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Abstract: This article explores the interconnections among the single-valued neutrosophic grill, single-
valued neutrosophic primal and their stratification, uncovering their fundamental characteristics
and correlated findings. By introducing the notion of a single-valued neutrosophic primal, a broader
framework including the fuzzy primal and intuitionistic fuzzy primal is established. Additionally,
the concept of a single-valued neutrosophic open local function for a single-valued neutrosophic
topological space is presented. We introduce an operator based on a single-valued neutrosophic
primal, illustrating that the single-valued neutrosophic primal topology is finer than the single-valued
neutrosophic topology. Lastly, the concept of single-valued neutrosophic open compatibility between
the single-valued neutrosophic primal and single-valued neutrosophic topologies is introduced,
along with the establishment of several equivalent conditions related to this notion.

Keywords: single-valued neutrosophic primal; single-valued neutrosophic primal topology; single-
valued neutrosophic open compatibility

1. Introduction

Topology, a highly versatile field of mathematics [1], finds extensive application across
both the scientific and social science domains, prompting the emergence of numerous
innovative concepts within its standard frameworks. Kuratowski [2] examined the notion
of ideals derived from filters, which can be seen as dual to filters. The notion of the
fuzzy grill was given by [3]. Chattopadhyay and Thron [4] utilized grills to establish
various topics, including closure spaces, while Thron [5] defined proximity structures
within grills. Roy et al. [6] introduced novel definitions related to grills, with Roy and
Mukherjee [7-9] subsequently exploring diverse topological properties associated with
grills. Numerous applications stemming from these studies are documented in various
works [10-16]. Given the dual nature of primal concerning grills, we draw inspiration from
Jankovi¢ and Hamlett [17] to introduce a new topology based on ideal structures.

The concept of neutrosophic sets, introduced as a generalization of intuitionistic fuzzy
sets, was initially proposed in [18]. Salama et al. [19] and Wang et al. [20] have extensively
investigated neutrosophic sets and their single-valued neutrosophic, abbreviated as son,
counterparts. Numerous applications stemming from these studies are documented in
various works [21-24]. Stratified single-valued soft topogenous structures have been
studied by Alsharari et al. [25].

Saber et al. have conducted extensive research on single-valued neutrosophic soft
uniform spaces, single-valued neutrosophic ideals, abbreviated as svnis, and the connect-
edness and stratification of single-valued neutrosophic topological spaces expanded with
an ideal [26-28]. The neutrosophic compound orthogonal neural network (NCONN), for
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the first time, contained the NsN weight values, NsN input and output, and hidden layer
neutrosophic neuron functions; to approximate neutrosophic functions, NsN data have
been studied by Ye et al. [29]. Shao et al. [30] introduced the concept of the probabilis-
tic single-valued (interval) neutrosophic hesitant fuzzy set, extensively investigating the
operational relations of PINHFS and the comparison method of probabilistic interval neu-
trosophic hesitant fuzzy numbers (PINHFNs). Ridvan et al. [31] examined the notion of the
neutrosophic subsethood measure for single-valued neutrosophic sets. The neutrosophic
fuzzy set and its application in decision-making was defined by Das et al. [32].

The objective of this paper is to explore the inter-relations between the single-valued
neutrosophic grill (svn-grill) and single-valued neutrosophic primal (svn-primal), along with
their stratification, while showcasing some of their inherent properties. Additionally, we
investigate the quantum behaviors within a novel structure denoted as Z; (777, P7"),
as defined in Definition 11. Furthermore, we introduce and analyze both the svn primal and
its associated topology. We also derive several preservation properties and characterizations
regarding svn-primal open compatibility.

2. Preliminaries

This section presents the fundamental definitions and results necessary for our study.
Initially, we define a neutrosophic set (for short, n-set) and a single-valued neutrosophic set
(for short, sun-set). For a more comprehensive understanding of n-set theory and svn-set the-
ory, readers are directed to [18,20,33]. Conventionally, §£ denotes the family encompassing
all sun-sets, defined on £. Here, ¢ = [0,1], §p = (0,1] and forany a € {and z € £, @(z) = a.

We begin with the definition of a neutrosophic set as follows:

Definition 1 ([18]). Let £ be a non-empty set. An n-set on £ is defined as

[1]

={(z%(2), m2(2), 02 (2)) | x € £,7.(2), 72(2),02(2) €] 70,17 [},

representing the degree of membership where (t_(z)), the degree of indeterminacy (71, (z)) and degree
of nonmembership (0 (z)); V z € £ to the set E.

We now discuss the concept of the sun-set, which is a more specific type of neutro-
sophic set.

Definition 2 ([20]). Let £ be a space of points (objects) with a generic element in £ denoted by z.
Then E is called an svn-set in £ if & has the form & = {(z,7,(z), 75 (2),05(z)) | x € £} where
Tz, 75,0z : £ — ¢ = [0,1]. In this case, 0z, 71, and Tz are called the falsity membership function,
indeterminancy membership function and truth membership function, respectively.

An svn-set Z on £ is named as a null svn-set (for short, 0), if 7=(z) = 0, nz(z) = 1 and
os(x) =1,forall z € £.

An svn-set & on £ is named as an absolute svn-set (for short, 1), if 1=(z) = 1, nz(z) = 0
and oz (z) =0, forall z € £.

Example 1. Suppose that £ = {l1,13,13}, 1y is capability, I, is trustworthiness and I3 is price.
The values of 1, I, and I3 are in { = [0,1]. They are obtained from the questionnaire of some domain
experts, their option could be a degree of “good service”, a degree of indeterminacy and a degree of
“poor service”. E is an sun-set of £ defined by

2=(0.2,0.3,0.8) /11 + (0.8,0.2,0.3) /I + (0.7,0.1,0.2) /I,
© is an sun-set of £ defined by

© = (0.6,0.1,0.2) /I; + (0.3,0.2,0.6) /15 + (0.4,0.1,0.5) /I.



Symmetry 2024, 16, 402

3o0f21

To better understand the properties of svn-sets, we will now discuss the complement
of an sun-set.

Definition 3 ([20]). Let Z = {(x, ta(z), tz(z),0a(z)) }e : x € £} be an svn-set on £. The com-
plement of the set & (E°) is defined as follows:

1,.(2) = 02(2), 7 (2) = [)°(2), 0 (2) = T (2).

The following definition provides more insight into the relationships between svn-sets,
introducing the notions of subsets, equality and special sets.

Definition 4 ([34]). Let B, @ € &£, then,
(1) Eis said to be contained in ©, denoted by = C ©, if, for each z € £,

7.(2) < 7 (2), 7(2) > 7 (2), 02(2) > 0 (2).

(2) Eis said to be equal to ©, denoted by & = O, iff E C @ and © C E.

In the context of sun-sets, we introduce definitions related to the intersection and union
of svn-sets. Further, we discuss the concept of a single-valued neutrosophic topological
space (sunts) and the properties it entails.

