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Abstract: Holographic principles have proven to be a very interesting approach towards dealing
with the issues of the late-time acceleration of the universe, which has resulted in a great amount
of work on holographic dark energy models. We consider one such very interesting holographic
scenario, namely the Tsallis Holographic dark energy model, and consider an ansatz based approach
to such models. We consider three cosmological scenarios in such models, namely those with viscous,
non-viscous, and Chaplygin gas scenarios, discussing various crucial aspects related to these models.
We discuss various crucial properties of the Tsallis model in such scenarios and see how the phantom
divide is crossed in each case, but it is only the Chaplygin gas models which provide a better view on
stability issues.The symmetry property of the theory presented in the article is the assumption that
space is isotropic. Using bulk viscosity instead of shear viscosity reflects spatial isotropy.

Keywords: holographic dark energy; chaplygin gas cosmology; viscous cosmology

1. Introduction

The surprising revelation of the late-time acceleration of the universe startled the
cosmology community [1]. Subsequent efforts have been extensive in elucidating this
expansion phenomenon. Numerous approaches have been pursued, encompassing tra-
ditional avenues like the cosmological constant [2–4], as well as unconventional theories
such as modified gravity [5–7] and models involving scalar fields driving late-time cos-
mic acceleration [8–14]. Additionally, diverse perspectives within quantum gravity have
contributed to addressing the cosmic acceleration enigma, ranging from braneworld cos-
mology in string theory to theories like loop quantum cosmology and asymptotically safe
cosmology [15–27]. Nevertheless, these endeavors have underscored certain discrepancies,
notably the Hubble tension, which refers to disparities in the values of the Hubble constant
derived from detailed CMB maps, combined with baryon acoustic oscillations data and
supernovae type Ia (SNeIa) data [28–30]. Consequently, the current epoch of the universe
presents a myriad of inquiries and appears poised to evolve into a domain where advanced
gravitational physics will illuminate a deeper comprehension of cosmology.

Among the various proposed solutions addressing the dark energy problem, one
noteworthy proposition is the holographic principle [31,32], which carries significance
within the realm of quantum gravity. At its core, the holographic principle posits that
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a system’s entropy is not dictated by its volume but rather by its surface area [33]. Co-
hen et al. [34], drawing from this principle, proposed a linkage between short-distance and
long-distance cutoffs in quantum field theory, attributing it to the constraints imposed by
black hole formation. In essence, if ρ denotes the quantum zero-point energy density due
to a short-distance cutoff, the energy within a region of size L should not surpass the mass
of a black hole of equivalent size, leading to the inequality L3ρ ≤ LM2

pl . The maximum
permissible value for the infrared cutoff (LIR ) precisely satisfies this inequality, yielding
the relationship:

ρ = 3M2
pc2L−2

IR
, (1)

where c represents an arbitrary parameter, and Mp signifies the reduced Planck mass.
The holographic principle has found extensive application in cosmology, particularly

in elucidating the late-time dark energy era, commonly known as holographic dark energy
(HDE) (for a comprehensive review, refer to [35]). In this framework, the infrared cutoff,
LIR , originates from cosmological considerations. Nojiri et al. [36–39] introduced the most
general form of this cutoff, termed the generalized HDE, which encompasses various
combinations of the FRW parameters including the Hubble constant, particle and future
horizons, cosmological constant, and the finite lifetime of the universe. Numerous other
studies have investigated holographic dark energy from diverse perspectives in recent
years [35,37,40–70]. In the present work, we want to discuss the properties of the Tsallis
HDE model in a scale factor ansatz-based approach, which has been quite heavily discussed
in recent times [71–74]. A scale factor ansatz approach to HDE scenarios, or even to study
various late-time or even certain early-time scenarios, is quite a prevalent one as it allows
one to, for example, reconstruct potentials etc. for viable cosmological evolutions. The
mathematical formulation is quite straightforward, where one assumes an ansatz for the
scale factor here and then sees how the other cosmologically relevant parameters turn
out and whether the particular model at hand would allow for such an evolution while
maintaining self consistency. This is what we have pursued, also by considering the
Tsallis scenario in such a case. In the next section, we shall give a brief overview of the
cosmological settings in which we would like to study our HDE scenario, discussing
the non-viscous, viscous, and Chaplygin gas EOS in detail and their implications for the
evolution of the universe. In Section 3, we discuss the important aspects of the models we
are considering and see which of these can be best placed in the face of the usual issues
faced by holographic models. We conclude our work in Section 4.

