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Abstract: In recent years, the tropical polynomial factorization problem, the tropical matrix de-
composition problem, and the tropical multivariate quadratic equation solving problem have been
proved to be NP-hard. Some asymmetric cryptographic systems based on tropical semirings have
been proposed, but most of them are insecure and have been successfully attacked. In this paper,
a new key exchange protocol and a new encryption protocol are proposed based on the difficulty
of finding the multiple exponentiation problem of the tropical Jones matrices. The analysis results
indicate that our protocol can resist various existing attacks. The complexity of attacking an MEP
by adversaries is raised due to the larger number of combinations in the tropical Jones matrices
compared to regular matrix polynomials. Furthermore, the index semiring is the non-negative integer
cyclic matrix semiring, leading to a higher efficiency in key generation.
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1. Introduction

Asymmetric cryptography plays a crucial role in the modern fields of communication
and information security, offering reliable solutions for safeguarding the confidentiality,
integrity, and authentication of data. Widely applied in areas such as internet transmission,
digital signatures, and virtual private networks (VPNs), it provides users with a secure and
dependable means of communication.

Asymmetric cryptography was first presented by Diffie and Hellman in 1976. Cryp-
tographers have designed several representative public key cryptosystems. The security of
these cryptographic systems relies on the difficulty associated with solving certain conven-
tional mathematical challenges, including the integer factorization problem (IFP) [1], the
knapsack problem (KP) [2], the discrete logarithm problem (DLP) [3,4], and the shortest
vector problem in lattice [5]. The IFP and DLP are also two computational problems that
public key cryptography mainly relies on. However, it is possible to solve the two problems
in polynomial time using the quantum algorithm [6] that Shor proposed. Therefore, future
cryptographic systems need to resist quantum attack, and developing new cryptographic
systems is currently a hot topic in cryptography research.

Tropical algebra is derived from the tropical set theory proposed by the scientist
Imre Simon [7,8]. In tropical algebra, tropical addition involves taking the minimum or
maximum value of two numbers, and tropical multiplication is the common addition. Later,
some cryptography researchers combined tropical algebra with the concept of semirings
and defined the algebraic structure of tropical semirings. In 2005, Kim and Roush [9]
proved that if the coefficients are finite, or all the coefficients are 0 or infinity (the Boolean
case), then the univariate polynomial factorization problem of tropical semirings is usually
NP-complete. In 2014, Shitov [10] studied the tropical matrix factorization (MF) problem
and proved that the k-MF problem is NP-hard when k ≥ 7. (The k-MF problem is as
follows: given a m × n matrix A on Rmin, find a m × k matrix B and a k × n matrix C, such
that BC = A).
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Since tropical addition involves taking the minimum or maximum value of two
numbers, tropical multiplication is the common addition and the calculations in the tropical
semiring are more efficient than the classical ring. Recently, many people have attempted
to propose some key exchange protocols based on tropical matrix algebra that are not
only efficient but also secure, but they have been successfully attacked. By imitating some
famous “classical” schemes previously proposed, Grigoriev and Shpilrain initially proposed
a key exchange protocol based on tropical semirings [11] in 2014. In this article, Grigoreiv
and Shpilrain reduced the 3-SAT problem to a system of multivariate quadratic polynomial
equations (MQPs) of tropical semirings and proved that the MQP of tropical semirings is
NP-hard. However, when the range of tropical matrix elements contains negative numbers,
it is found that each term of the tropical matrix will soon become negative and will become
smaller as the number of powers increases. According to this rule, Kotov and Ushakov [12]
developed corresponding effective attack schemes. In response to this heuristic attack
proposed by Kotov and Ushakov, Grigoriev and Shpilrain proposed a new improvement to
the key exchange protocol. In 2019, they proposed a key exchange protocol [13] based on the
semidirect product of tropical matrices. However, this scheme was successfully broken by
Rudy and Monico [14] using a simple binary search. In addition, Isaac and Kahrobaei [15]
and Muanalifah and Sergeev [16] have also successfully attacked the schemes. To remedy
the Grigorev–Shpilrain’s protocol, Muanalifah and Sergeev proposed the use of two classes
of exchange matrices (the Jones matrix and the LP matrix) from tropical algebra [17] and
utilized the bilateral action of the matrices to propose three key exchange protocols [18].
However, in this article, the user’s secret matrix may still be represented in the linear form
of the powers of the fundamental elementary matrix. Hence, its modifications are not
resistant to the generalized KU attack. In 2022, Huang and Li proposed a new key exchange
protocol [19] based on the multiple exponentiation problem of matrices, using tropical
algebra as a platform and the adjoint matrix of the first polynomial. The analysis results
showed that the protocol can resist all known attacks. Durcheva [20] proposed a public
key encryption scheme based on the circulant matrix product problem and the two-sided
action problem of matrix polynomials in 2022. Jiang et al. [21] cracked the scheme through
tropical linear equations. Ahmed et al. [22] summarizes and analyzes the previous tropical
cryptography schemes. Other cryptographic schemes based on tropical algebra can be
found in the references [23–25].