Definition 5 ([33]). Let B,® € . Then,
(1) EANOisan (sun-set), if Vz € £,

ENO = <(T: A T@)(Z)r (ﬂa v n@)(z), (05 \/0'6)(2)>

where (T N 1) (2) = T2(2) AT (2), (712 V 716) (2) = 712 (2) V 71 (2) and (02, V 0 ) (2) =
0,(z) Vog(z),Vz€£,
(b) EVOisan (svn-set), if Vz € £,

EVO = ((1;V1,)(2), (mz A7ty)(2), (05 Aog)(2)).

Now, we discuss the concept of svnts, which consists of a set £ and three mappings
T, T7,T7 :¢* — { that satisfy specific axioms.

Definition 6 ([27]). An sonts is an ordered (£, 77, T™, T°) where T*, T™, T : {* — L isa
mapping satisfying the following axioms:
(SVNT1) T7(0) =T (1) =1and T*(0) =T77™(1) =T7(0) =T7(1) =0
(SVNT2) THEA®) > T(E)AT(O®), THEAO)ITTE)VTTO),
T(EA®) < T(E)V T(@), for every &,0 € &,
(SVNT3) T*(Viej(Ej) > Nieg T (&), T™(Vjej(Ej) < Vieg T (&),
T7(Vjes(Ej) < Vjey TO(E)), for every E; € et

For the sake of brevity and clarity, we sometimes denote (77,77, 77) as T with-
out causing any ambiguity.

The following theorem establishes an operator that satisfies specific conditions, which
further clarifies the properties of svnts.

Theorem 1 ([27]). Let (£,77) be an sonts. Then, for all v € &y and E € &, we define the
operator Crr, FEx &g — Fas follows:

Crone(B1) = \N{O@FE<O, TH(O)) =7, T(O))<1-71, TU(O)) <1-r}
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Forany &, © ¢ §£ and r,s € Go, the operator C ., satisfies the following conditions:

(Cl) TN ( )

(C2) B < Crnr (E, r).
(C3) Crrne
(C4) Cpony
(C5) Cyrne

E 1)V Crine(©,7) = Crens (EV O, 7).
E, 1) <Crin (©,8)ifr <s.
CTT?TLT (g 1’) ) CTTT[LT (‘;‘, 7’).

3. Stratified Single-Valued Neutrosophic Grill with Single-Valued Neutrosophic Primal

In this section, we explores the interconnections between single-valued neutrosophic
grills (sun-grills ) and single-valued neutrosophic primals (svn-primals), along with their
stratification. We also present a new structure within the context of single-valued neutro-
sophic topology, referred to as an svn-primal. This novel structure is the dual counterpart
to the svn-grill.

We start with the following definition:

Definition 7. A map G7,G™,G : {* — ( is called an svn-grill on £, if it meets the following
criteria:

(G,) G7(0)=0,G"(0) =1,G6°(0) = 1and G7(1) = 1,G™(

(G,) If2 <0, then G*(E) < G'(®),G"(E) > ey

(G) GT"(EVO) <G (E)VGT(O), ¢FEVO)=G"(E)A
G’(®),VE,0O c .

An svn-grill is called stratified iff (GT,G™, G ) satisfies the following condition:
(G,) G (EVR) <G (E)Va, GT(EVR)>GT(E)Aw, GI(EVR)>GI(E)Aa VE €
and a € C.

For the sake of brevity and clarity, we will occasionally denote (G%,G™,G7) as GT7.

A single-valued neutrosophic grill topological space (sungts) is defined as the triple (£, T,

gTTL'G').

0.
) > G°(©),VE,® e &
"0), G°(EVO)=G(T)A

Theorem 2. Let (G7*) be an sun-grill on £. Define GT,G™,G7 : (¥ — ¢

st’

gT(E) = /\ \/ gT(El)\/D(Z )
{@Emlies}ek@) | & m)e{(E )i}

91E) = V A G7(E)Va, b,
{g,m)lie]}ek (@) | € m)e{(E,x)lic]}

e =V A FEIV
{E,m)lie]}ekE) | (E,7)e{(E,7)lic]}

where K() = {{(8,®) |i€ ], ] is finite index set} and E < N\;ej(E, V&) }. Then, (GT,
gr Q”) is the coarsest stratified sun-grill on £ which is finer than (GT,G™,G7).

st’

Proof. First, we will prove that (gg, g :tT, Q”) is a stratified svn-grill on £.

(G,) and (G,) are straightforward.
(G,) Assume that there exist &, ® € &* such that

g"(EVO) £G7(E) VG (o), g"(EVO) 2 G"(E)AGT(O)
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GY(EVO) # G (E) NG (O).
By the definition of (G*, G, G7), there exist {(E,,&,) [t € J} € K(E) and {(©,,@,) |t €T} €
K(®) such that

G'(EVO) # \/ G (E)Va, |V \V G* (@) Vw,
E,5)e{ (E,a)|te] } (©;,w;)e{(®,@,)|el'}

G (EVO) £ A GT(E) Ve, | A A G7(©,) vV u,
E,.x)e{(E,a)te] } (©,@;)e{(0,w,)l:el}

G'(EVO) £ N G7(E,)Va, | A G’(®,) Vuw,
(E,5)e{ (E.a)|te] } (0,,@;)e{(®,@)|eT}

if ke J—(JNT),
3 if kel —(JNT),
(B, Va,)V (O Vw,), if ke (JNT).

On the other hand,

Ev@g(/\(E,sz,))v</\(®,v(u,)>= N\ (I, Vo) and {(I,0,) | k€ (JUT)} € K(EVO).

te ] el ke(JnT)
Then, we have

GIEVO) < V ¢*(IL,) Ve,
(11, g,) e { (1, g [ke(Jur) }

- \/ G'(E)Va, |V \ Gg' (@) Vuw,
(E‘j”’Ti)e{(E‘t’E)ltEI} (@J.,@)G{(@HUI)MGF}
Gr(EVO) > A gr(I,) Ve,

(11, 0) e { (1T, gp) [ke (JUr) }

= N\ GT(E)Va, | A N g"(@)) vV w;
@& e{(E,x)te] } (©;,07)€{(®,@,)|eT'}
gl(EVe) > A ¢g*(I1,) Ve,

(11, @) e{ (I g ) [ke(JuD) }
- A G7(E;) Va; | A A G7(©,) vV,
(Ei/DTi)E{(E[/DTt)‘tGI} (@J.,@)G{(@HUI)MEF}

This is a contradiction. Thus, (G3) holds.
(Gst) Assume that there exist & € §£ and « € ¢ such that

GHEVR) LG (E)Va, GHEVR) 2 GH(E)Aa,
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Go(Eava) 2 Gl (E) Aa.
By the definition of (G, G, GY), there exist {(E,,&;) | t € J} € K(E) such that

st? s’

gr(EVa) £ V G(E)Va, | Va
(Em)e{(E m)lte]}

Gr(Eva) % G"(E)Va, | ANa
(& m)e{ (E,m)ler}

Ggi(Evam) 2 /\ G7(E) Ve, | Aa

On the other hand, EV @ < Aic(jnr) (&, Vo, ) where 0, = &, V a; then, {(E,,0,) |t €]} €
K(EV &). Then, we have