2. Tsallis Holographic Dark Energy and the Various EOS

Various interesting approaches towards hologrphic dark energy have been discussed
in recent times. For example, [75] discussed the implications of quantum-gravitational ef-
fects on the entropy of black holes, even incorporating certain fractal behaviour as well. This
led to the creation of the Barrow HDE model as well, where the DE energy density depends
on the deformation parameter in the Barrow entropy. Similarly, Sheikhahmadi’s work [76]
examines entropy bounds from lattice field theory and its implications for holographic
dark energy. It very interestingly built upon this work to also show that the corrections to
the electron magnetic momentum are of the order of O(10−23). Another very intriguing
proposition within the realm of holographic dark energy is the Tsallis holographic dark
energy model, often abbreviated as THDE. Tsallis and Cirto [77] introduced a generalized
form of entropy, famously known as Tsallis entropy, to address thermodynamic inconsis-
tencies in non-standard systems, such as black holes. The pioneering investigations into
dark energy models using Tsallis’ non-extensive statistical framework can be traced back
to [78], with further explorations in cosmology detailed in [79]. This type of entropy aligns
well with the Friedmann equations and Padmanabhan’s proposal regarding the emergence
of spacetime [80].

Similar to the conventional HDE model, it is feasible to formulate dark energy models
utilizing Tsallis entropy. As a result, Tsallis holographic dark energy (THDE), using the
Hubble horizon as an infrared (IR) cutoff, was introduced in [81]. Building upon this foun-



Symmetry 2024, 16, 446 3 of 17

dation, the dynamics of Friedmann–Robertson–Walker (FRW) universes, considering dark
matter and THDE with various IR cutoffs such as the apparent horizon, the particle horizon,
the Ricci scalar curvature scale, and the Granda–Oliveros (GO) scale, were examined in
non-interacting and interacting scenarios [82–85].

It was found that the THDE model with the particle horizon as the IR cutoff provides an
explanation for the ongoing accelerated expansion of the universe, unlike the corresponding
conventional HDE model. The findings presented in [82] indicate that the stability of the
THDE model varies depending on the choice of the GO scale and the Ricci scalar cutoff, in
both interacting and non-interacting scenarios. However, in [83], it is demonstrated that the
THDE model with the GO scale as the IR cutoff remains stable in an (n + 1)-dimensional
FRW universe. For the Tsallis HDE scenario, the horizon entropy is given by

Sh = γr2σ
h (2)

where γt is a constant in terms of the Planck area, and the Tsallis parameter is σ. Using the
Tsallis entropy, one can write the holographic DE energy density as

ρ =
3c2

R4−2σ
h

(3)

where Rh here refers the infrared cutoff scale, similar to the one in the simple holographic
energy density. Furthermore, we shall consider that there is no interaction happening
between the dark energy and dark matter sectors in this work. In the non-viscous scenario,
the equation of state is the usual p = wρ, where w is the equation of state parameter. The
equation of state that we consider for the viscous fluid configuration is given by [86,87]

p = wρ − 3ϵ0H (4)

where ϵ0 is a thermodynamic parameter, which can be considered to be either time-
dependent or time-independent. In this scenario, we consider dark energy to be a viscous
holographic dark fluid while next, we will also be considering a generalized Chaplygin gas
model [88], characterized by the EOS

p = − A
ρα

(5)

where A and α are assumed to be positive constants, where for α = 1, one obtains the
usual Chaplygin gas model. In this scenario, we shall be considering dark energy to be a
holographic Chaplygin gas. Furthermore, we shall be considering an ansatz for the scale
factor of the power law form as follows [36,89–94]

a(t) = a0(ts − t)n. (6)

The above form of the scale factor has been used in various seminal works to un-
derstand the late time acceleration of the universe, and even cosmological singularities
(see [95,96] for recent reviews on the same) by Odintsov, Nojiri, Barrow et al., and is fit to
be used for our purposes too as it accounts for a lot of interesting cosmological epochs.
Such an ansatz-based approach to holographic dark energy has recently been pursued in
other works too [71–73,97].