Our contribution: In this paper, we design a new class of key exchange protocol
and asymmetric encryption protocol based on the tropical Jones matrix. The security
of the designed key exchange protocol can be reduced to a specific type of semigroup
action problem introduced by Maze in [17], which involves the difficulty of finding the
multiple exponentiation of tropical matrices. The multiple exponentiation problem can be
transformed into a constructive membership problem of a semigroup in polynomial time,
and this problem is a provable hard problem in the quantum computing model [26]. In
addition, this problem cannot be reduced to the DLP or the HSP (hidden subgroup problem)
efficiently in most cases. So, our protocol has the property of anti-quantum computing.
The greater amount of combinations of the tropical Jones matrices as opposed to standard
matrix polynomials increases the difficulty of adversaries attacking the MEP. Through an
analysis of the key exchange protocol, it is found that our protocol can also resist KU attack
and other known attacks. Additionally, the index semiring is the non-negative integer
cyclic matrix semiring, which increases key generation efficiency.

The remaining portions of this article are organized as follows. Section 2 contains
some preliminary information on tropical semirings. Section 3 presents our protocols
based on the tropical Jones matrix. In Section 4, we provide a straightforward example to
illustrate this key exchange protocol. The efficiency of the proposed cryptographic protocol,
possible attacks, and parameter selection are finally covered in Section 5. Finally, Section 6
summarizes this article.



Symmetry 2024, 16, 456 3 of 12

2. Preliminaries

Note: We represent the set {1, 2, . . . , n} and {1, 2, . . . , m} as [n] and [m].
We first provide some essential information about tropical algebra. For more details,

please refer to the monograph [27].

Definition 1 ([28] (Semiring)). Let R be a nonempty set in which two binary operations are
defined, where one is an addition operation and the other is a multiplication operation, if the operation
meets the following criteria:

(1) The set R forms a commutative monoid for “ +” and has an identity element denoted as 0;
(2) The set R forms a monoid for “ ·” and has an identity element denoted as 1;
(3) a · (b + c) = a · b + a · c; (a + b) · c = a · c + b · c for all a ∈ R, b ∈ R, c ∈ R;
(4) 0 · r = r · 0 = 0 for all r ∈ R;
(5) 1 ̸= 0, then R is a semiring. If for any a, b ∈ R, satisfies a · b = b · a, then R is called a

commutative semiring.

Definition 2 ([29] (Tropical Semiring)). The non-negative integer tropical commutative semiring
is the set TZ = Z∪ {−∞} with two binary compositions ⊕ and ⊗ as follows:

x ⊕ y = max(x, y), x ⊗ y = x + y.

