainder histogram of
sliding PRI; (b) remainder histogram of sinusoidal PRI.

From Figure 3a, it can be seen that the periodic PRI signals after the congruence
transform are gathered at five points, 8 µs, 118 µs, 220 µs, 324 µs, and 430 µs, with a frame
period of 530 µs. {8 µs, 118 µs, 220 µs, 324 µs, 430 µs} are exactly the tk of the pulse sequence.
Thus, we can obtain the PRIs as {102 µs, 104 µs,106 µs, 108 µs} by adjacent subtraction
operation with {8 µs, 118 µs, 220 µs, 324 µs, 430 µs}. Then, another PRI 110 µs can be
obtained by subtraction operation with {102 µs, 104 µs, 106 µs, 108 µs} and 530 µs. {102 µs,
104 µs, 106 µs, 108 µs, 110 µs} are the sub-PRIs of the sliding PRI signal. Similarly, the
same conclusion can be drawn from Figure 3b in the case of sinusoidal PRI signals. It can
be concluded that the staggered PRI signal sequence undergoes a congruent transform
modulo the frame period gathered in mod(tk, Tz).

When T0 ̸= Tz, if T0 ̸= mTz and Tz ̸= mT0, Equation (4) can be written as{
mod[TOAk(n), T0] = mod[tk, T0] + mod[n∆T, T0]
∆T = mod[Tz, T0]

(6)

It can be seen that the remainders of the TOA of the pulse sequence are not equal, and
they are related to the pulse number n, i.e., as n increases, the remainder increases.

2.2.2. Pseudo-Peak Analysis of the Congruence Transform

When T0 ̸= Tz, if T0 = mTz or Tz = mT0, m is an integer greater than 1. Under the
condition of T0 = mTz, the value of T0 is m times the actual frame period Tz, and then
Equation (4) is converted to

mod[TOAk(n), T0] = mod[tk, mTz] + mod[nTz, mTz] (7)

The remainder of the signal sequence is not only related to tk, but also related to the value
of m. The number of peaks in the congruence transform results is m times the number in
Figure 3.
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The congruence transform is conducted on the same data of Figure 3 with modulo
positive integer T0 = mTz (m = 2). The results are shown in Figure 4.
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Figure 4. Histogram of remainder for different PRI modulation types: (a) remainder histogram of
sliding PRI with a frame period of 1060 µs; (b) remainder histogram of sinusoidal PRI with a frame
period of 2400 µs.

In Figure 4a, the periodic PRI signals after the congruence transform are gathered at
ten points, 8 µs, 118 µs, 220 µs, 324 µs, 430 µs, 538 µs, 648 µs, 750 µs, 854 µs, and 960 µs,
with a frame period of 1060 µs. As shown in Figure 4a, when T0 = mTz, the congruence
transform produces a lot of pseudo-peaks. Similarly, the same conclusion can be drawn
from Figure 3b in the case of sinusoidal PRI signals.

When Tz = mT0, the value of T0 is taken as 1/m of the frame period, and Equation (4)
is converted to

mod[TOAk(n), T0] = mod
[
tk, Tz

m

]
+ mod

[
nTz, Tz

m

]
= mod

[
tk, Tz

m

] (8)

Under this condition, the congruence transform is conducted on the same data of
Figure 3 modulo positive integer T0 = mTz (m = 2); the results are shown in Figure 5.
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Figure 5. Histogram of remainder for different PRI modulation types: (a) remainder histogram of
sliding PRI with a frame period of 265 µs; (b) remainder histogram of sinusoidal PRI with a frame
period of 600 µs.

In Figure 5a, the periodic PRI signals after the congruence transform are gathered at
ten points, 8 µs, 59 µs, 118 µs, 165 µs, and 220 µs, with a frame period of 265 µs. We can
obtain the sub-PRIs of the sliding PRI signal {51 µs, 59 µs, 47 µs, 35 µs, 45 µs} with the same
calculations as in Section 2.2.1. Sub-PRIs {51 µs, 59 µs, 47 µs, 35 µs, 45 µs} are not equal
to the true sub-PRIs {102 µs,104 µs,106 µs,108 µs,110 µs}. As shown in Figure 5a, when
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T0 = Tz/m (m = 2), peaks of the congruence transform are all pseudo-peaks. Similarly, the
same conclusion can be drawn from Figure 5b in the case of sinusoidal PRI signals.

To sum up, three conclusions can be drawn as follows. If T0 = Tz, the remainder of the
periodic PRI sequence is a fixed value, and the number of pulses with the same remainder
satisfies the Formula (5), and the position of the remainder histogram peaks can reflect the
value and order of the sub-PRIs; if T0 ̸= Tz, T0 = mTz or Tz = mT0, (m is an integer greater
than 1), the histogram has several peaks, but the size, number, and position of peaks will
change, which cannot reflect the value and order of sub-PRIs; when T0 ̸= Tz, T0 ̸= mTz or
Tz ̸= mT0, the remainders of the pulse sequence are not equal and are related to the pulse
order number n, and there are no more peaks in the histogram.