3. Analysis of the Various Scenarios
3.1. Non-Viscous Fluid Case

Choosing the conventional holographic dark energy density:

ρΛ =
3c2

R2
h

(7)
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where c is a constant, and choosing the scale to correspond with the event horizon, with
the Rh being the future event horizon given by:

Rh = a
∫ ∞

t

dt
a

= a
∫ ∞

a

da
Ha2 (8)

The critical energy density, ρcr, is given by the following relation:

ρcr = 3H2 (9)

Now, we define the dimensionless dark energy as:

ΩΛ =
ρΛ

ρcr
=

c2

R2
h H2

(10)

Using the definition of ΩΛ and the relation for Ṙh from Equations (8)–(10), we have:

Ṙh = Rh H − 1 =
c√
ΩΛ

− 1 (11)

By considering the definition of holographic energy density ρΛ and using the expres-
sions for ΩΛ and Ṙh, we can find:

˙ρΛ = −2H
(

1 −
√

ΩΛ

c

)
ρΛ (12)

Substituting this relation into the following equation:

ρ̇Λ + 3H(1 + wΛ)ρΛ = 0 (13)

we obtain:

wΛ = −
(

1
3
+

2
√

ΩΛ

3c

)
(14)

Instead, if we use the Tsallis holographic energy density, we can write

ρΛ =
3c2

R4−2σ
h

where σ is the Tsallis parameter. Using this, we can write Ω as

Ω =
ρΛ

ρcr
=

3c2

R4−2σ
h

(15)

One can then write (5) as

Ṙh = RhH − 1 =
c

√
ΩΛR1−σ

h

− 1 (16)

Furthermore, the equation for ρ̇Γ in this scenario takes the shape

ρ̇Λ = −(4 − 2σ)ρH

[
1 −

√
ΩΛR1−σ

h
c

]
(17)

And, finally, this leads us to the equation-of-state parameter to be

wΛ = −
[

2σ − 1
3

+
(4 − 2σ)

√
ΩΛR1−σ

h
3c

]
(18)
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Two things to observe here is that, firstly, these equations are consistent with the usual
HDE model represented by (7) as these equations reduce to that when σ = 1, as it should for
any Tsallis HDE model. The second thing, which is more interesting, is that one observes
that wΛ becomes very dynamical and acquires time dependence because of the existence
of the factor R1−σ

h in its expression. One can work out time-dependent expression for Rh
then by considering different ansatz for both the scale factor and the Hubble parameter,
see [71] where three different ansatz for the scale factor were used to study an HDE model
in a Gauss–Bonnet cosmology. What is immediately clear in this regard, in the context of
Tsallis cosmology, is that it provides for a far more dynamical view with regards to the
phantom divide than usual HDE models, and one could cross the phantom divide even for
a non interacting model, as in this case we have not assumed any interaction between dark
energy and dark matter. Furthermore, the time-dependent behaviour of the w parameter
for Tsallis models can have even more interesting implications for astronomical tensions
like the H0 tension, possibly.

Now, we select the scale factor to be of the form (6) (while one can certainly think
about other alternative forms of the scale factor ansatz like in [71–73,97], the different scale
factor choices are quite similar in the sense that they, in some way or the other, represent
power law forms. Hence, even though we can perform the analysis for another choice of
the scale factor, for now we will be focused on this form only here).

a(t) = a0(ts − t)n

Using this, one can find the future event horizon by solving

Ṙh = Rh H − 1 =
c√
ΩΛ

− 1 (19)

to be

Rh(t) =
C1(n − 1)(t − ts)n + t − ts

n − 1
(20)

where C1 is some constant of integration. Now, using this, we can write (18) as

w =
1
3

−

√
Ω(4 − 2σ)

(
C1(t − ts)n + t−ts

n−1

)1−σ

c
− 2σ + 1

 (21)

Now, in order to proceed further, we need to set some values for the parameters. One
good choice would be c = 0.3, c1 = 0.01, n = 3, Ω = 0.69, andts = 0.002 with Ω = 0.69.
Using these, we can plot the equation of the state parameter for different values of σ.