Ggr(Evam) < \V G'E)Va, | = \/ G'(E)Va, | Va,
E o) e{(E @) lter} (& m)e{(Em)lter}

GI(EVE) > A Gg"E) Ve, | = A G"E)Va | ANa,
E E{(‘—‘t Qt)|t€]} (Ei,oTl.)e{(Et,oTt)He]}

goEva) > A G7(E) Ve, | = N G7(E)Va, | ANa

&2l aler} & m)e{Emlter}
This is a contradiction. Thus, G holds. Hence, (G, G7 g") is stratified.

st” “st’

Second, for any E € &, there exists a collection {#} with £ < EV & such that
GL(E) < GY(E), GF(E) 2 G™(E) and GJ(E) > GI(E). Thus, (G7,G7,G7) is finer than
(gT gﬂ', g(r) s s s s

Finally, consider (G*7,G*",G*7), a stratified svn-grill on £ which is finer than
(G%,G7,G7). And we will show that GT(Z) > G*7(E), GT(E) < G*(E) and G/(E) <

G*?(Z). Assume that E € &* such that GT(Z) #? G*7(E), G7 (E) G (E) and G7(E) £
o,

G*?(E). By the definition of (G, G/, G), there exist {(E,, t) | t € J} € K(E) such that
gt (8) £ \/ G'(E)Va, |,
)e{(8,x;)|te]}
Gg7(E) 2 A G (E)Va, |,

@)e{ (B, m)|te] }

g (=) 2

>
Q
S
m
<
Rad

& me{Emler)
On the other hand, (G*7,G*™, G*7) is stratified; then, we have
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te]

<VG"Eva)

te]

GT(@) <G (/\(a v«m)

Likewise, we can establish through a similar line of reasoning that

g*ﬂ:(E) Z /\ g”(Ei)\/tX
Ex)e{(Ea)te] }

i g*a(E) > /\ gg(ai) Vv &;-
Ex)e{(Ea)te] }

This is a contradiction. Hence, (G%,G7, G%) is the coarsest stratified sun-grill on £ which is
finer than (G7,G7™,G%). O

In order to better understand the notion of svn-primal mappings, let us provide some
context for the following definition. Consider a non-empty set £ and a mapping P*, P, P7 :
7* — . We will now introduce certain conditions that, when satisfied, characterize the
mapping as an svn-primal on £.

Definition 8. Let £ be a non-empty set. A mapping P¥, P, P7 : {* —  is said to be svn-primal

on £, if it meets the following conditions:

(P1) PT(1) =0,P™(1) =1,P7(1) = 1and PT(0) = 1,P™(0) = 0, P7(0) =

(P2) IfE <O, then PT(®) < PT(E), P™(®) > P™(E ) 7(©@) > PI(E),V .

(P3) PH(EANO®) < PY(E)VP(O) PHEANO) > PTE)APTO), PI(EAO) >
PI(E) AP(O),V E,O € &. Sometimes, we will write P for (PT, P, P7).

If P and P*™™ are sun-primals on £, then "P™ is finer than P*™ or ( P*7 is
coarser than PT77)" denoted by P < P*T if and only if

PT(E) < P*T(©), PT(E)=P7(O), PI(E) =2 P(0),V,E06 €

The triable (£, T, PT7) is called a single-valued neutrosophic primal topological space
(sunpts). For o € Co, (£, TS, Py ) is primal topological space (pts) in [35].

Remark 1. The terms (P,) and (Ps), in Definition 10, correspond to the next condition
PI(EAO) =P (E)VPI(O®), P (EA®)#£PIE)APTO®), P(EAO)#P(E)API(O)
Example 2. Suppose that £ = {I,15,13}; define the sun-set © € &* as follows
© = ((0.4,04,04),(0,0,0),(0,0,0))
Define the mappings P, P™, P7 : & — ¢ as follows:
if 2=0,
if =0

fO<E<O,
3 otherwise,

PY(E) =

O Nl = =
~ 0~ ™
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0, if 2=0,
3 -
nmy_d 1 FE=O,
PrE) I, ifo<z<o,
1, otherwise,
0, if 2=0,
1 —_
omy = ) 27 ff‘:G)
PE) 1, f0<E<O,
1, otherwise,

Then, P is sun-primal on £.

Theorem 3. Let (G7,G™,G) be an sung on £. Then, the collection {® € & : GT(©°) >
GTO°) <1—71,G7(O°) <1—r,r1 €&} isan svn-primal on £.

Proof. (P;) Since G¥(0) = 0,G(0) = 1,G7(0) = 1and G*(1) = 1,G™(1) = 0,G" ( )
implies that P7(1) = 0, P"™(1) = 1,P’(1) = 1and P*(0) = 1,G(0) = 0,G°(0) =
(P,) Let E < ©; then, ®° < Ef and, thus,

r<g"(e°) <gGuE"), 1-r>g"0e°) >G"(E"), 1—-r>Gg7 (0% > G7(E%).

Hence, P*(©) < P*(E), P™(®) > P™(E), P(®) > PY(E).
(P3) Suppose

PT(EAO) £ PT(E)V PT(O), PT(EAO) # PT(E) APT(0),

PI(EAO) 2 PP (E) ANPI(O).
Then, there exists r € ¢, such that

PYEAO®) >r>PYE)VP(O), PUEAO) <1—r < PT(E)APT(O),

PI(EAO) <1—r <P/ (E)APO).

Since PT(EANO) > 1, PT(EAO) <1—-rand P/(EA®) <1—r,wehave G ([EAOI|°) >,
PT([EAB]) <1—rand G/([EAB]) <1—rimplies that

G'EVO)>r, GHEVOY)<1-1 GIEVO)<1-r
From the definition of G7", we have
G'E)VGHOY) > GHE VO > GHEHNNGT(O) <GHEVO)<1-7,

GI(EYNGT(OY) <G (E°VO°) <1-—r

Since G'(E°) VGT(O°) > r, GT(E) ANG™(O°) < 1—rand G7(E°V C) < 1—r we
obtain GT(O°) > r, GT(O°) < 1—-r,G7(O°) <1—-rand GT(E®) > r, GT(E) < 1—
G7(E°) <1 —r implies that PT(®) > r, P7(@) <1—r, P/(®) <1- andP () 2 7,
PT(E)<1-r P(E) <1-—r Hence,

PUE)VPHO) >, PHYE)APT(O)<1-r,

PIE)API(O)<1-—r.
This is a contradiction. Consequently, (P;) holds. O

Proposition 1. Let {P]T’W} jej be a collection of son-primals on £. Then, their union \/;c; 77]7”‘7
is also an svn-primal on £.
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Proof. Directly from Definition 7. [

4. Single-Valued Neutrosophic Primal Open Local Function in Sostak Sense

In this section, we investigate the concept of svn-primal open local functions within the
context of Sostak’s sense. Our primary focus is to explore the properties of these functions
and their relationship with svnts and neutrosophic primals. Through a series of definitions,
theorems and discussions, we aim to provide a comprehensive understanding of this unique
concept and its implications in the domain of neutrosophic topology. The introductory
results presented here lay the foundation for further exploration of this fascinating topic,
shedding light on the details of svn structures in the sense of Sostak.