3. Periodic PRI Signal Sorting
3.1. Principle of Periodic PRI Signal Sorting

For periodic PRI signals, the change rule of the sub-PRI is different from that of
the staggered PRI signals, which will have an impact on the design of the signal sorting
algorithm. Since the change rule of the sub-PRI can be expressed as a certain function, the
frame period may be a multiple of the sub-PRI, i.e.,

Tz = m
L

∑
k=1

PRIk, L < K (9)

where m, L, and K are positive integers and Tz is the frame period. We can conclude that the
congruence transform produces a lot of pseudo-peaks based on the analysis in Section 2.2.2.
Then, the periodic PRI signal is truncated into some sequences using the baseline algorithm
in [21], which will cause errors in the signal sorting. Therefore, this paper proposes an
improved sorting algorithm for periodic PRI signals based on congruence transform.

From the analysis of Equation (5) in Section 2.2.1, the pulse number with the same
remainder Nm0 in congruence transform is as follows:

Nm0 =

(
TOAend − TOAbegin

)
Tz

+ 1 (10)

where TOAbegin and TOAend are the first TOA and the last TOA of the pulse sequence,
respectively.

Considering the pulse loss condition, the pulse number with the same remainder
Nm0 satisfies

Nm0 <

(
TOAend − TOAbegin

)
Tz

+ 1 (11)

When T0 = mTz, the value of T0 is m times the actual frame period Tz. The remainder of the
signal sequence is not only related to tk, but also related to the value of m. The number of
pulses with the same remainder Nm0 satisfies

Nm0 ≤

(
TOAend − TOAbegin

)
mTz

+ 1 (12)

When T0 = Tz/m, the value of T0 is taken as 1/m of the frame period, and the number of
congruent pulses Nm0 satisfies

Nm0 ≤

(
TOAend − TOAbegin

)
mT0

+ 1 (13)
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i.e.,

Nm0 ≤

(
TOAend − TOAbegin

)
Tz

+ 1 (14)

Based on (10), (12) and (14), pseudo-peaks in the T0 = mTz condition can be identified
and eliminated.

Definition: Symmetric Difference Set. The symmetric difference set of A and B is
defined as the set of all elements of set A and set B. They are not part of A∩B, and are
denoted as A∆B,

A∆B = {x|x ∈ A ∪ B, x /∈ A ∩ B} (15)

From the analysis in Section 2, it can be seen that the sub-PRIs of the periodic PRI
signals can be directly computed from the result of the congruence transformation at
T0 = Tz, denoted as set Θ. Meanwhile, the sub-PRIs of the periodic PRI signals can also
be estimated from the extraction sequence, denoted as set Γ. Obviously, when T0 = Tz,
then Θ∆Γ = Ø; when T0 = Tz/m, then Θ∆Γ ̸= Ø. Therefore, pseudo-peaks in the T0 = Tz/m
condition can be identified and eliminated.

3.2. Flow of Periodic PRI Signal Sorting Algorithm

According to the analysis above, we propose an improved sorting algorithm of periodic
PRI signals based on congruence transform, and the algorithm flow chart is shown in
Figure 6.
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The specific steps are as follows:
Step 1: Input the TOA sequence of the signal to be sorted;
Step 2: Set the value range of the frame period as [Tmin, Tmax], the search step ∆t, and

the frame period Tz = Tmin + (i − 1) ∆t for the ith calculation;
Step 3: Calculate the remainder of the signal sequence modulo positive integer Tz

to obtain the set Φ which is composed of the remainders of the pulse sequence, and
calculate the vector a corresponding to the histogram of the set Φ which is composed of
the remainders of the pulse sequence;

Step 4: Set a histogram detection threshold ε, and when the amplitude of vector a is
less than ε, make the amplitude zero, then obtain a detected histogram vector b;

Step 5: The non-zero values in vector b are judged by using the conditions of
Equations (10), (12) and (14) to remove the pseudo-peaks and obtain vector c;

Step 6: If there is a non-zero value in c, determine whether the frame period Tz exists,
group the pulse sequences with the same remainder together according to the histogram,
and complete the signal sorting. And the set Γ is constructed. Extract the remainder vector
d corresponding to the peak of the sequence remainder histogram, and find the difference
in the neighboring elements of vector d to obtain the sub-PRI. And the set Θ is constructed;

Step 7: Compute the symmetric difference between set A and set B;
Step 8: if Θ∆Γ = Ø, then extract the remainder vector d corresponding to the peak

of the sequence remainder histogram and the rest of the pulse sequences are used as new
inputs, then go to step 1; otherwise, go to step 2;

Step 9: Output sequence of the signal has been sorted.

