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Abstract: In the field of direction of arrival (DOA) estimation for coherent sources, subspace-based
model-driven methods exhibit increased computational complexity due to the requirement for
eigenvalue decomposition. In this paper, we propose a new neural network, i.e., the signal space
deep convolution (SSDC) network, which employs the signal space covariance matrix as the input
and performs independent two-dimensional convolution operations on the symmetric real and
imaginary parts of the input signal space covariance matrix. The proposed SSDC network is designed
to address the challenging task of DOA estimation for coherent sources. Furthermore, we leverage the
spatial sparsity of the output from the proposed SSDC network to conduct a spectral peak search for
obtaining the associated DOAs. Simulations demonstrate that, compared to existing state-of-the-art
deep learning-based DOA estimation methods for coherent sources, the proposed SSDC network
achieves excellent results in both matching and mismatching scenarios between the training and
test sets.

Keywords: direction of arrival (DOA) estimation; coherent sources; signal space; deep learning

1. Introduction

Direction of arrival (DOA) estimation is a common problem in array signal processing
with extensive applications in various domains, including astronomical observations, in-
door localization, sonar, radar, wireless communications [1–4], etc. The principal challenges
in DOA estimation encompass the intricate task of devising integrated strategies that exhibit
minimal hardware consumption [5] while concurrently optimizing both performance and
receiver cost. Additionally, there is a need to enhance the accuracy and super-resolution
capabilities of DOA estimation methods in scenarios featuring multiple sources. Moreover,
improving the adaptability of DOA estimation techniques in challenging environments
characterized by limited snapshots and low signal-to-noise ratios (SNRs) is also a critical
area of focus.

Typically, DOA estimation is mostly accomplished using model-driven methods [6–13],
where the underlying principle involves constructing a forward parameter model from
signal direction to array outputs, followed by leveraging the properties of predefined
assumptions to estimate the direction. Subspace-based methods [6,7], as well as compres-
sive sensing and sparse recovery methods, like singular value decomposition (SVD) [8,9],
sparse Bayesian learning (SBL) [10,11], and orthogonal matching pursuit (OMP) [12,13],
are commonly utilized in DOA estimation. The model-driven techniques depend on the
accuracy of the pre-established model, making it challenging to achieve high accuracy
under non-ideal conditions, e.g., coherent sources [14] may lead to significant performance
degradation of the algorithms mentioned above.
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In recent years, machine learning (ML) [15] approaches utilizing data-driven mod-
els [16] have been widely adopted by researchers to address the source localization problem.
Deep neural network (DNN)-based methods aim to directly learn the nonlinear relation-
ship between array output and source location, facilitating an efficient mapping from the
sensor output space to the arrival direction space. The rapid advancement of artificial
intelligence has led researchers to incorporate radial basis function (RBF), support vector
regression (SVR) [17], and deep learning (DL) [18–22] into DOA estimation, with the goal
of enhancing both accuracy and computational efficiency. In [19], a DL framework for DOA
estimation is introduced, specifically designed to handle array imperfections effectively.
In [20], the authors demonstrate that the columns of array covariance matrix be formu-
lated as undersampled noisy linear measurements of the spatial spectrum and presented
a deep convolutional network (DCN) framework for estimating the DOAs. Additionally,
in [21], the authors propose a convolutional neural network (CNN) that effectively learns
the number of sources and DOAs even in extreme SNR scenarios. Moreover, in [22], a
novel DOA estimation method based on dimensional alternating fully-connected (DAFC)
block-based neural networks (NNs) is presented, specifically designed to address spatial
spectrum estimation in multi-source scenarios where non-Gaussian spatial color interfer-
ence is present, and the number of sources is unknown a priori. Ref. [23] designs deep
augmented (DA)-MUSIC neural architectures to overcome the limitations of traditional
algorithms and combines model-/data-driven hybrid DOA estimators to improve the
resolution of the signals. Ref. [24] proposes a DNN-based DOA estimation framework for
uniform circular array (UCA) to realize more efficient data transmission in high-capacity
communication networks. In the field of sound source localization, Ref. [25] proposes new
frequency-invariant circular harmonic features as inputs to the network structure, utilizing
CNN for self-adaptation to array defects. Nevertheless, the aforementioned methodolo-
gies [16–25] share a common prerequisite for accurate DOA estimation—these sources
are irrelevant. Regarding coherent signals, finding appropriate data characteristics and
constructing a more efficient learning model is our motivation.