−∞ and 0 satisfied the following equations:

x ⊕ (−∞) = x, x ⊗ 0 = 0, ∀x ∈ Z

The commutative semiring properties of with addition identity −∞ and multiplication
identity 0 are easily demonstrated.

This is an example:
9 ⊕ 3 = 9, 7 ⊗ 9 = 7 + 9 = 16

The set of all tropical polynomials over TZ can be defined where the unknown term is
x, just like in the classical case. Let

TZ[x] =
{
(an ⊗ xn)⊕

(
an−1 ⊗ xn−1

)
⊕ · · · ⊕ (a1 ⊗ x)⊕ a0|ai ∈ TZ, n ≥ 0

}
.

The ⊕ and ⊗ operations of tropical polynomials in TZ[x] are like the classical addition
and multiplication, with each + being replaced by ⊕ and each · being replaced by ⊗.
Proving that TZ[x] is a commutative semiring under ⊕ and ⊗ is straightforward.

Definition 3 (Tropical Matrix). Let Mk(TZ) be the set of all k × k matrices over TZ We define
binary operations ⊕ and ⊗ on Mk(TZ):

Record A =
[
aij

]
, B =

[
bij

]
, then

A ⊕ B =
[
aij

]
⊕

[
bij

]
=

[
aij + bij

]
,

A ⊗ B =
[
aij

]
⊗

[
bij

]
=

[
ai1 ⊗ b1j ⊕ ai2 ⊗ b2j ⊕ · · · ⊕ aik ⊗ bkj

]
.

So is a semiring and

O =


−∞ −∞ · · · −∞
−∞ −∞ · · · −∞

...
...

. . .
...

−∞ −∞ · · · −∞

, I =


0 −∞ · · · −∞

−∞ 0 · · · −∞
...

...
. . .

...
−∞ −∞ · · · 0


are the identity elements of Mk(TZ) under ⊕ and ⊗ respectively.
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It is rare for tropical matrices to be reversible, unlike the classical situation. Only
tropical matrices obtained by elementary row or column transformations of diagonal
matrices can be reversed.

Similarly, we can define a tropical matrix polynomial as follows:

TZ[N] =
{
(an ⊗ Nn)⊕

(
an−1 ⊗ Nn−1

)
⊕ · · · ⊕ (a1 ⊗ N)⊕

(
a0 ⊗ I0

)
|ai ∈ TZ, n ≥ 0

}
where N ∈ Mk(TZ), Nn = N ⊗ N ⊗ · · · ⊗ N (n times). TZ[N] is a commutative subsemiring
of Mk(TZ) with respect to tropical matrix addition and multiplication.

Definition 4 ([23] (Circulant Matrix)). If matrix C is in the following form:
c1 cn cn−1 · · · c2
c2 c1 cn · · · c3
c3 c2 c1 · · · c4
...

...
...

. . .
...

cn cn−1 cn−2 · · · c1

,

it is called a circulant matrix, where the terms are c1, c2, · · · , cn. The set of all non-negative integer
circulant matrices is denoted as Cn(Z+).

2.1. Jones Matrix

In this section, we describe a specific type of matrices that were considered by
Jones [30], and, by extending the polynomial concept, we can derive the concept of quasi-
polynomials for Jones matrices, which will be applied to the protocol in Section 3.

Definition 5 ([18] (Jones Matrix)). Let A =
[
aij

]
be an n × n tropical matrix that satisfies the

following property:
aij ⊗ ajk ≤ aik ⊗ ajj, ∀i, j, k ∈ [n],

we call A a Jones matrix.

Definition 6 ([18] (Deformation)). Let A =
[
aij

]
be a Jones matrix and α ∈ R. The ma-

trix A(α) =
(

a(α)ij

)
defined by

a(α)ij = aij ⊗
(
aii ⊕ ajj

)⊗(α−1), ∀i, j ∈ [n]

is called a deformation of A.

Next, we will describe two theorems for a Jones matrix.