3.3. Computational Complexity Analysis

According to the steps above, the proposed algorithm needs to search in the range
of [Tmin, Tmax] during the operation, and the search step is ∆t. The algorithm needs to be
performed P times of remainder histogram operations, with P = floor [(Tmax − Tmin)/∆t].
Floor[.] is a downward rounding operation. If the number of pulses is N, the computational
complexity of the algorithm is O(NP). Since N and P belong to the same order of magnitude,
the overall time cost of running the algorithm is O(N2), which is similar to that of the PRI
transform algorithm and the algorithm in [21].

4. Simulation and Discussion

In order to verify the performance of the algorithm proposed in this paper, Precall
in [23,24] is used as a measure of the algorithm’s performance in one snap in the presence
of Q radar emitters, which is defined as follows:

precall =
1
Q

Q

∑
i=1

TPi
Pi

(16)

where TPi is the number of pulses for which the ith radar emitter is sorted out and Pi is the
number of pulses that really exist.

To measure the overall sorting performance of the algorithm, the statistical proba-
bility of false alarm Pf and the probability of correct sorting Pd are used to measure the
performance of the algorithm

Pf =
1

Np

Np

∑
i=1

Qsi
Qi

(17)

Pd =
1

Np

Np

∑
i=1

Qdi
Qi

(18)

where Np is the total number of snap of the sorted signal sequence, Qsi is the number of
radar emitters from the additional batch in the ith snap that are included in the sorting
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result, Qdi is the number of radar emitters of the sorting result in the ith snap that satisfies
Equation (17), and Qi is the number of radar emitters that really exist in the ith snap.

The simulation experiment parameter settings are shown in Table 1.

Table 1. Signal parameters of radar emitters.

Emitter No. PRI Value
(µs)

Frame
Period (µs) Sub-PRIs (µs) Noise Error

(%)
Missing
Rate (%) Pulse Number

Radar 1 415 — — [0, 40] [0, 40] [5, 100]
Radar 2 — — 110 + 10sin (2πn/5), n = 1, 2, . . ., 5 [0, 40] [0, 40] [5, 100]
Radar 3 — — 80 + 2n, n = 1, 2, . . ., 6 [0, 40] [0, 40] [5, 100]
Radar 4 — 367 119, 121, 127 [0, 40] [0, 40] [5, 100]
Radar 5 387 — — [0, 40] [0, 40] [5, 100]
Radar 6 — — 87 + 10cos (2πn/12), n = 1, 2, . . ., 12 [0, 40] [0, 40] [5, 100]
Radar 7 — — 91 + 3n, n∈[1, 5]; 124 − 3n, n∈[6, 10] [0, 40] [0, 40] [5, 100]
Radar 8 — 798 111, 131, 147, 119, 123, 167 [0, 40] [0, 40] [5, 100]

Note: “—” Indicates that no parameter setting.

4.1. Experiment 1: Algorithm Validity Experiment

The radar emitters 1,2,3,4 in Table 1 are selected to form a signal environment: (1) a
fixed PRI signal sequence with PRI of 415 µs, and the TOA of the first pulse is 15 µs; (2) a
sinusoidal modulated signal sequence with PRI center value of 110 µs, and the pattern of
the single-frame is sin (2πn/5) with n = 1, 2,. . ., 5, and the first pulse arrival time is 35 µs;
(3) the PRI start value is 80 µs of the sliding PRI signal, the single-frame change pattern is
2n, (n is the pulse number and n = 1, 2,. . ., 6, with a first pulse arrival time of 118 µs); (4) a
3-staggered PRI signal sequence with a sub-PRI of [119 µs 121 µs 127 µs], the first pulse
arrival time is 91 µs.

Figure 7 shows the congruence transform and detection results of the signal sequence
in the signal environment of Experiment 1. From Figure 7a, it can be seen that the remainder
histogram of the interleaved signal has a peak in the frame period in the periodic PRI signal,
and the histogram of the remainder has a small value in the other values. The peak detection
leads to Figure 7b, where the remainder histogram has peaks at frame periods of 367 µs,
415 µs, 500 µs, and 522 µs. The location of the peaks is consistent with the conclusion of
Equation (10). It means that direct acquisition of the sub-PRI sequences is allowed, and the
proposed periodic PRI signal sorting algorithm is efficient.
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4.2. Experiment 2: Experiment on the Effect of the Number of Emitters on the Performance of
the Algorithm

To verify the performance of the algorithm further, 100 times randomly selected 2, 3, 4,
5, 6, and 7 radar emitter signals in Table 1 are combined to form a sequence of overlapping
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signals under different signal environments. Both the pulse loss ratio and the interference
pulse ratio are set to 5%. The experiments are processed using the algorithm in [19], the
algorithm in [21], and the algorithm of this paper, respectively. The Precall, Pf, and Pd of
the algorithm under the conditions of different numbers of radar emitters are shown in
Figure 8.
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Figure 8. Sorting performance under different number of emitters: (a) average pulse recall; (b) proba-
bility of false alarm; (c) sorting probability of correct.