For coherent sources, model-driven methods for solving the coherent source problem
require spatial smoothing (SS) techniques [26–28], albeit at the expense of a reduced effec-
tive array aperture. On the contrary, data-driven methods are employed to improve the
estimation accuracy and realize real-time updates. In [29], two angle separation learning
schemes (ASLs) are proposed to solve the coherent DOA estimation issue, taking into con-
sideration the spatial sparsity of the array output regarding angle separation. A logarithmic
eigenvalue-based classification network (LogECNet) is introduced in [30] to achieve higher
accuracy of signal number detection and angle estimation performance. However, the
existing neural network-based methods for addressing coherent sources [29,30] require
transforming signal statistics into a long vector input, thereby leading to the requirement
for large-sized parameter matrices in the neural layers during the training process.

Existing methods for coherent signal estimation are often hindered by significant
computational complexity [26–28]. From the above analysis, we propose an effective data-
driven method for improving the accuracy and resolution of coherent source estimation.
Our main contributions are as follows:

• We propose a novel signal space deep convolution (SSDC) network that learns angular
features of coherent signals to address the coherent DOA estimation problem.

• Since the conventional neural network frames are unable to effectively convey informa-
tion in the complex domain, we divide the covariance matrix of the input signal space
into real and imaginary parts and perform two-dimensional convolution operations
separately, which can make the features of the input data fully utilized.

• The proposed SSDC network also considers the spatial sparsity of the array output
and performs a spectral peak search on the output to determine the interested DOAs.

Notations: Upper-case (lower-case) bold characters represent matrices (vectors). (·)T ,
(·)H and (·)† stand for the transpose, hermitian transpose, and pseudo-inverse operations,
respectively. E(·) denotes the expectation operator, randn is a random number between 0
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and 1, and C represents the set of complex numbers. real() and imag() represent real and
imaginary parts, and j is the imaginary unit, defined as

√
−1.

2. Problem Formulation
2.1. Signal Model

We consider a uniform linear array (ULA) of M-sensors, with space d between two
adjacent array sensors, where d = λ

2 with λ being the signal carrier wavelength. As
depicted in Figure 1, coherent signals are typically generated from the same signal source or
sources with similar properties. We assume that Q narrowband far-field coherent sources
θq, q = 1, 2, · · · , Q are incident on this ULA. The first sensor is taken as the reference
element, as shown in [6]; the data received by all sensors can be represented as

z(t) = s0(t)
Q

∑
q=1

αqa
(
θq
)
+ n(t) = s0(t)Aα + n(t), (1)

where α =
[
α1, · · · , αq, · · · , αQ

]T with αq being a nonzero complex-valued constant, s0(t) is
the direct signal and the reflected one (signal s0(t) = µ0(t)ejϕ0(t)ejω0t where µ0(t) represents
the amplitude and ϕ0(t) is the phase and ejω0t is the carrier wave which acts as an informa-
tion carrier but contains no information). Both the amplitude and phase are statistically
independent, and in this paper, we do not consider the variation uncertainty of amplitude
and phase of multiple signals, i.e., µ0(t) = 1 and ϕ0(t) = 0), n(t) represents a circularly
symmetric complex additive Gaussian white noise (AWGN), i.e., n(t) ∼ CN

(
·
∣∣0, σ2

nIM
)

with noise variance σ2
n , t = 1, · · · , T and T denotes the number of snapshots. The direction

matrix A =
[
a(θ1), · · · , a

(
θQ

)]
∈ CM×Q is defined by

a
(
θq
)
=

[
1, e−jπ sin θq , · · · , e−jπ(M−1) sin θq

]T
. (2)

Figure 1. Scene of a uniform linear array receiving signals.