Theorem 1 ([18]). If A is a Jones matrix, then A(α) is also a Jones matrix for any α ≤ 1.

Theorem 2 ([18]). Let A ∈ Mk(TZ) be a Jones matrix, then

A(α) ⊗ A(β) = A(β) ⊗ A(α)

for any α and β, such that 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.

According to the above theorems, we define a quasi-polynomial and replace a mono-
mial with a deformation.
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Definition 7 ([18] (Quasi-polynomial)). Let A ∈ Mk(TZ) be a Jones matrix. Matrix B is termed
a quasi-polynomial of A if

B = ⊕
α∈R

aα ⊗ N(α)

for some finite subset R of rational numbers in [0, 1] andaα ∈ TZ for α ∈ R. The set composed of
all quasi-polynomials of N is denoted as TZ

[
N(α)

]
.

2.2. A New Semigroup Action

Let A be a non-negative integer circulant matrix, N ∈ Mk(TZ) be a Jones matrix,

and
→
H = (H1.H2, · · · , Hn) ∈

(
TZ

[
N(α)

])n
. Now consider the action of the multiplicative

semigroup Cn(Z+) on the Cartesian product
(
TZ

[
N(α)

])n
, as shown below:

→
H

A
=

(
HA

1 , HA
2 , · · · , HA

n

)
=

(
n
⊗

i=1
Ha1i

i ,
n
⊗

i=1
Ha2i

i , · · · ,
n
⊗

i=1
Hani

i

)
,

where H
aji
i = Hi ⊗ Hi ⊗ · · · ⊗ Hi (aji times). It can be easily proven that

→
H

A
is a semigroup

action of Cn(Z+) on
(
TZ

[
N(α)

])n
.

2.3. Multiple Exponentiation Problem of Tropical Matrices

According to Reference [19], we can give the definition of the ME problem of the
tropical Jones matrix.

Definition 8 (ME problem). Let C ∈ Cn(Z+), N ∈ Mk(TZ) be a Jones matrix, and
→
H = (H1.H2, · · · , Hn) ∈

(
TZ

[
N(α)

])n
, and assuming

→
U =

→
H

A
, where A ∈ Cn(Z+). The

multiple exponentiation problem of tropical matrices is to find a matrix A ∈ Cn(Z+) satisfying the

above equation for given C,
→
H and

→
U. (Remember that N is unknown.) We refer to the issue as the

“ME problem” for simplicity’s sake.

Many results in traditional algebra are known to be invalid in tropical algebra. Con-
sequently, certain properties of ordinary matrices, such as Cayley–Hamilton theorem,
eigenvalues, and determinant, do not apply. But if Hi(i ∈ [n]) satisfies certain conditions,
we can simplify the problem to the DLP.

Proposition 1 ([18]). If a component Hi of
→
H exists such that

(∀j ̸= i)Hj ∈ ⟨Hi⟩(i, j ∈ [n]),

then the ME problem can be simplified to the DLP in polynomial time.

3. Key Exchange Protocol and Encryption Protocol Based on the Jones Matrix

This section presents a key exchange protocol that is similar to the Diffie–Hellman
protocol. It is based on the multiple exponentiation problem of tropical matrices and a
public key encryption protocol such as the ELGamal encryption protocol.

3.1. A New Key Exchange Protocol

Let
→
H = (H1.H2, · · · , Hn) ∈

(
TZ

[
N(α)

])n
be such that no component Hi of

→
H exists

such that (∀j ̸= i)Hj ∈ ⟨Hi⟩(i, j = 0, 1, 2, · · · , n − 1). The protocol’s public parameters are
→
H.

Protocol A
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(1) Alice randomly selects a circulant matrix A ∈ Cn(Z+), calculates
→
U =

→
H

A
, and sends

→
U to Bob;

(2) Bob randomly selects a circulant matrix B ∈ Cn(Z+), calculates
→
V =

→
H

B
, and sends

→
V

to Alice;
(3) Alice calculates

KAlice =
→
V

A
=

(→
H

B)A

=
→
H

B·A
;

(4) Bob calculates

KBob =
→
U

B
=

(→
H

A)B

=
→
H

A·B
.