Definition 9. Letn,m,v € {gand n +m+ v < 3. A single-valued neutrosophic point (svn-point)
Yo 15 an son-set in & for each z € ©, defined by

[ (n,m,v), if y=z,
yn,m,v(z) - { (0/1/1)/ lf Y 7é z,

An svn-point y, , , is said to belong to an svn-set E = (z, 7, (z), 7 (z), 05 (z)) € &, denoted by
Yumo € Eiffn <1.(2), m > 1,(z) and v > o_(z). We indicate the set of all svn-points in £ as
(sun-point (£)).

For each y,,, , € svn-point(£) and © € ¢ we shall write y, ,,, quasi-coincident with &,
denoted by v, ,, .9Z, if

N4> () <1 oto() <l

Forall ©,E € & we shall write Z q 6 to mean that B is quasi-coincident with @ if there exists
z € £ such that

T,(2) +15(2) > 1, 1 (z)+my(z) <1, 05(z)+0,(z) <1

Definition 10. Let (£, T°") be an svnts, for all & € ¢*, y, ., €son-point (£) and r € &y. Then,
& is said to be an r-open Q. .., -neighborhood (r-OQN) of Yn,m,, defined as follows

Qene Wnmor 1) = {8 € E°1Y,,008, TT(E)) 27, TH(E)) <1-r, T’(E)) <1-r1}.
Lemma 1. Ansvn-pointy, . € C w0 (©,7) iff every -OQN of y, , , is quasi-coincident with Z.

Definition 11. Let (£, 77, P7) be an svnpts, for each r € &y and E € &~. Then, the single-
valued neutrosophic primal open local function E; (T, PT7) of & is the union of all svn-points
Yoo Sch that if ® € Q_-,(y,,,,,,7) and PT(I1) > r, P*(I1) < 1—r, P/(IT) < 1 —r, then
there is at least one z € £, for which T_(z) + 75 (z) — 1 > 1,(2), 15 (2) + 7y (2) — 1 < 11 (2),
0.(2) + 0y (2) — 1 < 03 (2).

In this article, we will write &) for &y (777, P™"") without any ambiguity.

Example 3. Let (£, 7%, P™7) be an sunpts. The simplest svn-primal on £ is PJ, P, PJ :
7t — 7 where

, fE=0,

1
0, otherwise,

0, if E=0,
1, otherwise,
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- 0, if E=0,
Pa(\:‘):{ . f

0 , otherwise,
If PT%7 = P77, then, for each & € &, r € &y, we have Ef=Crine (B, 7).

Theorem 4. Let (£,7 ) be an svnts and P{™, P;" be two svn-primals on £. Then, ¥

5,0 ¢ Fandr € &, we have

If2 <0, then 5 < O5.

prlf < P3, P[> PJand Py > Pg, then & (P77, T) > &5 (P37, T).
CTTT[U(\_;,., ) < CTTTm (..4, 1")

(1)
(2)
(3)
(4) If(’“*)*<“‘*
(5)
(6)
(7)
(®)

[1]
[1]

IfPT(®) >, 7’”(@)
(Er vOr) = (EVO).
TO) >r,THO)<1—rand T7(®) <1—r then, (OAE}) < (OA
(Er ANOF) = (ENO);.

1—rand P7(®@) <1—r, then (EVO); =EFVO; =

)7

*
7

[1]

Proof. (1) Let E € & and r € & such that Z* £ ©%. Then, there exists z € £and n,m, v € &
such that

7. (2) 2 n > 17, (2), ., (z) <m < 7. (2), 0..(2) <v < oep(2). (1)

Since 7, (z) < n, 7., (z) > m and ce:(z) > v, there exists A € Q. ., (y,,, ") with
PT(II) > r, PT(II) <1—r, P’(II) <1—r,such that for every x € £, we have,

T () F T ()~ 1S Ty (x), 714(0) + T (x) = 1> 7y (1), 04 (6) + 0 (x) — 1 > 03, ().
Since & < ©, we have
T, (%) +7.(z) =1 <1 (x), m (%) +mg(x) —1>m(x), o,(x)+o.(x)—1>0,(x).

So, Tﬁ*( ) < mn, M. (z) > mand ¢zx(z) > v, and this is a contradiction for Equation (1).
Hence, &y < Or.

(2) Suppose that E;(P{™, T™) 2 &7 (P;™,T"). Then, there exist z € £ and
n,m,v € g such that

Tg;(pirnolﬂmr) (Z) <n S Tg;(p{nal'rrmr) (Z)/
7-[5;*(73{”‘7,7’1’71717)( ) > m > 7T~*(7)Tm7 T (Z)’ (2)
0’3;}5(73{7((7/7"{7{(7)( ) > (4 > U (7377‘[(7 7'17{(7) (Z)'
Since T, (pre TR0 (z) < m m, (prre TR0 (z) > m and Oss (pyno rome (z) > v, there exists
A € Q ino (Yo 7) with PT(IT) > r, PI(IT) < 1—7, P{ ( ) <1 — r, such that for every

x € £, we have

L)+ () -1 <1, (x), () +ma(x) —1> my(x), 0,(x) +0.(x) —1> 0y, (x).
Since, P (IT) > PF(I1) > r, PF(IT) < PF(IT) < 1—r, PS(IT) < PY(IT) < 1— r, we have
T () + () -1 <1, (x), 7 (x) +ma(x) = 1> my(x), 0,(x) +0.(x) —1> 0y, (x).

Hence, T_, > mand o )( z) > v, and this is a

(PéUTU’,TTﬂ(T) ( ) < S 7-["*(1)77'“7 TTT[V) ( ) "* 7)T7U7 JTno

contradiction for Equation (2). Thus, 5 (P77, T7) > ”*(PT”‘T T,
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7, (2)

=r

— Crtno (EF.r) s Crtno (r,r) s Crtno (EF.r)

(3) Assume that Ef £ Cyre (8, 7); then, there exist z € £ and n,m,v € &y such that

T.(z)>n>1

=y CTTTIU

e (@) - (z) <m< T ene@n’ Oz (z) <v< T oo (@) (z). 3
Since 7, (z) > n, 1_,(z) < mand 7_, (z) < v, we havey,, , € E. So, there is at least
one x € £, foreach A € Q. oy (Y,,,,7) With PT(IT) > 7, PT(IT) <1 -7, P7(I1) <17
such that

T,(x) + 1 (x) > 1(2) +1, 7, (x) + g (x) < mpy(z) +1,0,(x) + 0. (x) <oy (x) + 1.
From Lemma 1, we have y, . € C7uw (E, 7). This is a contradiction for Equation (3). Thus,
E;f S C7"rm7 (E, 7’).
We will now prove this relationship & > Cyre (27, 7). Assume that E # Crowo (EF,7);
then, there exist z € £ and n,m, v € ¢y such that
(z), m(z)>m>n (), o.,(z)>v>0

(). €9

Since T reno (=t (z) >n, =« =5r) (z) < m and T e (5 (z) < v, we havey,, €

Crrrmo (25

Crene (27, 7). So, there exists at least one x € £ with A € Q. (,,,,,7) such that
TA(x) + 75 (x) > 1, walx) + g (x) <1, ou(x) +og(x) < 1.