Owing to the spatial properties of the signal parameters, cross-covariance information
between different sensors is required, and according to [1], the signal and the noise are
statistically independent from each other, so the spatial covariance matrix of Equation (1)
can be expressed as

R = E
{

z(t)zH(t)
}
= ARsAH + σ2

nIM, (3)

where Rs = σ2
0 ααH is the signal covariance matrix, and σ2

0 = E
{
|s0(t)|2

}
denotes the

reference signal power. Since the incoming sources are fully coherent, Rs is a singular
matrix with rank of one. Usually, the covariance matrix can be estimated by the following
sample covariance matrix: R̃ = 1/T ∑T

t=1 z(t)zH(t).
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As shown in refence [27], by performing eigenvalue decomposition (EVD) of R, we obtain

R = UΛUH = UsΛsUH
s + UNΛNUH

N =
M

∑
i=1

τiuiuH
i (4)

where Λ = diag{τ1, τ2, · · · , τM} is a diagonal matrix composed of eigenvalues with τ1 >
τ2 = · · · τQ = τQ+1 = · · · = τM = σ2

n . The eigenvectors corresponding to eigenvalue
τ1, · · · , τM are denoted as u1, · · · , uM, which form the matrix U. The first Q eigenvalues
form the signal subspace US, ΣS are a diagonal matrix consisting of the first Q eigenvalues,
and the remaining eigenvectors form the noise subspace UN , ΣN which is a diagonal matrix
consisting of the remaining M − Q eigenvalues. In a fully coherent scenario, signal-related
information is concentrated on the largest eigenvalue τ1 and its corresponding eigenvector
u1. The covariance matrix based on the signal space can be defined as

ΓS = τ1u1uH
1 ∈ CM×M, (5)

where ΓS is a matrix of Rank 1.

2.2. Signal Sparse Representation

We let φ = [φ1, φ2, · · · , φL]
T represent the discrete set of directions (degree) sampled

from the spatial space of DOAs, where the sampling interval is fixed at ∆φ = φl − φl−1,
l = 2, 3, · · · , L. Given vector z with noise n, we aim to recover vector η that is K-sparse, i.e.,

z = Ãη+ n (6)

where Ã = [a(φ1), · · · , a(φL)] ∈ CM×L is the complete dictionary matrix, η = [η1, · · · , ηl ,
· · · , ηL]

T is the sparse signal vector that we hope to recover. Recovering sparse signal vector
η from z is a typical sparse linear inverse problem, so the reconstructed spatial spectra are

η̃ ≈ Ã†z. (7)

In this paper, we try to find a new mapping from ΓS to sparse signal vector η based
on deep learning theory, i.e., ΓS :→ η, instead of the mapping from vector z to η, where
ΓS contains all the information of the source of interest, and this is highlighted in the
next section.

3. Proposed SSDC Network

In this section, we propose a SSDC network that formulates the coherent signal DOA
estimation as a multi-label classification task. The supervised learning method consists
of two stages: the learning stage and the validation stage. The structure diagram of the
SSDC network is illustrated in Figure 2. We design a two-input system with M ∗ M, which
includes the real part and the imaginary part of the signal covariance matrix. The two-
dimensional convolution is employed to perform feature extraction from the multi-channel
input data. Subsequently, Fully connected (FC) layers concatenate the outputs from the real
and imaginary parts of the convolutional layers. After one round of a Fully connected layer,
a one-dimensional convolution is used for feature fitting. Finally, a pre-selected grid is
used to infer the DOA estimation values. As the network runs deeper, to prevent excessive
increase in network parameters and the risk of overfitting, we choose a five-layer hidden
architecture to achieve a nonlinear representation of the network.
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Figure 2. Proposed signal-space deep convolution (SSDC) network.

