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Abstract: In recent years, with the rapid development of deep learning technology, a large number
of excellent convolutional neural networks (CNNs) have been proposed, many of which are based
on improvements to classical methods. Based on the Inception family of methods, depthwise
separable convolution was applied to Xception to achieve lightweighting, and Inception-ResNet
introduces residual connections to accelerate model convergence. However, existing improvements
for the Inception module often neglect further enhancement of its receptive field, while increasing the
receptive field of CNNs has been widely studied and proven to be effective in improving classification
performance. Motivated by this fact, three effective expansion modules are proposed in this paper.
The first expansion module, Inception expand (Inception-e) module, is proposed to improve the
classification accuracy by concatenating more and deeper convolutional branches. To reduce the
number of parameters for Inception e, this paper proposes a second expansion module—Equivalent
Inception-e (Eception) module, which is equivalent to Inception-e in terms of feature extraction
capability, but which suppresses the growth of the parameter quantity brought by the expansion by
effectively reducing the redundant convolutional layers; on the basis of Eception, this paper proposes
a third expansion module—Lightweight Eception (Lception) module, which crosses depthwise
convolution with ordinary convolution to further effectively reduce the number of parameters. The
three proposed modules have been validated on the Cifar10 dataset. The experimental results show
that all these extensions are effective in improving the classification accuracy of the models, and
the most significant effect is the Lception module, where Lception (rank = 4) on the Cifar10 dataset
improves the accuracy by 1.5% compared to the baseline model (Inception module A) by using only
0.15 M more parameters.

Keywords: Inception module; expansion; lightweight; classification; CNN

1. Introduction

Convolutional neural networks (CNNs) have experienced rapid development in the
past decades. Currently, CNNs are widely used on many computer vision application tasks
including facial expression recognition [1–4], Alzheimer’s disease diagnosis [5], and so on.
LeNet [6] marked the beginning of CNNs, which were early attempts but were limited in the
computational resource. Over time, the emergence of AlexNet [7] pushed the breakthrough
of CNNs, which realized the deep network by introducing the ReLU activation function
and using two GPUs to share the computation. VGG [8] builds on this foundation by using
more small-sized convolutional kernels to control the cost of the parameter amount and
thus deepen the network in order to extract more representative global features. ResNet [9]
introduces the residual connection to solve the gradient vanishing problem which makes the
network deeper. All of the above models have no branching structure or the branches only
act as residual connections, which makes them ineffective in extracting globally different
features. Unlike them, the Inception family of networks consists of a series of modules with
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a multi-branch structure. By using convolution kernels of different sizes or using branches
of different depths, the modules can extract features with varying global degrees.

In previous studies, researchers have mainly focused on building networks using
classical Inception modules and fusing Inception modules with other methods, with rela-
tively little exploration of network depth and width. Generally speaking, the deeper the
network, the more global features can be extracted. The wider the network or the more
branches it has, the richer the extracted features. Therefore, we would like to make a deep
study in this area and explore how to further improve the Inception module to enhance
its performance and its ability to extract features. Specifically, in this paper, we improve
the performance of the Inception module by extending its depth and width. However,
extending the depth and width of the module while incurring a huge parametric cost
may suffer a high computational complexity in some tasks, which limits its application in
resource-constrained environments, such as mobile devices or edge computing devices.
Therefore, in this paper, the Inception module is optimized and improved, and the idea
of lightweighting is also introduced to improve its computational efficiency. We propose
three extension methods for progressive optimization. With these improvements, the per-
formance of the Inception module is enhanced, which promotes its wide application in
various tasks in resource-constrained environments.

1.1. The Models of the Inception Series

The first member of the Inception model family was the landmark GoogLeNet [10].
As a model proposed in the same year as VGG, it has deeper depth and achieved higher
classification accuracy on the ImageNet dataset. As shown in Figure 1, the core module of
GoogLeNet can be referred to as the Original Inception module, which uses pooling layers
and multiple convolutional layers with different convolutional kernel sizes in parallel to
obtain globally different features. C. Szegedy et al. [11] proposed to reduce the number
of parameters by decomposing the convolutional layers in the original Inception module
with larger convolutional kernel sizes into convolutional layers with smaller convolutional
kernel sizes. This decomposition can be either symmetric or asymmetric, as in Figure 1;
the decomposed structures are referred to in this paper as Inception module A (symmetric
decomposition), Inception module B (asymmetric decomposition), and Inception module C
(asymmetric decomposition). Another effective improvement of [11] is the application of the
batch normalization [12] method. C. Szegedy et al. [13] further proposed Inception v4 and
also proposed to accelerate the convergence of the model by introducing residual connections.
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In addition to the classical methods mentioned above, there are also some approaches
to improve the Inception structure in recent years. X. Zhang et al. proposed a new module,
Residuals Inception (RI) [14], in which each parallel branch of the RI module is replaced by
three densely connected convolutional layers to the original structure, allowing the neural
network to extract a richer set of features. M.Z. Alom et al. proposed an IRCNN [15], which
combines CNNs and Recurrent Neural Networks (RNNs) to improve classification accuracy.
L. Xie et al. [16] proposed the use of an optimized Inception module combined with a
convolutional block attention module (CBAM) attention mechanism [17], and introduced
residual connectivity to its structure to extract multi-scale features to improve classification
accuracy. F. Chen et al. proposed a BeIn-v4 [18], which introduced the SKNet [19] attention
mechanism to extract features of images more effectively to improve classification accuracy.