Thus, & (x) # 0. Suppose that n = 7_, (x), m1 = 7., (x) and v; = 0, (x). Then, x, ,, . €
Erandng +7,(x) >1,m +mg <1,01+04(x) <1,s0that A € (O N— (x
x € E; implies there is at least one z' € £ such that 7,(z') + 7,(z) — 1 > 7,(2),

iy my.01
m(z2) +my(z) =1 < my(2), op(2) +o,(z) =1 < 0y, (2) ¥, PT(IT) > r, P7(II) <
1—r,P7(Il) < 1—rand B € Q (X, 1,0, 7). This is also true for A. So, there is at
least one z' € £ such that T4(z") + 7.(z") — 1 > 1,(2), ma(z' ) + 1.(2) =1 < m,, (2"),
oa(Z") + O'E(Z//) -1< O'H(Zl;). Since A is an arbitrary and A € Q. 1 (Y,,,,7), then
Ty (z) >mn, - (z) <m, Ops (z) < v. This contradicts Equation (4). Thus, & > Cyre (EF, 7).

(4) Using (3) we obtain that (55); = Cywe ((2F)5,7) < Croe (B, 1) < EF.

(5) Straightforward.

(6) (=) Since E,0 < EV ©. By (1), we have ZF < (EV 0O); and ©F < (EV ©);. Thus,
ErVOr < (EVO);.

(<) Let Er VOF # (EV O)F; then, there exist z € £ and n.m.v € {y such that

7). Now,

ny,my,o1’

Tervon) (B) <1 S Ty (2),
Tepvop) (7) 2 1> Mg (2), ©)
Tgvep (2) 20> Oz e (2)-

Since va@m(z) <mn, n(mv@;)(z) >m, T arvor) (z) > v, we obtain Tz:(z) < n, 1z:(z) > m,

0z:(z) > vor Ter(z) < n, mer(z) > m, ger(z) > v. So, there exists A1 € Q. s (¥, /")
such that for each x € £ and for some P*(I1;) > r, P7(I11;) < 1—r, P7(I1;) < 1-—7r
we have,
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Similarly, there exists Ay € Q. s (,,,,,7) such that for each x € £ and for some P*(ITp) >
r, PT(I;) <1—r, P7(IT;) <1—rwehave,

Since A = A1 A Ay € Q. eno (Y, 0, 7) and by (P3), we obtain P*(TTy ATIp) > r, P7(I1; A
I)) <1—r,P7(IT; ATl;) <1 —r. Thus, for each x € ¢,

Ty (%) 4 Tayo (%) =1 < 7y, (%),
s (x) + TTE\/@(X) —-1> nIIIAIIZ (x),

O (x)+0g,6(x)—1> Uﬂlmz(x)'

Hence, 7, . (z) <mn, L (z) >m, O zue)r
Thus, E VO > (EV O);.

(7) and (8) are obvious. [

(z) > v. This is a conflict with Equation (5).

Example 4. Suppose that £ = {I1,15,13}; define the svns Ay, Az, A3, ® € & as follows
Ay = ((0.8,0.8,0.8), (0.8,0.8,0.8), (0.8,0.8,0.8)),
Ay = ((0.6,0.6,0.6), (0.6,0.6,0.6), (0.6,0.6,0.6)),
Az = ((0.5,0.5,0.5), (0.5,0.5,0.5), (0.5,0.5,0.5)),
® = ((0.2,02,0.2), (0,0,0), (0,0,0)).
Define the mappings T%, T™, T : && — &and PT, P™,P7 : & — & as follows:

1, if E=0, 1, if E=0,
TT E — 7 _ 7 7)‘[‘ E — 41 ) = 7
=) 3 if B=A, =) 1, ifi<z<o,
0, otherwise, 0, otherwise,
0, if E=0, 0, if E=0,
0, f E=1 3, fE=0
7—7‘[ E — 7 — 7 7)7'( E — 47 = _ 7
() 1, if E= Ay, (£) 5, f0<E<O,
1, otherwise, 1, otherwise,
0, if =0, 0, if =0,
0, f E=1 2 fE=0
7—0’ E — 7 ) _ 7 7)0’ E — 3/ = 7
(&) 1, if E= A, () I, if0<EZ<O,
1, otherwise, 1, otherwise,

Let B = ((0.4,0.4,0.4),(0.4,0.4,0.4), (0.4,0.4,0.4)). Then, 0 = (B%)% # B} =0.2.
2 2 2

Theorem 5. Let (£, 77, PT) be an sunpts and {E; : i € J} C & Then:

(1) (VE)r:ie]) <(VEi:ie]).
@) (AZi:ie])y <(AE)r:ie]).
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Proof. (1) Since &; < \/ &, for all i € ], by Theorem 4(1), we obtain (&;); < (\ &)}, for
every i € . Thus,

VE)r:ie))<(VE:ie])).
(2) Since A E; < A;, and by (1) in Theorem 4, we have (A &;); < (&;)5, Vi € J. Hence,
(ANE);:ie])>(N\&:ie])).
O
Remark 2. Let (£, T, P™7) be an svnpts and & € &t we can define
A(E)7)"

Clearly, C*m, is an svn-closure operator and (T (P7T), T™(P™), T (P7)) is the sunt generated
by C*

[1

o (Er)=BUE, T . (E7) =

TT7T(7 TTT[J

T’

—

)(E) = V{r| Cr e (B 7) = E

Now, if P7™ = PI™, Y & € &, then C%,, (8,1) = EUE} = BV Crny (E,7) = Crone (B, 7).
So, T*(PT)=TF¢, T™(Pr)=T"and T™*(P7) = T".