As is clear from Figure 1, one sees that, while steadily increasing σ values from over
1 to >2, one sees a very curious behavior of the EOS of the HDE. While for σ = 1.1, the
EOS mostly stays in the deep phantom regions, with no hope of ever even reaching near
w → −1; for a larger value of σ = 1.7, the EOS starts from the phantom regime, crosses
the −1 barrier, and ascends to some degree to the quintessence region as well. For σ > 2,
however, in the case where σ = 2.3, for example, the EOS shows the opposite behavior. It
starts off in the deep quintessence regime, after which it crosses the −1 barrier to descend
into the phantom regime to some degree. Furthermore, the expression for energy density
in this scenario takes the form
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ρ(t) = ρ0 exp

2(σ − 2)

√
oΓ( nσ−1

n−1 )
(

(t−ts)1−n

c1(n−1) +1
)σ

(c1(t−ts)n+ t−ts
n−1 )

−σ

(n−1)2(c−cσ)


+


(

c1(n−1)2(t−ts)n ,2F̃1
(

n(σ−1)
n−1 ,σ; nσ−1

n−1 ; (t−ts)1−n
c1−c1n

))
(n−1)2(c−cσ)


+

+n(σ−1)(t−ts),2F̃1
(

σ, nσ−1
n−1 ; σn+n−2

n−1 ; (t−ts)1−n
c1−c1n

)
(n−1)2(c−cσ)

− n log(t − ts))ts

(22)

where 2F̃1 refers to the hypergeometric function. While the expression above looks quite
humongous, which it indeed is, we can plot it for a similar choice of parameters as we did
previously.

Figure 1. A plot of the dark energy EOS with time, plotted for increasing σ values.

One sees from Figure 2 that, for progressively increasing values of σ, the variation of
the energy density with respect to time becomes smaller and smaller, as for σ = 1.3 and
σ = 1.5, one sees that the energy density fluctuates a lot, while for higher values of σ = 1.9
and σ = 2.2, it almost takes the shape of a constant curve.

Figure 2. A plot of the DE energy density ρΛ with time, plotted for increasing σ values.

This brings us to another interesting issue with the usual HDE models, which the
Tsallis model with event horizon cutoff can possibly handle optimistically, in the way that
we have dealt with it here. This concerns the issue of classical instabilities of perturbations
in HDE models, which was first shown in [98]. The key for this lies in the squared speed of
sound, which for our case would take the form

v2
s =

ṗ
ρ̇

(23)
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The sign of v2
s is crucial for determining the stability of background evolution, with

negative v2
s for a model highlighting that the model has classical instabilities for any

given perturbation. In [98], it was shown that conventional HDE models would have
this instability and, recently, a paper also showed that Tsallis HDE can bypass this issue
in interacting scenarios [99,100], but nobody has considered whether these issues can be
bypassed in a non interacting scenario, so here we can actually show that the same can
happen for a non interacting scenario as well. The squared sound speed for our model can
be written as

v2
sv =

1
3

 √
Ω(σ − 1)Rh(t)R′

h(t)

h(t)
(

cRh(t)σ −
√

ΩRh(t)
) +

2
√

Ω(σ − 2)Rh(t)1−σ

c
− 2σ + 1

 (24)

Plugging in the expression for Rh(t) from before, we get

v2
sv = 1

3

−
√

Ω(1−σ)(c1(n−1)n(t−ts)n−1+1)(c1(t−ts)n+ t−ts
n−1 )

1−σ

(n−1)h(t)

c−
√

Ω

(
c1(t−ts)n+

t − ts

n − 1

)1−σ


−
√

Ω(4−2σ)(c1(t−ts)n+ t−ts
n−1 )

1−σ

c − 2σ + 1
) (25)