Note that “·” is the matrix multiplication in Cn(Z+).
Given that Cn(Z+) is commutative, we obtain A · B = B · A and KAlice = KBob. Thus,

Bob and Alice have a shared secret key.

3.2. A Common Key Encryption Protocol Based on the Jones Matrix

Protocol B

(1) Key Generation

Let
→
H = (H1.H2, · · · , Hn) ∈

(
TZ

[
N(α)

])n
. No component Hi of

→
H exists such that

(∀j ̸= i)Hj ∈ ⟨Hi⟩(i, j = 0, 1, 2, · · · , n − 1). The protocol’s public parameters are
→
H. The

key generation center randomly chooses a circulant matrix A in Cn(Z+), and computes

→
U =

→
H

A
.

Alice’s public key is shown as
→
U. Alice’s secret key is A.

(2) Encryption

Bob needs to do the following calculation to send the plaintext message
→
M ∈ (Mk[TZ])

n

to Alice.

1⃝ Bob randomly selects a circulant matrix B ∈ Cn(Z+), then computes
→
V =

→
H

B
, and

takes it as the first part of the ciphertext.

2⃝ Bob calculates
→
Q =

→
M +

→
U

B
as the final component of the ciphertext. Note that the “+

” here is an ordinary matrix addition operation.

3⃝ Bob sends ciphertext
(→

V,
→
Q
)

just calculated to Alice.

(3) Decryption

After receiving the ciphertext
(→

V,
→
Q
)

sent by Bob, Alice decrypts it with her private key.

1⃝ Alice first computes
→
W =

→
V

A
.

2⃝ Alice then computes
→
Q −

→
W to get the original plaintext message. Note that “−” here

is an ordinary matrix subtraction operation.
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Verification:
→
Q −

→
W =

→
M +

→
U

B
−

→
V

A

=
→
M +

(→
H

A)B

−
(→

H
B)A

=
→
M +

→
H

A·B
−

→
H

B·A

=
→
M

.

4. A Toy Example

To help readers comprehend the above key exchange protocol, we have included a
basic example in this section.

Alice and Bob both choose a Jones matrix N =

6 5 6
6 16 12
5 9 12

 and

→
H =

(
N( 1

2 ), N( 1
3 ), N( 1

4 )
)

, i.e.,

→
H =

 3 −3 0
−2 8 4
−1 1 6

,

 2 − 17
3 −2

− 14
3

16
3

4
3

−3 − 5
3 4

,

 3
2 −7 −3
−6 4 0
−4 −3 3

.

Alice’s private key is A =

2 3 4
4 2 3
3 4 2

 ∈ Cn(Z+), she computes

→
U =

→
H

A
=

27 37 33
38 48 44
31 41 37

,

 101
3

131
3

119
3

134
3

164
3

152
3

113
3

143
3

131
3

,

 97
3

127
3

115
3

130
3

160
3

148
3

109
3

139
3

127
3

,

then sends
→
U to Bob.

Bob’s private key is B =

0 2 1
1 0 2
2 1 0

 ∈ Cn(Z+). He computes

→
V =

→
H

B
=

 11
2

11
3 5

14
3

44
3

32
3

4 23
3 11

,

6 5 6
6 16 12
5 9 12

,

 8 31
3 10

34
3

64
3

52
3

9 43
3 16

,

then sends
→
V to Alice.

Alice calculates

KAlice =

 425
3

455
3

443
3

458
3

488
3

476
3

437
3

467
3

455
3

,

 401
3

431
3

419
3

434
3

464
3

452
3

413
3

443
3

431
3

,

 389
3

419
3

407
3

422
3

452
3

440
3

401
3

431
3

419
3

.