Theorem 6. Let (£, 77, P™) be an sunpts and E € & and r € &, and E € ¢E. Then

(1) Ii (EBVON)<Ti (ENVI, (@),
(2) Ziene (By7) S T2 (B1) SE S CL (B7) < Crane (E7)
@) I5 (EANO,1) = Tiene (B, 1) AN LFne (O, 1)

(4)  Clon (B 1) = (L] e (B )] and [CT o (B, 1)]" = 17, (B, 7).
Proof. Straightforward fromC7_, 77, and C . O

Theorem 7. Let (£, 7,7, P7) and (£, 7,77, P™7) be svnptss and T,* < T\, T" > T,
T > T). Then,

(1) EX(T,,PT)

< BT PY), B (T PT) > EX (T, PT) and Ex (T, P7) > EF (T, PY).
(2) T*T(’})T) T

(P), T (P7) = T3 (P7), Ty (P) = T3 ().
Proof. (1) Let
(T, PY) £ (TP, BT PT) 2 EX(TPT),
(T, P7) 2 EX(T, PO,
then, there exist z € £ and n,m, v € {p such that

s (B) 21> Ty ey (2),

s (2) < S Ty ey (2), ©)

0”:*(7—217'7347) (Z) <v S 0-5;(7*117’730) (Z)

=r

Since T_, <mn,m, >m,o. (z) > v, there exists A € Q.o (Y,,0/7)
; :

(TT PT) ( ) =X (7—171”7)7'() ( ) :;(7—0,7;0)
with ’PT( ) >r, PT(I1) <1—r, P’(II) < 1—r,such that for each x € £,

TA(x) + TE(Z) -1< Tn(x)’ 7TA(JC) + HE(X) -1> nn(x)r UA(X) +05(x) -1> Un(x)‘
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Since 7,7 < 7,7, T{* > T;%, T > T¢, we have A € QTZTW (Yymor7)- Hence, Tﬁ*(TT ) (z) <

N, T iy (z) >m, o, > v. This is a contradiction of Equation (6).
=r st =r

(2) Similar to part (1). O

(7'20'/7317) (Z)

Theorem 8. Let (£, 77, P{7) and (£, T, P;™) be sunptss and P < Py, P[* > PJ,
Py > Pg. Then,

(1) EX(PL,TY) =2 &Py, TTH), Ef (P, T™) <Ex(PF,T7™) and Ex(Pf, TF) < Ex (P}, TH).
(2) T(P]) < T*T(PZT), T(P[) > T(PF), T (P7) > T*(P).
Proof. The same method as the proof of Theorem 7. [J

Theorem 9. Let (£, 7 7) be an sunts and P{™, P;™ be two svn-primals on £. Then, V & € &t
and v € ¢,

(1)
E (P AP3,TY)

E (P APF,TT)
=5 (P A3, T)

E;(PLT)VEN(PE,TY),
(P, T NES(PSLTT),
EX(PY,T7) NEF(PS,TO).

I
[

E(PIVP,TY) =E(Pf, T (P))) NES (P, T (P]))),
EX (P VP, TT) =Ex (P, T (P)) vV E(PF, T (PF)),
EY(PYVPS,T?) =E;(P{, T (P]))VE (P, T (P])).

[x

Proof. (1) Let
=H(PTAPE,T)) £ B (PLTT) V& (PE,TY),
EX(PI AP, TT) 2 5P T NE(PS,TT),
=H(PYAPE,T) 2 5(PY,T7) AZ; (PE, T°).
Then there exist z € £and n,m, v € §p s.t.

Ts:(P{APZT,TU)( z) > n> Tep(pr, o (2)V Teppyrm) (2),

Tas(prapg, ) (z) <m< TCE;*(P{T,T”)(Z) A o (pg ) (2), @)

=r
sy npg,70) = E;‘(P‘{,TV)(Z)/\ s:@g,m(z)'

Since [T (pif 7T) ( ) \ TH* p'r 7—1')( )} <n [ng;*(p{f,'y'n) (Z) A 7-[':‘*(73’2”,7'”) (Z)] > m, [Ug*<pi7,70> (Z) A

ety 7o) (z)] > v, we obtam Tﬁ*(PTTT)(z) <m, naw,,r/ﬂ)( z) > m, U::(P”Tff)( z) > vand
Toprx, TT)( ) <m, Mot ey, Tﬂ)( z) > m, Taspg, T‘,)(z) > 0.

T

First, by taking the first part, 7_, PrTT) (z) <n
) >, {T(H]) < 1—7’,731( ) <1-—v,

there willbe A, € Q. s (Y, 0/ 7) with Pr(II
such thatV, x € £,
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Ty (x) +og(x) —1> O, (x).

Secondly, by taking the second part, 7, (P 7) (z) <mn, Mot o 70 (z) >m, Tst (pg 7o) (z) >0,

there will be A, € Q. cro (Y,,,,,7) With P (I1,) > r, PF(I1,) < 1 -7, PJ(I1,) < 1—7,
such thatV, x € £,

s (x),

Ty, (X)+ 17 (x)—1< Ty,

7TA2 (x) + Tty (x) -1> 7-"'1'[2 (x)/

UAZ (x) + 0oz (x) —1> 0112 (x)
Thus, V y € £, we obtain

T nty) (x)+1(x)—1> T,y (x),
A vy (x)+my(x)—1< T vty (x),

‘7<A1vA2)(x) +o.(x)—1< U(HIVHZ)(X)'

Since (A; A A,) € Q. eno (Y, 7) and
(PY AP ATL) 27, (PTAPI)(IL VIL) <1-r,
(PEAPHIL VIL) <1-7,

we obtain that 7_, > v and thisis a

=gy (2)
contradiction of Equation (7). So,

<n,m, >m, o,
=r =r

(PIAPE,TT) (z) (PYAPS,TO) (z)

= (PTAPE,TT) < (P T VE(PE T,
2 (P APE,T™) 2 & (PT, T™) AZ3(PE,T™),

EX(PY AP, TY) > BX(PY, T) AEF(PY, TY).

On the other side P{ APy < Pf, PV PS > P, P{ VvV Py > Py and P{ ANP; < Py,
PV PY > PF, PV Py > P, soby Theorem 4(2),

BN (PIAP;) =

[1]

r(P1)VEN(P;), EX(PIAPY) <EX(P) AEL(PS),

By (P AP7) < EZ(PT) AEF(PS).

Hence, Z5 (Pf APy, TT) =& (P{, THOVEN(P;, TT), Ex(PTAPETT) =E:(PTLT™)A
EX(PE,T™) and Ex(Py APy, T7) =E5(Py, T7) NEF(PS,TY).
(2) Similar to part (1). O

From the previous theory, we can see the important result that
(T*5(PT), T (P™), T*(P)) (for short T*(P)) and ([T**(PT)*(PT), [T (PT)*((P™)),
[T*7(P*)]*(P7)) (for short T**) are equal for any svn-primals on £.

Theorem 10. Let (£, T 7%, P™) be an sunpts. Then, for each & € & and r € &,
(1) EF(PT) = ZH(PT,T*), EH(P™) = EH(P7, T*) and £ (P¥) = Z3(P%, T*))
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(2) (T*T('PT) =TT 7'*71(737‘[) = T 7—*(7(7371:)) — TR

Proof. By putting P = P;, P{* = PJ and P{ = Pj in the second part of the above
theorem, we obtain the required proof. [

Theorem 11. Let (£, 7 7) be an svnts and P, P;™ be two svn-primals on £. Then, ¥
redoand 2 € &, T (P{ APf) = T*(P) AT (P§), T (PIAPJ)=T"(P[)V
T (PF) and T+ (P{ ANPF) = T*(Py)V T*(Pyg).