One can clearly see from Figure 3 that one can get rid of the stability issues persistent
in normal HDE models in a Tsallis HDE scenario. Particularly, one sees that, for very
small values of σ, in this σ = 0.6 (which is even lower than the σ for recovering simple
HDE), there is no hope of escaping the instability issues, as v2

s is always negative. How-
ever, as one increases the values of σ and one gradually starts to deviate away from the
usual HDE models, there is a gradual departure from the instability problem v2

s for all of
σ = (1.5, 1.9, 2.2), which obtains positive values even though they could initially have
negative values. This shows that Tsallis models with higher values of the Tsallis parameters
offer classical stability and, as one deviates away from the usual HDE scenario, one obtains
models which have more and more classical stability in the face of perturbations. But even
the higher values of σ eventually tend to instability as time progresses. It is helpful to see
the behavior of the squared sound speed values at arbitrarily large values.

Figure 3. A plot of the squared sound speed v2
s for the event horizon cutoff Tsallis model with time,

plotted for increasing σ values.

One sees from Figure 4 that, far ahead in time, the models corresponding to all these
various values of σ eventually acquire classical instability as they have negative squared
sound speeds.
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Figure 4. A plot of the squared sound speed v2
s for the event horizon cutoff viscous Tsallis model

with time, plotted for increasing σ values in an arbitrarily large timeframe.

3.2. Viscous Fluid Case

While we are already obtaining very interesting results for the Tsallis model for
conventional fluids with p = wρ, one can go beyond this too. Particularly, let us consider
the case of viscous and Chaplygin gas fluids. The equation-of-state that we consider for the
viscous fluid configuration is given by [86,87]

p = wρ − 3ϵ0H (26)

where ϵ0 is a thermodynamic parameter which can be considered to be either time-
dependent or time-independent. As we shall see, this parameter does not directly impact
any of our calculations. Using (7), we can write the continuity equation in this case to be

−(4 − 2σ)ρH

[
1 −

√
ΩΛR1−σ

h
c

]
+ 3H(ρ(1 + wv)− 3ϵ0H) = 0 (27)

where wv is the EOS for HDE in the case of the viscous fluid configuration. Working with
the above equation, after some effort, one can reach for w to be

wv = wv = −1
3
(4 − 2σ)

(
1 −

√
ΩRh(t)1−σ

c

)
− 1 (28)

Using the expression for Rh(t), one can then write

wv = −1
3
(4 − 2σ)

1 −

√
o
(

c1(t − ts)n + t−ts
n−1

)1−σ

c

− 1 (29)

As one sees from Figure 5, the dark energy EOS again crosses the phantom divide
but the behavior here is completely the opposite to what one observes for the non-viscous
fluid case in Figure 1. Particularly, one sees that, for smaller values of σ, like σ = 1.1 in this
case, which represents possibly the smallest deviation from the normal HDE to the Tsallis
model, the EOS starts off in the deep quintessence region and never really hits the w = −1
region, let alone crossing the phantom barrier. While the higher values of σ in this case like
σ = (1.5, 1.8) start off in the quintessence region and descend to phantom while the very
high values, like σ = 2.2, start from the deep phantom region and only go over ever so
slightly above −1 into a very small patch of the quintessence regime. The phantom divide
happens again but in a completely opposite fashion to the trend seen in the non-viscous
fluid case. The energy density of dark energy fluctuates in pretty much the same way as in
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Figure 2, the same for the non-viscous regime as in the viscous regime and so we do not
need to show its plot here.

Figure 5. A plot of the dark energy EOS for the event horizon cutoff Tsallis model with viscous fluid
configuration wv with time, plotted for increasing σ values.

The sound speed squared in this case turns out to be

v2
sv =

1
3

√
Ω

 (σ − 1) ˙Rh(t)

h(t)
(√

ΩRh(t)− cRh(t)σ
) +

2(σ − 2)Rh(t)1−σ

c

− 2σ + 1

 (30)

which, using the expression we have for the future event horizon, becomes

v2
sv = 1

3 (4 − 2σ)

(
−

√
Ω(c1(t−ts)n+ t−ts

n−1 )
1−σ

c

+
√

Ω(σ−1)(c1(n−1)n(t−ts)n+t−ts)

2(σ−2)
(

n
√

Ω(c1(n−1)(t−ts)n+t−ts)−c(n−1)n(c1(t−ts)n+ t−ts
n−1 )