In the training stage of the SSDC network, we assume that the values of the elements
in the vector sparse signal η are only one at the true source location and zero otherwise.
For this, we need to find a relationship from ΓS to sparse signal vector η, even though
it is a black box. According to the well-known universal approximation theorem [31], a
feedforward network with a single hidden layer can approximate continuous functions
on compact subsets of Rn. For multi-layer networks, we define nonlinear function f as a
mapping from the input space to the output space, i.e., f : ΓS → η, and it is parametrized
using a five-layer SSDC model, i.e.,

γ1 = f2

(
f1

(
X1

))
, (8)

γ2 = f2

(
f1

(
X2

))
, (9)

η = f5( f4( f3(γ))) ∈ CL×1, (10)

where γ1 and γ2 are the outputs of inputs X1 = real(ΓS) and X2 = imag(ΓS), respectively.
γ = [Flatten(γ1); Flatten(γ2)] is the input of the third network layer and the η is the
final output.

Functions f1 and f1 are based on 2D-convolution architectures and are performed
in parallel depending on the real and imaginary parts, which consist of 10 and 5 filters,
respectively. Then, they follow a Rectified Linear Unit (ReLU) layer that applies the
activation function to the variables from the previous layer. The output of the ith layer
is given:

oi = σi

(
Ki ∗ oi−1 + bi

2D-C

)
, i = 1, 2. (11)

Kernel Ki is a 2D matrix of the size of κ × κ. We employ κ = 4 for f1(·) and κ = 3
for the second convolution layers f2(·). The stride s is set to s = 1 with no padding,
and bi

2D-C, i = 1, 2 represent the bias of the ith layer. Subsequently, we flatten the results
obtained from the double parallel convolutions and concatenate them into a single dataset,
then enter the third layer, a Fully connected network, represented as

oi = σi

(
Wi ∗ oi−1 + bi

FC

)
, i = 3. (12)

Here, Wi and bi
FC represent the weight and bias of the ith layer. f3(·) is a dense layer

with L neurons, followed by a ReLU layer. Thereafter, the proposed f4 and f5 structures are
based on the standard 1D convolution architecture, which consists of three and one filters,
respectively, i.e.,

oi = P
(

σi

(
Ni ∗ oi−1 + bi

1D-C

))
, i = 4, 5. (13)

Kernel Ni is a vector of size κ × 1. We employ κ = 15 for f4(·) and κ = 5 for layers
f5(·). Stride s = 1 with padding operator P(·) restores the output of activation function to
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the original input size by applying zero-padding at the borders. In addition, bi
1D-C, i = 4, 5

represent the bias. The all activation function can be expressed as

σi(z) =
{

ReLU(z), i = 1, 2, 3, 4.
Sigmoid(z), i = 5.

(14)

The final output layer, f5(·), consists of L neurons in a Conv1D layer, followed by
the sigmoid activation function. The sigmoid function, defined as s(z) = z/(ez + 1), is
applied to the values from the preceding layer, returning values within [0, 1], representing
the probability of each entry in the predicted label. We define the output layer as o5 = η̃.
Like most supervised learning approaches, the SSDC network trains on the offline dataset
Dtrain =

{(
Γ1

S, η1),
(
Γ2

S, η2), · · · ,
(
ΓD

S , ηD)} where D denotes the batch size and parameters

J =
{
W i, bi}5

i=1 with sets of weight
{
W i}5

i=1 =
{

K1, K2, W3, N4, N5} and bias
{

bi}5
i=1 ={

b1
2D-C, b2

2D-C, b3
FC, b4

1D-C, b5
1D-C

}
use backpropagation, minimizing the Mean Square Error

(MSE) as the loss function between the reconstructed spectrum η̃ and the original η, as
shown in [20], i.e.,

J∗ = arg min
J

1
D

D

∑
j=1

∥∥∥ηj − η̃j
∥∥∥2

. (15)

The MSE is an appropriate criterion for minimizing the error between the learning
target and the true target. To continuously reduce the loss function ι(η− η̃) =

∥∥ηj − η̃j
∥∥2,

backpropagation is used to update the weight and bias vectors. The update process is
as follows:

W i = W i − ξ
∂ι(η− η̃)

∂W i , (16)

and

bi = bi − ξ
∂ι(η− η̃)

∂bi , (17)

∂ι(η−η̃)
∂W i and ∂ι(η−η̃)

∂bi are the partial derivatives of the parameters with respect to the ith layer
neuron, represented as ∇ι(η− η̃), reflecting the sensitivity of the final loss to the ith layer
neuron. ξ represents the learning rate.