Proof. (=): Since P{ > P{ APy, P{f < PIVPF, Py < P{VP]and P; > P{ A
P3, Py < PV PF, P§ < P{VP§,by Theorem 8(2) we obtain 7*7(PT) > T** (P AP;),
TH(PR) < T (PF v PR), T (PF) < T*(PY v PY) and T (PF) > T+ (Pf A PY).
7'*"(772”) S TPV PE), T (PY) < T*(P{ Vv Pg). Hence,

T*(Pf APS) < T (P)) AT (P),

T (PI A PE) 2 T (P[) V T (PF),
T (P AP§) = T (P{) v T (P5).

(«<): Suppose that (T*7(P7) AT (P3)(E) > r, (T(P") VT (P))(E) < 1-—

r, (T (P{) Vv T*(P§)(E) < 1—r. Then, T*(P{)(E) > r, T (P[)(E) < 1-r,

T(PY)E) <1—rand T (P;)(E) 27, T (PF)(E) <1—r, T (PJ)(E) <1—r;that
Iy

means Crow (B, 1) = BV [E];(P{77) = EF and Cowe (S, 7) = BV [EC]}(P;7) = B
Thus, [E°]; (PF™) < & and [E(PF™) < . So, [2]5(PF™) v [E° (Pf™) < &.
From Theorem 9(1), we have [E°]} (P{™ A P;77) < EF. Therefore, T**(P{ NP3 )(E) > 1,
T(PIVPI)(E) <1—r, T(P{VPy)(E) <1—r. This completes the proof. [

Definition 12. Let (£, 7 7") be an svnts with P™" an svn-primal on £. Then, T is called
single-valued neutrosophic primal open compatible with P™7, indicated by T |= P, if vV
E €& Ypmo € Eand I1 € & with PT(IT) > r, P7(IT) < 1—r, PO(I1) < 1 — r, there exists
A € Q. ene (Yyy s 1) stich that

T(2) + 1 (2) =1 < 1(2), 71, (2) +712(2) =1 > 71y(2), 0,(2) +0,(2) =1 > 034 (2),
holds for every z € £, then PT(E) > r, PT(E) <1—r, P7(E) <1-—r

Definition 13. Let {®; : i € T} C & such that ©;qZ, Vi € Tand E € & Then, {@;: i € T}
is called an r-single-valued neutrosophic quasi-cover (for short, r-svng-cover) of Z iff, V z € £,

T.(z) + T\/;er<®i>(z) >1, m (z)+ ﬂvfeﬂ@f)(z) <1, o.(2) +0y o )(z) <1

Further, let (£, 777"") be an sonts, forany 7°(©,) > r, T™(®,) <1—r,T77(0,) <1—r.
Then, this r-svng-cover will be called a single-valued neutrosophic quasi open-cover (for
short, svngo-cover) of E.

Theorem 12. Let (£,777) be an svnts with svn-primal P™™ on £. Then, the following
conditions are equivalent

(1) 7'T7T(7 ’: ’PTT[(T.

(2) Ifforeach & € &* has a sungo-cover of {®; : i € T'} such that T,(z) + To, (z) =1 < 1(2)
m,(z) + g (2) =1 > my(z), 0,(2) + 0y ( ) —1 > o,(2), for every z € £ and for
some TT(I1) > r, TP(I1) < 1—r, TO(I1) < 1—r, then PT(E) > r, PT(E) < 1—7,
PI(E)<1—r.

(3) Forany E € &, EAEF = 0 implies PT(E) > 7, PT(E) <1—71,P(E)<1—r
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A = = A=
(4) ForanyE2 € & P(E)>r, P (E)<1-1r,P(E)<1—r whre & =

v yn,m,v SMCI’Z that yn,m,v € ‘E bl/lt yn,m,v ‘E‘
(5) Forall T**(E) > r, T(E?) < 1—7r, T*(E°) < 1—7r, wehave P°( & ) > 1,
~ N A~
PrE)<1-rP(E)<1-r
(6) Foreach & € &, if E contains no © # 0 with ® < @}, then PT(E) >r, P*(E) <1 -7,
PIE)<1—r

Proof. 1 = 2: Let {®; : i € I'} be an sunqo-cover of & € ¢* such that, Vi € T, 7,(z) +
T®i()—1<T() ()+7T()—1>7r() ()—l—a() 1> 0,(z), forany z € £
and for some P7(E) >, 73”( ) <1—-r,P/(E)<1-r Thus, as {©; : i € T} is an svngo-
cover of B, for each y, , . € &, there exists at least one ®;, such that y,,,90;, and for each
z €L 1,(2)+ 1 (2) =1 < 1y(2), my(2) + Mg _(2) =1 > m(2), 0,4(2) +0g_(2) =1 >
0,(z) forsome P7(E) <1—r, T°(II) > r, T™(II) <1 —r, T(II) <1 —r. Significantly,
Oio € Q. ene (Yo, 7)- From (1), we obtain PT(E) > 7, PT(E) <1—r,P/(E) <1—r.

2 = 1: It is clear from this that the family of {®; : i € I'} contains at least one
Oio € Qe (Y0 7), such that every sun-point of & constitutes a svnqo cover of E.

1=3:LetEANE; =0, foreachz €, y,,, € Eimpliesy, , , & &;. Then, there exists
A€ Q. one (Yo ) and PT(IT) > 7, PT(IT) <17, P/(IT) <1—7, such thatforallz € £

T,(2) +1.(2) =1 < 1,(2), my(z) +m(x) —1>my(z), o,(x)+o.(z) —1>0(x).

Since A € Q. s (Y0, 7), from (1), we have PT(E) > r, P(E) <1—r, P7(E) <1—r.
3 = 1: Foreachy,, , € E, there existsan A € Q. ., (Y,,,..7) such that, for any z € £,

T4 (Z) + Tz (Z) —-1=< T (Z)/ Ty (Z) + NE(Z) —1> Ty (Z)/ Ty (Z) +(75(Z) —-1> O (Z)/

for some PT(IT) > r, P*(IT) <1—r, P/(IT) <1 —r,implies y, ,, ¢ Z;. Firstly, there are
two cases: either 2 = 0 or Ef # Obutn > o (z) #0,m < - (z) #0,v < Tys (z) #0.
Assume, if possible, y, ., € Esuch thatn > 7, (z) #0,m < 7, (z) #0,v < 0_,(z) #0.
Letn, =, (z),m, = - (z),v, = Ops (2). Then, Ym0 € E;*(z’). Secondly, y”l’;l'vl €&
Thus, for all B € Q. (Y, 0, 7), PT(IT) > 7, PT(IT) < 1—7, P/(IT) < 1 — 7, there is at
least one z € £ such that

TB(Z) +Ta(z) -1> Tn(z)r nB(Z> + 7'[5(2) —-1< HH(Z), UB(Z) +UE(Z) -1< UH(Z)'

Since Yoy m ”1 € E, this contradicts the assumption for each son-point of E. So, 2 = 0. That

meansy, . € Eimpliesy, & Z;. Now, this is true for each & € &. S0, EV EF = 0. Thus,
by (3), we obtaln PYE)>r, PM(E)<1—r,P(E) <1—rimplies T = PT”‘T.