And Bob calculates

KBob =

 425
3

455
3

443
3

458
3

488
3

476
3

437
3

467
3

455
3

,

 401
3

431
3

419
3

434
3

464
3

452
3

413
3

443
3

431
3

,

 389
3

419
3

407
3

422
3

452
3

440
3

401
3

431
3

419
3

,

where KAlice = KBob. Therefore, Alice and Bob share the key.
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5. Security Analysis and Parameter Selection

In this section, we analyze the security of the proposed key exchange protocol. The
analysis shows that our protocol can resist all known attacks and has the property of
anti-quantum computing. First, we prove that Protocol B is semantically secure.

Definition 9 ([19]). Suppose
→
U = A ∗

→
H and

→
V = B ∗

→
H, where A, B ∈ Cn(Z+). Let R ∈(

TZ
[

N(α)
])n

. The decisional ME problem is to decide whether
→
R =

→
H

AB
, given

→
H,

→
U,

→
V, and

→
R.

To simplify, we denote it as the “DME”.

Theorem 3. An algorithm capable of resolving the DME problem can effectively ascertain the
legitimacy of ciphertexts within Protocol B. Conversely, an algorithm designed to determine the
validity of ciphertexts within Protocol B can be harnessed to address the DME problem.

Proof. Let us initially assume that algorithm A1 possesses the capability to determine

the correctness of a decryption within Protocol B. When given the inputs
→
H,

→
U, (

→
V,

→
Q),

and
→
M, the algorithm A1 outputs “yes” if

→
M is the decryption of (

→
V,

→
Q) and outputs “no”

otherwise. Given the input
→
H,

→
U, (

→
V,

→
Q), and

→
M, the algorithm A1 outputs “yes” if

→
M is

the decryption of (
→
V,

→
Q) and “no” otherwise. Now, we use A1 to solve the DME problem.

Suppose we are given
→
H,

→
U(=

→
H

A
),

→
V(=

→
H

B
), and

→
R, and our aim is to determine whether

→
R =

→
H

AB
. Let

→
Q =

→
R and

→
M = (0k, · · · , 0k), where 0k is the k × k zero matrix of Mk(Z).

Input all of these parameters into A1. Note that A is now the secret key. The decryption of

(
→
V,

→
Q) is

→
Q −

→
V

A
=

→
R − (

→
H

B
)

A

=
→
R −

→
H

AB
.

Consequently, A1 outputs “yes” precisely when
→
M = (0k, · · · , 0k) equals

→
R −

→
H

AB
,

specifically when
→
R =

→
H

AB
. This resolution effectively addresses the decision DME

problem.
On the contrary, let us assume an algorithm A2 can effectively tackle the DME problem.

This implies that if provided with inputs
→
H,

→
U(=

→
H

A
),

→
V(=

→
H

B
), and

→
R, the algorithm A2

produces “yes” if
→
R =

→
H

AB
and “no” otherwise. Let it be the claimed decryption of the

ciphertext. Consider
→
M as the asserted decryption of the ciphertext (

→
V,

→
Q). Input

→
Q −

→
M as

→
R. It is worth noting that

→
M represents the accurate plaintext for the ciphertext (

→
V,

→
Q) only

if
→
M =

→
Q −

→
V

A
=

→
Q −

→
H

AB
, which occurs if and only if

→
Q −

→
M =

→
H

AB
. Hence,

→
M is the

accurate plaintext if and only if
→
R =

→
H

AB
. Therefore, given these inputs, A2 yields “yes”

precisely when
→
M is the accurate plaintext.

The Theorem is proved. □

5.1. Possible Attacks

(1) Brute-force attack. Assuming A ∈ Cn(Z+) is a circulant matrix with terms a0, a1,
· · · , an−1 ∈ [0, s − 1]. The attacker clearly has sn options from which to select A, so
the parameters s and n must satisfy sn ≥ 280.