In addition, this paper adopts an adaptive moment estimation algorithm called
Adam [32] to optimize the parameters of the SSDC network. Since the learning rate
is a crucial parameter during neural network optimization, setting it too high may cause
the loss function not to converge, while setting it too low may result in slow convergence of
the loss function. Therefore, we employ a dynamically changing learning rate to adaptively
adjust the convergence of the loss function. Assuming M represents the first moment of the
partial derivative and G represents the second moment of the partial derivative, the Adam
algorithm combines the RMSprop algorithm and momentum-based methods. To ensure
that each update is related to historical values, it performs exponential moving average on
both the gradient and the square of the gradient, as follows:

Mm = λ1Mm−1 + (1 − λ1)∇ι(η− η̃) (18)

and
Gm = λ2Gm−1 + (1 − λ2)[∇ι(η− η̃)]2 (19)

where λ1 and λ2 are the decay rates for the two moving averages, with this paper using
λ1 = 0.9 and λ2 = 0.999, and m is the mth of iterations. Then, the initial sliding value is
corrected, that is,

M̃m =
Mm

1 − λm
1

, (20)

and
G̃m =

Gm

1 − λm
2

. (21)
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Finally, the parameters are updated{
W i, bi

}
=

{
W i, bi

}
− ξ√

G̃m + ε
· M̃m (22)

and ε is a very small number (usually ε = 1e − 8) to avoid having a denominator of zero.
Remark: Figure 3 depicts a fabricated prototype picture of the proposed SSDC network

for coherent DOA estimation. When a coherent signal incident on a uniform linear array
is considered, the received data need to be preprocessed first. This process requires the
covariance matrix to be derived from the received data, and then the signal-space covariance
matrix is calculated according to ΓS = τ1u1uH

1 ∈ CM×M. The data corresponding to the
range of incident DOA are subjected to this preprocessing process; a random 80% of the
signal spatial covariance and the corresponding spatially sparse signal data are used to enter
the proposed SSDC network for training and 20% of the preprocessed data is randomly
selected for validation.

Figure 3. Overall SSDC framework for coherent DOA estimation.

4. Simulation Results

In this section, we carry out several simulations to discuss the performance of the
proposed SSDC network, the SS-MUSIC method [26], and DL-based DOA estimation
methods, i.e., ASL (we use ASL2) [29], DCN [20], and DNN [19]. The root mean square
error (RMSE) and MSE are used to evaluate the performance of these algorithms, which is

RMSE =

√√√√ 1
Q · MC

Q

∑
q=1

MC

∑
n=1

(
θ̂qn − θq

)2
(23)

MSE =
1

Q · MC

Q

∑
q=1

MC

∑
n=1

(
θ̂qn − θq

)2
(24)

where θq and θ̂qn denote the real and estimated DOAs in the nth Monte Carlo (MC) simula-
tion experiment, respectively.

The Cramér–Rao Bound (CRB) provides a lower bound on the covariance matrix of
for any unbiased estimator [33]. In this paper, the CRB is used in the case of large snap-
shots of the estimated variance approximation using the stochastic maximum likelihood
algorithm [33], represented as

CRB(θ) =
σ2

n
2T

{
Re

[
H ⊙ GT

]}−1
, (25)

with

H = hH
(

IM − A
(

AHA
)−1

AH
)

h, (26)

and
G = RH

s AHR−1ARs, (27)



Symmetry 2024, 16, 433 8 of 14

where h =

[
∂a(θ1)

∂θ1
, · · · ,

∂a(θQ)
∂θQ

]
∈ CM×Q is the first-order derivative of the direction vector,

R is the covariance matrix calculated by Equation (3), Rs is a singular matrix with a rank
of one.