σ
) + 1

)
− 1

(31)

One clearly sees that there is a similarity to the trend in the graphs of the squared sound
speed in both the viscous and non-viscous cases as given by Figures 3 and 6, respectively.
We again see that, for very small values of σ, there is no hope to avoid classical instabilities
even in the viscous Tsallis model, while one can hope for better results as one increases the
value of σ. Hence, one sees that, as one increases the deviation from the usual HDE model,
and with the effects of the Tsallis model becoming more and more apparent, the stability of
the model has a hope of becoming stable. But again, even the higher values of σ eventually
tend to instability. In this scenario, it is especially helpful to see the behavior at arbitrarily
large times.

Figure 6. A plot of the squared sound speed v2
s for the event horizon cutoff viscous Tsallis model

with time, plotted for increasing σ values.
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As is clear from Figure 7, as time progresses to very large values, models for all values
of σ eventually attain negative squared sound speed values. Hence, all these models likely
become unstable for perturbations in large timeframes.

Figure 7. A plot of the squared sound speed v2
s for the event horizon cutoff viscous Tsallis model

with time, plotted for increasing σ values at arbitrarily large times.

3.3. Chaplygin Gas Case

Until now, both the models that we have discussed have given interesting results
from the perspective of the phantom divide, showing that the Tsallis model can show such
a divide for a nice range of the Tsallis parameter for both viscous and non viscous fluid
configurations. But although in these paradigms we are seeing small hints of escaping the
issues of classical instability, as pointed out in [98], the instability eventually takes over in
these models as time progresses. Now, we turn our attention to the generalized Chaplygin
gas model, characterized by the EOS

p = − A
ρα

(32)

where A and α are assumed to be positive constants, where for α = 1, one obtains the usual
Chaplygin gas model. Now, for a Tsallis HDE scenario with a Chaplygin gas configuration,
we can write the continuity equation to be

−(4 − 2σ)ρH

[
1 −

√
ΩΛR1−σ

h
c

]
+ 3H(ρ − A

ρα
) = 0 (33)

from which we can write the EOS to be

wc = +
1
3
(4 − 2σ)

(
1 −

√
ΩRh(t)1−σ

c

)
− 1 (34)

Using the expression for the future event horizon, we can write

wc =
1
3
(4 − 2σ)

1 −

√
o
(

c1(t − ts)n + t−ts
n−1

)1−σ

c

− 1 (35)

As one can see from Figure 8, for relatively smaller values of time, the larger values of
σ (in this case σ = (1.5, 1.9, 2.2) cross the −1 barrier starting either from the quintessence or
phantom regime while the smallest value of σ, which in this case is σ = 1.1, appears to not
be able to do so in this timeframe. Plotting for arbitrarily large times, however, gives us the
following plot.
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Figure 8. A plot of the dark energy EOS for the event horizon cutoff Tsallis model with Chaplygin
gas configuration wc with time, plotted for increasing σ values.

For large values of time, or equivalently speaking, as time progresses further and
further, one sees from Figure 9 that even the model with the slightest deviation from
the simple HDE, σ = 1.1, also crosses the −1 barrier and eventually ascends into the
quintessence regime. While the model for σ = 1.5 becomes well settled in the quintessence
regime, with σ = (1.9, 2.2) models becoming settled in the phantom regime. The thing to
note, very interestingly, is that the Chaplygin gas parameters, A and α, do not impact the
behavior of the equation-of-state at all and do not factor into the equation in any case. One
can also consider the energy density of the HDE in this case, which can be written as

ρΛc = 3
1

α+1

(
acRh(t)σ

c(2σ − 1)Rh(t)σ − 2
√

Ω(σ − 2)Rh(t)

) 1
α+1

(36)

Plotting the expression of the future event horizon, we get

ρΛc = 3
1

α+1

 a

3 − (4 − 2σ)

(
1 −

√
Ω(c1(t−ts)n+ t−ts

n−1 )
1−σ

c

)


1
α+1

(37)

Figure 9. A plot of the dark energy EOS for the event horizon cutoff Tsallis model with Chaplygin
gas configuration wc with time, plotted for increasing σ values, plotted for a large timeframe.
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As one sees from Figure 10, the density fluctuates in different ways for all values of σ,
but the trends of the evolution of the densities stays quite the same for different values of
A. Plotting for one of these values at large times, say A = 2, we have

Figure 10. A plot of the DE energy density ρΛc, plotted for increasing σ values and plotted for
different values of A against time.