(2) Tropical matrix decomposition attack. Tropical matrix decomposition attack involves

a search for a circulant matrix A′ such that
→
H

A′

=
→
U and A′C = CA′, then the attacker

can find the shared key. However, the attacker needs to factor
→
U into the form of
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G1G2 · · · Gn, where Gi ∈
〈

Hj
〉
, n ≥ 2 is NP-hard, so the tropical matrix decomposition

attack is not effective.
(3) KU attack. Since the Jones matrix is unknown, if we want to find N, the system of

equations needs to be solved as follows:

⊕
α1∈R

aα1 ⊗ N(α1) = H1

⊕
α2∈R

aα2 ⊗ N(α2) = H2

· · · · · ·
⊕

αn∈R
aαn ⊗ N(αn) = Hn

.

Solving the above system of equations is NP-hard. Therefore, the KU attack is ineffective.
Assuming the attacker knows the matrix N, finding the private key A from the public

key
→
U is what they must accomplish. KU attacks are limited to breaking down tropical

matrices into their product, like U = X ⊗Y. In this protocol, the KU attack will not function

if the
→
H component value is more than two. Therefore, we require that the components of

→
H be greater than or equal to three.

(4) Generalized KU attack. Additionally, a common matrix can be broken down by the
generalized KU attack into the linear equivalent of the tropical basic elementary matrix:
the product of two Jones matrices. However, in our cryptosystems, if n > 2, then each

component matrix of
→
U is the result of multiplying by more than two matrices. In this

instance, our cryptosystems are likewise unaffected by the generalized KU attack.
(5) RM attack. Grigoriev and Shpilrain designed another key exchange protocol based

on the action of the semidirect product. However, in this key exchange protocol, the
addition operation of the tropical matrix is used, and the addition of the tropical
matrix has the property of idempotent, so the power of this part of the semidirect
product is partially order-preserving. Rudy and Monico used this feature to create a
straightforward binary search algorithm that allowed them to break the cryptosystem

in [14]. There is no tropical matrix addition operation in
→
H

A
in our cryptosystems.

Thus, our cryptosystems can also resist this attack.
(6) Quantum attack. Andrew et al. [26] proved that the constructive membership problem

of the semigroup is a provable hard quantum computation model, and the lower
bound of its quantum computation complexity is exponential. Since the ME problem
can be transformed into a semigroup constructive member problem, our cryptosys-
tems have the property of anti-quantum computing.

Table 1 provides the comparison of our protocols with other relevant schemes in terms
of resisting various known attacks.

Table 1. Comparison among relevant tropical schemes.

Schemes Mathematical Problems KU Attack RM Attack G-KU Attack

Grigoriev [11] Two-sided matrix action problem ×
√

×
Grigoriev [13] Semidirect product problem

√
×

√

Muanalifah [16] Two-sided matrix action problem
√ √

×
Huang [19] Multiple exponentiation problem

√ √ √

Our protocols Multiple exponentiation problem
√ √ √

5.2. Parameter Selection and Efficiency

Nachtigall et al. defined a sequence of matrices to be almost linear periodic in [31]. In
the following definition, if the matrix H =

[
hij

]
, then hp

ij denotes the ijth element of Hp.
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Definition 10 ([31] (Almost linear periodic)). If there is a period ρ, linear factor ξ, and some
defect d such that the following equation applies for all indices i, j and all p > d, then a sequence of
matrices {Hp, p ∈ N} is almost linearly periodic:

hp+ρ
ij = ξ + hp

ij.

In [32], Beccelli et al. demonstrated that the higher powers sequence of tropical
matrices is almost linear periodic. In our protocol, if the exponent p and period ρ of the
Jones matrix N are small, there is a possibility of potential heuristic attacks. The exponent
p of the tropical matrix increases with the increase of the order k of the matrix. We have
shown through experiments that it is feasible to generate a Jones matrix N and Hi with an
exponent exceeding k2 and using this feature to attack does not work.