4.1. Experiment Setup

To train the proposed SSDC network, we consider the grid with resolution of ∆φ =
{1◦, 2◦, · · · , 39◦, 40◦} and define a narrow grid scope φ ∈ {−30◦,−29◦, · · · , 29◦} with
Lmax = 60◦. For the simulations, we employ a ULA with M = 8 sensors, T = 256, array
spacing d = 0.5 m, and signal carrier wavelength λ = 1 m.

For the training dataset, we select Q = 2 coherent sources with α = [1, 1]T . The
first and second sources are uniformly generated within the ranges [−30◦, 29◦ − ∆φ] and
[−30◦ + ∆φ, 29◦] with a step of 1◦, and 10 groups of fixed snapshots are collected with
SNR randomly distributed between −20 dB and 0 dB. Based on Python 3.10 and the Adam
optimizer, we utilize Keras 2.12.0 and its embedded tools for gradient computation to
implement the training of SSDC network. The data are generated by the operating environ-
ment “12th Gen Intel(R) Core(TM) i7-12700H 2.30 GHz processor with a 64-bit operating
system MATLAB 2022a”, and the sample datasets consist of a total of 15,800 measurement
vectors. In addition, we adopt mini-batch training with a batch size of 64 and conduct
500 training epochs.

4.2. MSE during Training and Validation

Figure 4 illustrates the changes in MSE during the training and validation of the
DCN [20], the DNN [19], and the proposed SSDC methods.

The DNN-based framework consists of a multi-task autoencoder and a series of
parallel multilayer classifiers [19]. The spacing of the array elements of the ULA in the
DNN model is half a wavelength, and the potential space is divided into six subregions
of equal spatial extent. The number of hidden layers in each subregion is two, and the
sizes of the hidden and output layers of each classifier are 30, 20, and 20, respectively. All
the weights and biases of the DNN are randomly initialized with a uniform distribution
between −0.1 and 0.1.

The DCN-based framework [20] can learn inverse transformations from large training
datasets, considering the spatial sparsity of the incident signal. The DOA estimation
problem is transformed into a sparse linear inverse problem by introducing a spatial
overcomplete formulation. Compared with the traditional iteration-based sparse recovery
algorithms, the DCN-based method requires only feed-forward computation to realize
real-time direction measurement. The DCN network has four hidden layers and one output
layer with convolutional kernels of 25 × 12, 15 × 6, 5 × 3, 3 × 1, and an output dimension
of 60 × 1, respectively.

As can be seen from Figure 4, the proposed SSDC network exhibits lower MSE on
both the training and validation sets compared to the other two methods. The generated
data are randomly partitioned into two sets: 80% is allocated for the training set, while the
remaining 20% is assigned to the validation set. Figure 4a provides a clear visualization
of the training process, where the initial higher loss values are attributed to the random
initialization of model parameters and limited understanding of data patterns. As training
progresses, the model gradually learns the data features, resulting in a steady reduction in
the loss function.
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Figure 4. MSE of training and validation. (a) The training MSE. (b) The validation MSE.

To prevent overfitting during the training process, a validation dataset is used to
evaluate the model’s performance on unused data. Figure 4b displays the model’s loss
function performance on the validation data as the training advances. While the training
loss might fluctuate, the overall trend shows a decreasing pattern. Furthermore, the
proposed SSDC network exhibits lower MSE values on both the training and validation
sets compared to the other two methods.

To evaluate the computational complexity of the proposed SSDC algorithm, in Table 1,
we record the running time required by all the related algorithms (average of 50 tests).
It can be seen that the running time of the proposed SSDC algorithm is only a fraction
of the SS-MUSIC algorithm [26]. Moreover, the ASL algorithm [29] has the longest train
time due to its very large number of parameters. Next, multiple DNNs (six DNNs in [19])
need to be trained, so SSDC is also more efficient than [19]. Furthermore, compared to the
DCN algorithm [20], although the proposed SSDC has more parameters, SSDC reduces the
computational dimensions by processing the real and imaginary parts separately, and thus
SSDC is more efficient than DCN.