We see from Figure 11 that, eventually, it is not the value which is not too high, like
σ = 2.2, or not too low, like σ = 1.1 m, but rather the intermediate value, which is σ = 1.5,
which eventually has the highest values of the energy density of the HDE. The evolution of
all the densities in different models is again different but is pretty much a smooth transition
from what is observed for smaller timeframes in Figure 10.

Figure 11. A plot of the DE energy density ρΛc, plotted for increasing σ values plotted for different
values of A against time.

Now, we finally turn our attention to what is perhaps the most surprising discovery
here. The squared speed in the case of the Chaplygin gas scenario can be written as

v2
sc =

1
3

α

(
3 − (4 − 2σ)

(
1 −

√
ΩRh(t)1−σ

c

))
(38)

And again, by using the expression of the future event horizon, we can write

v2
sc = α − 1

3
α(4 − 2σ)

1 −

√
Ω
(

c1(t − ts)n + t−ts
n−1

)1−σ

c

 (39)
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Plotting this against time, in Figure 12, we plot the sound speed squared for different
values of σ setting α = 0.3 (the trend of the sound speed stays the same for < α ≤ 1).

Figure 12. A plot of the squared sound speed v2
sc, plotted for increasing σ values plotted for α = 0.3

against time.

The plot shown in Figure 12 is quite interesting. One sees that, for all values of σ in
this case, which are σ = (0.8, 1.5, 1.9, 2.4), there is a clear and very evident preference of the
squared sound speed towards highly positive values. In fact, only the highest value of σ in
this case, which is σ = 2.4, picks up negative values of the squared sound speed in the very
beginning while it very quickly ascends to positive values. In a larger timeframe, the plot
takes the shape.

One sees from Figure 13 that, in arbitrarily large time frames or, equivalently speaking,
as time progresses further and further on, various σ models very easily and definitively
maintain classical stability as they eventually have quite substantial positive values for the
squared sound speed. This definitively stable behavior from the perturbations point of view
is seen very convincingly in the case of the Tsallis Chaplygin gas scenario, something which
we only saw in very small patches for the previous two Tsallis models that we considered.

Figure 13. A plot of the squared sound speed v2
sc, plotted for increasing σ values plotted for α = 0.3

against time.

4. Conclusions

In this work, we considered the Tsallis holographic dark energy model in a scale factor
ansatz-based approach. Holographic dark energy models have gained considerable interest
in recent times as a quantum gravity-motivated explanation of dark energy and, while
it shows promising features quite often, it has its own set of issues. One of the primary
issues which often plagues these models is the issue of classical instability, characterized by
superluminal or negative squared sound speeds. Another issue is the unrealistic evolution
of the dark energy EOS parameter, and so in this work, we consider the status quo of
simple power law models in a Tsallis HDE scenario with no interacting dark sector. What
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motivated such a study is the fact that it becomes very hard to have a consistent HDE
scenario both when one considers non-interacting dark sectors and also when one considers
simple power law models, and so this work went on to see to what extent one would have to
churn up this HDE model in order to end up with a consistent paradigm. We considered the
event horizon cutoff for our analysis while considering three different cosmological settings
for our model, namely with non-viscous, viscous, and Chaplygin gas configurations. We
were able to show that, in all such cases, one can clearly see that the Tsallis models cross
the phantom divide but stability issues persist throughout the reasonable range of the
Tsallis parameters in both viscous and non-viscous cases. But, interestingly, the Chaplygin
gas models present us with more stable dark energy scenarios as they give long term
stability. This points towards the notion that HDE scenarios, when also supplemented with
non-trivial EOS forms for DE (like the Chaplygin or the generalized Chaplygin in our case),
can perhaps provide consistent scenarios even in those regimes where it is otherwise too
difficult for HDEs to provide stable paradigms.
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