From Proposition 1, we know that if there exists a component Hi of
→
H such that

(∀j ̸= i)Hj ∈ ⟨Hi⟩(i, j ∈ [n]), then the ME problem can be simplified to the DLP in polyno-

mial time. To avoid this situation,
→
H must satisfy that there is no component Hi of

→
H such

that (∀j ̸= i)Hj ∈ ⟨Hi⟩(i, j ∈ [n]).
In Protocol A and B, we recommend using the following parameters:

(1) The order of the Jones matrix N is k = 10 and the element selection in [0, 1000];
(2) Because the deformation of the Jones matrix means that the terms of the matrix

may contain fractions, we recommend aα = 0, where exponent α is selected rational
numbers in [0, 1];

(3) Because the terms of the private key matrices A and B are exponents of Hi(i ∈ [n]),
the terms of the circulant matrices A and B cannot be too large. Here, we recommend
selecting their terms in [0, 10].

Now, we analyze the computational efficiency of encryption Protocol B. The most

time-consuming operations in the protocol are the matrix exponentiations
→
H

A
,
→
H

B
,
→
U

B
, and

→
V

B
. (In the key generation process,

→
H is randomly generated, and the private key matrix A

is randomly selected from cyclic matrices, compared to matrix exponentiation operations,
so their time consumption can be neglected. In the encryption and decryption processes,
the computation time for the ordinary matrix addition and subtraction is also typically very
fast and can be neglected compared to matrix exponentiation.)

Table 2 compares the execution time of the operation
→
U =

→
H

A
with various parameters,

and Table 3 compares the execution time of the key generation, encryption, and decryption
processes under different parameters (research platform: AMD Ryzen 7 6800H with Radeon
Graphics3.20 GHz).

Table 2. Performance comparison under some parameters.

k n s Timing of
→
H

A
(s)

10 80 2 1.082
14 51 3 1.929
21 40 4 2.38
25 39 5 5.618
28 33 6 5.686

Table 3. Performance comparison of encryption under some parameters.

k n s Timing of Key
Generation (s)

Timing of
Encryption (s)

Timing of
Decryption (s)

10 80 2 1.085 2.052 1.506
14 51 3 1.933 3.38 2.804
21 40 4 2.383 4.787 4.256
25 39 5 5.623 9.33 8.775
28 33 6 5.692 9.546 9.089
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Similar to the scheme in reference [19], our protocol is also built upon employing
the tropical matrix multiple exponentiation problem. However, we employ the tropical
Jones matrix MEP instead of the matrix polynomial MEP. Specifically, the base semiring
we use is TZ

[
N(α)

]
, not TZ[N]. Under the same parameters, the quasi-polynomial set of

Jones matrices is much larger than the general matrix polynomial set, greatly increasing
the adversary’s search space. Additionally, since our index semiring is Cn(Z+) rather than
Z+(D) in the key generation process, we only need to randomly generate a cyclic matrix
without calculating the matrix polynomials, which makes the key generation efficiency
higher in our protocol. Table 4 compares our protocol with the protocol in reference [19].

Table 4. Comparison with the protocol in [19].

Protocol Base Semiring Index Semiring Hard Problem

[19] TZ[N] Z+(D)
Matrix polynomial

MEP

This paper TZ
[

N(α)
]

Cn(Z+) Jones matrix MEP

6. Conclusions

In this paper, we propose a new key exchange protocol and a new public key encryp-
tion protocol by using the multiplication of the quasi-polynomial of the Jones matrix, which
has the property of commutativity when α ∈ [0, 1]. The security of the protocol is analyzed.

Because the component of public key
→
H in our protocols is more than two, our protocols

can resist a KU attack and a generalized KU attack. Furthermore, in our cryptosystem, the
addition operation of the matrix is not involved, so our protocols can resist an RM attack.
Since the ME problem can be transformed into a semigroup constructive member problem,
our cryptosystems have the property of anti-quantum computing.
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