Table 1. Average running time.

Item

Time Method
ASL [29] DNN [19] DCN [20] SSDC SS-MUSIC [26]

Total params 585,276 32,466 1801 6774 \

Train time 1236.9480 s 1390.2328 s 1023.6829 s 713.2126 s \

Test time 0.0688 s 0.2340 s 0.0960 s 0.0722 s 0.3288 s

4.3. Experiment with the Same Number of Coherent Sources in the Test Set As in the Training Set

Firstly, two coherent sources with DOAs −5.5◦ and 8.5◦ and SNR within [−4, 12]
dB are considered. As shown in Figure 5, we conduct 500 independent MC simulation
experiments with snapshot numbers set at 200 and 400. The proposed SSDC method
has better estimation performance compared to the SS-MUSIC method and other three
data-driven methods. Figure 5 shows the RMSE’s variation of the proposed SSDC network
at different SNR levels. As the SNR increases, the RMSE shows a decreasing trend, i.e., the
RMSE is smaller at higher SNRs. This indicates that the SSDC network estimator performs
better and can estimate the DOAs more accurately when the signal is relatively strong and
the noise is weak. Therefore, there is a negative correlation between the SNR and the RMSE,
and a high SNR usually corresponds to a low RMSE. Table 2 provides the visualized RMSE
values of Figure 5. It can be more clearly observed that the proposed SSDC network has
the lowest RMSE in the range of −4 to 12 dB.
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Figure 5. RMSE for various SNRs for two coherent sources with DOAs −5.5◦ and 8.5◦.

Table 2. RMSE for various SNRs for two coherent sources with DOAs −5.5◦ and 8.5◦.

Method

RMSE Snapshot Snapshot
= 200

Snapshot
= 400

SNR DCN ASL DNN SS-MUSIC SSDC DCN ASL DNN SS-MUSIC SSDC

−4 0.5448 0.4530 1.1791 1.5217 0.4204 0.5462 0.4145 0.9382 0.8892 0.3695

−2 0.5317 0.4142 0.9368 0.8740 0.3809 0.5288 0.4074 0.8720 0.6553 0.3428

0 0.5165 0.4052 0.8745 0.6542 0.3457 0.5099 0.4052 0.8142 0.5423 0.3092

2 0.5125 0.4026 0.8328 0.5332 0.3188 0.4828 0.4020 0.7721 0.5049 0.2795

4 0.4924 0.4004 0.7884 0.5280 0.2894 0.4486 0.4019 0.7571 0.5020 0.2621

6 0.4568 0.3968 0.7605 0.5190 0.2624 0.4104 0.4002 0.7538 0.5000 0.2323

8 0.4319 0.3967 0.7523 0.5125 0.2446 0.3683 0.3995 0.7522 0.5000 0.2124

10 0.4136 0.3940 0.7522 0.5000 0.2225 0.3571 0.3969 0.7521 0.5000 0.2065

12 0.4024 0.3938 0.7519 0.5000 0.2174 0.3414 0.3948 0.7518 0.5000 0.2009

For enhanced result visualization, Figure 6 displays the corresponding estimated MSE
for the two sources. The first source is characterized by direction θ1 = −5.5◦ + randn, while
the second source is θ1 + ∆φ with ∆φ = 6◦ in Figure 6a and ∆φ = 21◦ in Figure 6b. The
snapshot is 256, SNR = 0 dB. We observe that the estimated MSE of the DOA estimation
obtained by our method optimizes the estimation at both large and small angular intervals.
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Figure 6. MSE versus different MC trials for θ1 and θ1 + ∆φ, T = 256, SNR = 0 dB. (a) ∆φ = 6◦.
(b) ∆φ = 21◦.
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4.4. Experiment with a Different Number of Coherent Sources in the Test and Training Sets

Next, spectral peaks are tested in three coherent signals with DOAs of [−21.5◦,−7.5◦,
10.5◦], as shown in Figure 7, where SNR = 10 dB, the number of snapshots is 256. When the
number of signals K ⩾ 3, the SS-MUSIC algorithm does not work well in this case due to
the total number of array elements M = 8, so it is not used for comparison. Even in the
case of a mismatch between the number of test sources and the number of training sources,
the proposed method could search for sharper peaks.