~
3 = 4: Lety,,, € & . Theny, € Ebuty, & E So, thereexistsan A €

Qe (Y mor7) such that Vz € £,

T,(2) +7.(2) =1 < 1(2), 7, (z)+m.(z) =1 > my(z), 0,(z)+0.(z) —1>0,(2),

~~
for some P*(IT) > r, P*(IT) <1—7r, P7(I1) <1—r.Since & <

m

(z) —1<14(2), mu(z)+7__(2) =1>my(z), o,(z)+o__(2) —1>0y(z),

~~
for some PT(IT) > r, P*(IT) < 1—r, P°(IT) < 1—r. Thus,y,,, ¢ Z; implies that

# 0butn > T/*\(Z), m < n,:*\(z), v < a,_:*\(z). Lety, . . €

-
(-
—y —p —p
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son-point(£) such that n, < T (z) < n, m;, > 1w (2) > m, v, > 0, (2) > V;
& & B
N
this means y, ,, , € Ef . Then, VB € Q n (y”r"’l'%’r) and for every PT(II) > r,
PT(II) <1—r, P’(IT) <1—r, there is at least one z € £ such that

5(2)+1__(2)=1>71,(2), mz(z)+m__(2)—=1<my(z), o4(z) +o__(z) —1<0,(2).

~ =

Since < E, then for any B € Q. ., (ynl/mllvl'r) and PT(I1) > r, P*(II) < 1 -7,

P7(I1) <1 —r, there is at least one z € £ such that
TB(Z) + TE(Z) -1> Tn(z)r nB(Z) + HE(Z) -1< ﬂn(z)r UB(Z) + (TE(Z) -1< UH(Z)'

~ =~
This implies Yujmyo, € E. But n, <n,m >m,o >vandy,, € E implies
€ & and hence Y my o, §Z Er . This is a contradiction. Thus, Ef = 0, so that
e . /-’\ . f’\ _ A~ N ‘

Ypmo € Z impliesy, ¢ &7 with E =0. Thus, E A Ef = 0forevery & € &~
Hence, by 3),P"( E )>r,P"( E )<1—r,P’( E )<1-—r.

4 = 5: The same method as the proof of 3 = 4.

4 = 6: Let& € §£, E contains no ® # 0 with ® < @}. Then, V E € Cﬁ, 5 =
~~

~~
E V(EAE}). By Theorem 4(5), wehave 2f = [ E V(E A E})]

P ~~
Now, by (4), we obtainPT( E)>r, P”( E)<1-
Thus, [EAES]; = Efbut EAE; < Ef, thenEAE

hypothesis if 0 # © < E with ® < @;. Hence, A E
that PT(E) > r, P (E )<1—r 77‘7( )<1-—r.
6 = 4: Since V E € &£, E A Ef = 0. Hence, by (6), as E contains no non-empty single-
valued neutrosophic subset ©® w1th O<O;,P(E) >rPY(E)<1-r,P/(E)<1-r
5= 1: Forevery & € ¢%,y, .. € E, there exists A € Q_ ., (V,,,,,7) such that

y"l My g

* =% Ll =k %
r= S \/[‘:‘/\‘:‘r]r'
=~ _
) <1—r;then, &5 =0.
¢ *)5. This contradicts the
— - /,_\
Ex=0,50,2= E by (4), we obtain

1)+ () - 1<), 1,3 +m(2) — 1> 1,(2), 0,(2) +0,(2) — 1> 0y, (2),

holds for every z € £ and for some P*(Z) > r, P™(E) <1—r, P’(E) < 1—r. This implies
Yomo & Er. Let® = EVE}. Then, O = (EV E)); = Er V (E)); = E by Theorem 4(4). So,
C* (0,r) =0V Or = 0. That means 7*7(©°) >r, T*"(0°) < 1— T*"(@C) <1l-r.

<1-—

7'1'7'[(7

Thus, by (5), we obtain that P7(®) > r, P (@) < 1 —r,P7(®)

Again, Foranyy,,, , € son-point(£),y,, , & @ impliesy,, , € ®buty,, & O; = EJ.
So,® = EV E}, y,,,, € E. Now, by the hypothe51s about &, we have for every vy, € EJ.

~~

So, ® =E.Hence, P*(®) >r, PT(O) <1—r,P’(®) <1—r. Thus, T = P, O
Theorem 13. Let (£, 77) be an svnts with svn-primal P™" on £. Then, the following cases
are equivalent and implied T = P,

(1) ForeachE € &, & /\ Er = 0 implies E = 0.
(2) Foreach E € &, C, =
(3) ForeachZ € &, ENE} = E;.

Proof. The proof follows a similar line of reasoning to that of Theorem 12. [
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5. Conclusions

In this paper, first, we investigated the complex area of stratification of svn grills
and determined some of their fundamental features. The links between svn grills and
svn-primals were investigated. We also introduced and explored the concept of svn-primal
open local functions in the context of Sostak’s sense. By extending the notions of svn sets
and related topological structures, we have presented a novel approach to understanding
the properties and relationships within this unique framework.

Our investigation began by defining svn-sets and their corresponding notions. Build-
ing upon these fundamental definitions, we introduced svnts and explored various oper-
ations and properties within these spaces, such as the neutrosophic closure and interior.
A central contribution of this work has been the introduction and exploration of svn-
primals and their associated operators. We have provided several equivalent conditions
characterizing the compatibility of svnts with neutrosophic primals. Additionally, we dis-
cussed the properties of primal open local functions, their relationship with svnts, and the
induced operators.

In conclusion, the results presented in this paper contribute to the growing field of
neutrosophic topology by offering a deeper understanding of svn structures in Sostak’s
sense. The properties and correlations investigated here establish the framework for further
studies in this field, opening options for future investigations and applications of these
innovative notions in various fields.

In terms of related and future research directions, it is of great interest to investigate
the connections between our findings and the advancements in the field of neural networks
(Gu and Sheng [36]; Gu et al. [37]; Deng et al. [38]; Gu et al. [39]). Furthermore, the possible
connections to multidimensional systems and signal processing need further investigation,
as illustrated by Wang et al. [40] and Xiong et al. [41].

By bridging the gap between svn structures and related domains, we might promote
collaboration across disciplines and discover new applications for our findings. This not
only enriches the discipline of neutrosophic topology, but also benefits the larger scientific
community by providing new insights and fresh approaches to difficult problems.

For forthcoming papers

The theory can be extended in the following normal methods.

1—Basic concepts of neutrosophic metric topological spaces can be studied using the
notion of svn-primal present in this article;

2—Examine the connected, separation axioms and soft closure spaces in the context of
svn-primals.
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Abbreviations

The following abbreviations are used in this manuscript:

n-set neutrosophic set

sun-set single-valued neutrosophic set

sonits single-valued neutrosophic ideals

sunts single-valued neutrosophic topological spaces

sungts single-valued neutrosophic grill topological spaces
sunpts single-valued neutrosophic primal topological spaces
sungo-cover single-valued neutrosophic quasi open-cover
suns-primal single-valued neutrosophic primal

T =P  single-valued neutrosophic primal open compatible
sun-point single-valued neutrosophic point
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