It can be seen from Figure 8a that, with the increase of the number of emitters, the
pulse recall of the algorithm proposed in [19,21] and this paper decreases. In the case of
7 radar emitter signals being interleaved, the pulse recall of this paper’s algorithm is about
89%, the pulse recall of the [21] algorithm is about 82%, and the pulse recall of the [21]
algorithm is about 58%. Similarly, in Figure 8b,c, the algorithm in this paper outperforms
those in [19,21] in terms of the probability of false alarms and the probability of detection.

As the number of emitters increases, the signals from the radar emitters interfere
with each other, which affects the sorting performance of the algorithm, decreasing the
algorithm’s performance. The performance of the algorithm in [21] and the algorithm in
this paper is closer when the number of emitters is small, and, as the number of emitters
increases, the performance gap between the two algorithms increases. This is caused by the
different performance of the two algorithms in adapting to the signals of radars 2, 3, 6, and
7. The algorithm in [19] has worse sorting performance for both periodic PRI signals and
staggered PRI signals than the algorithms in this paper and in [21].

4.3. Experiment 3: Experiment on the Impact of Pulse Loss Rate on Algorithm Performance

Simulation setting: In order to verify the performance of the algorithm in a complex
electromagnetic environment, 100 experiments are performed. Emitter signals 2, 3, 4, 5, 6,
and 7 in Table 1 are randomly selected and combined to form a sequence of overlapping
signals under different signal environments. The loss rate takes the value of [10%, 20%,
30%, 40%], which is processed using the algorithms in [19,21] and this paper, respectively.
Figure 9a–c show the performance of algorithms in this paper, [19,21] in terms of Precall,
Pf, and Pd, respectively. Different colors and flags are used to distinguish the curves with
different pulse loss rates.

In Figure 9, the performance of Precall, Pf, and Pd of the algorithm in [19,21] and this
paper decreases with an increase in the number of emitters. With the increase in pulse loss
rate, the performance of Precall, Pf, and Pd of the algorithm decreases in [19,21] and this
paper. The performance of this paper’s algorithm is better than that in [19,21], and the
algorithm has good adaptability to pulse loss.
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Figure 9. Impact of pulse loss rate on algorithm performance under different number of emitters:
(a) sorting performance of the algorithm in this paper; (b) sorting performance of the algorithm
in [21]; (c) sorting performance of the algorithm in [19].

4.4. Experiment 4: Experiment on the Effect of Interference Pulse on Algorithm Performance

Simulation setting: To verify the performance of the algorithm in a complex elec-
tromagnetic environment, 100 experiments are performed. Emitter signals 2, 3, 4, 5, 6,
and 7 in Table 1 are randomly selected and combined to form a sequence of overlapping
signals under different signal environments. The interference pulse rate takes the value of
[10%, 20%, 30%, 40%], which is processed using the algorithms in [19,21] and this paper,
respectively. Figure 10a–c show the performance of algorithms in this paper, [19,21] in
terms of Precall, Pf, and Pd, respectively. Different colors and flags are used to distinguish
the curves with different interference pulse rates.
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Figure 10. Impact of interference pulse ratio on algorithm performance under different number
of emitters: (a) sorting performance of the algorithm in this paper; (b) sorting performance of the
algorithm in [21]; (c) sorting performance of the algorithm in [19].

In Figure 10, the performance of Precall, Pf, and Pd of the algorithm in [19,21] and
this paper decreases with an increase in the emitters’ number. With an increase in the
interference pulse rate, the performance of Precall, Pf, and Pd of the algorithm decreases
in [19,21] and this paper. The performance of this paper’s algorithm is better than that
in [19,21], and the algorithm has good adaptability to interference pulses.

5. Conclusions

This paper discusses the application of congruence transform in periodic PRI signals
sorting. Based on the analysis of the characteristics of periodic PRI signals, an improved al-
gorithm is proposed. It can sort not only the staggered PRI signals, but also the periodic PRI
signals. This improvement does not come at the expense of sacrificing the advantages of the
algorithm in [21]. The results of the simulation experiments verify the above conclusions.

However, the computational complexity of this algorithm is o(N2), which is not
suitable for large-scale data processing, and the fast computation of this algorithm will be
the focus of future research.
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