Three coherent signals located at −21.5◦, −7.5◦, and 10.5◦ with SNRs within [−14, 2]
dB are considered, and for the RMSE of each SNR, we perform 500 independent MC
simulation experiments, as shown in Figure 8. Similarly, the snapshot numbers are set to
200 and 400, respectively. As the SNR and snapshot increase, the proposed SSDC method
exhibits higher estimation accuracy compared to the ASL algorithm, which is also designed
for coherent signal estimation. Moreover, it can be seen from Figure 8 that the performance
of the proposed SSDC network estimator decreases the RMSE as the SNR increases. Table 3
provides the visualized RMSE values of Figure 8. It can be more clearly observed that the
proposed SSDC network has the lowest RMSE in the range of −14 to 2 dB. Despite the
lower SNR, the proposed SSDC network still has the optimal performance compared to the
other three methods.
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Figure 7. Spectrum for three coherent sources with DOAs [−21.5◦,−7.5◦, 10.5◦].
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Table 3. RMSE for various SNRs for three coherent sources with DOAs [−21.5◦,−7.5◦, 10.5◦].

Method

RMSE Snapshot Snapshot
= 200

Snapshot
= 400

SNR DCN ASL DNN SSDC DCN ASL DNN SSDC

−14 9.8974 10.3946 10.0370 9.6787 9.0068 8.3523 9.3075 7.6015

−12 9.1955 8.2625 9.4923 7.6144 9.1493 6.3520 8.5037 4.7888

−10 9.2857 5.9264 8.1795 4.3582 9.4124 4.3264 7.9674 3.9796

−8 7.6149 4.18250 7.8453 3.3594 7.9726 3.4661 7.1206 2.7717

−6 5.4049 3.1088 6.8769 2.3168 5.4628 2.2495 6.5506 1.8838

−4 4.2463 2.2809 6.3749 1.8961 4.3471 1.7000 5.7563 1.5841

−2 3.3147 1.8345 5.5767 1.1746 3.2389 1.6672 4.7569 1.3516

0 2.5506 1.6609 4.9036 1.1926 2.2688 1.6304 3.3722 1.2355

2 2.1431 1.6710 3.7398 1.2104 2.0703 1.6321 2.2262 1.2239

Finally, we test snapshots with an interval of 50 in the range of [50, 400] and perform
500 independent Monte Carlo (MC) simulations at SNRs of −5 dB and 0 dB, respectively.
The RMSE results are shown in Figure 9. As the number of snapshots increases, the
proposed SSDC algorithm is significantly robust and performs optimally, even in scenarios
where the number of test targets and training targets mismatch.
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Figure 9. RMSE versus the number of snapshots for three coherent sources with DOAs
[−21.5◦,−7.5◦, 10.5◦].

5. Conclusions

In this paper, we proposed a data-driven approach for coherent direction of arrival
(DOA) estimation, improving the coherent signal DOA estimation accuracy compared to
the SS-MUSIC and recently reported data-driven algorithms. Our novel neural network,
the signal-space deep convolutional (SSDC) network, effectively handles coherent signals
by using the signal-space covariance matrix as input. This reduces noise interference
and enables efficient learning of angular features, leading to improved DOA estimation
accuracy. Unlike conventional neural networks, we partitioned the input signal-space
covariance matrix into real and imaginary part matrices, allowing for independent two-
dimensional convolution operations that maximize the utilization of input data features.
Furthermore, we considered the spatial sparsity of the array output and performed spectral
peak searches to accurately determine relevant DOAs. Simulation results demonstrate the
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superiority of our SSDC network over existing deep learning coherence DOA approaches.
This research advances DOA estimation techniques and opens avenues for improved
performance in various applications, such as wireless communications, radar systems, and
acoustic signal processing.
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