1.2. Lightweight CNNs

Lightweight CNNs significantly reduce the number of parameters while ensuring
model accuracy. The main way to reduce the number of parameters is to use a convolutional
approach that is as sparse as possible but does not affect the inter-feature information
instead of the traditional approach with high-density connections. This idea is adopted
in the mainstream depthwise separable convolution and grouped convolution, in which
the grouped convolution groups the input tensor, then convolves it group-by-group and
finally splices it to obtain the output. However, this method cannot realize communication
among the convolution groups, which means it cannot extract the features of images
effectively. To solve this problem, X. Zhang et al. proposed a tensor rearrangement method
in ShuffleNet v1 [20], which realizes the communication between convolution groups by
rearranging the output of grouped convolution. Another convolutional approach is the
Depthwise Separable convolution proposed by F. Chollet et al. [21]. This method consists
of two steps: 1. Extracting features channel-by-channel using depthwise convolution. 2.
Implementing inter-feature communication using pointwise convolution.

There are also some works about the optimization of the structure of the lightweight
network to improve the classification accuracy. GhostNet [22], proposed by K. Han et al.,
is a stack of some ghost modules in which each ghost module is generated by identity
and depth-separable convolutional layers to generate the complete feature map. Mo-
bileNeXt [23], proposed by D. Zhou et al., is a replacement of the depthwise separable
convolution in the MobileNet v2 [24] network with a sandglass module (which consists
of 3 × 3 Depthwise Separable convolution, 1 × 1 convolution (squeeze), 1 × 1 convo-
lution (recover), and 3 × 3 Depthwise Separable convolution) to improve the network
performance. WeightNet [25], proposed by N. Ma et al., is a simple and efficient dynamic
generative network, which applies the SENet [26] channel attention mechanism, i.e., the
dynamic weight tensor is first obtained by global average pooling and a fully connected
layer with sigmoid activation, and then the original tensor is weighted by the weight tensor.
In contrast, EfficientNet [27], proposed by M. Tan, is improved by a neural network archi-
tecture search (NAS) in three aspects simultaneously—input resolution, network depth,
and width—to improve the classification accuracy of the network model.

Some recent works on model lightweighting have been carried out mainly for the
Vision Transformer (ViT) [28]. ViT has achieved impressive results in the field of computer
vision. However, such models are often not better deployed on mobile devices due to
their large model size and high latency; thus, a lightweight design for such models is
necessary [29–35]. MobileViG [29] is the first hybrid CNN–GNN for vision tasks on mobile
devices, which mainly proposes Sparse Visual Graph Attention (SVGA) for faster speed.
FastViT [30] introduces a novel token mixing operator, RepMixer, which effectively reduces
memory access costs. SwiftFormer [31] introduces a novel efficient additive attention
mechanism that effectively replaces the quadratic matrix multiplication operations with
linear element-wise multiplications.

In summary, researchers have made some improvements to Inception in terms of
convolution kernel size, convolution method, and inter-stage connectivity, but no research
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has been conducted from the perspective of expanding the depth and width of the Inception
module. In this paper, we first extend the depth and width of the Inception module from
different ways and show that the proposed method can provide excellent classification
performance. However, simply extending the depth and width of the module would
involve a large number of parameters. Therefore, we further improve the structure and
incorporate a lightweight network to propose a number of feasible extension methods. The
main contributions of this work are:

1. A basic extension method, the Inception-e module, is proposed by us. Based on the
Inception module A, firstly, the basic expansion method is raised, and the experimental
results prove that increasing the depth and width of the Inception module A is
beneficial to the improvement of the classification accuracy of the model, but the
method is accompanied by a huge number of parameters.

2. To solve the problem of increasing the number of parameters due to extension, an
equivalent extension method, the Eception module, is proposed by us, which has com-
parable perceptual field and feature extraction abilities to Inception-e. The Eception
module improves the classification accuracy of the model while saving on the number
of parameters.

3. A lightweight expansion method, Lception module, is proposed. On the basis of
Eception module, inspired by the idea of a lightweight convolutional neural network,
by cross-replacing the ordinary convolutional layers of the Eception module with
depthwise convolutional layers, the weights of these layers are sparser, and thus
reduce the number of parameters. The experimental results show that the Lception
module can effectively improve the classification accuracy of the network with almost
the same number of parameters.

The remaining part of this article is arranged as follows. In Section 2, the structures of
Inception-e, Eception, and Lception are described in detail. In Section 3, the main focus is on
the experiments and analyses we conducted, including the datasets used for the experiments,
the validation of the three extended methods, the Grad-CAM visualization analysis, and the
comparison with some other methods. The conclusions are provided in Section 4.

2. Methods
2.1. Basic Expansion Method—Inception-e

Paralleling more and deeper convolution branches on the basis of Inception module A
can improve its ability to extract features, so that the model can provide higher classification
accuracy. The extended structure is named Inception-e module.

The original Inception module uses convolutional layers with different kernel sizes to
extract global features and fuses them, where the larger the kernel size is, the more global
(more abstract) features are extracted. The convolutional layers effectively save parameters
without reducing the structure’s ability to extract features. We believe that concatenating
convolutional branches with increasing depth steps on top of Inception-module A enables
the structure to extract globally richer features. As shown in Figure 2, different depths of
convolutional branches have different effects on feature extraction, with deeper branches
capturing more global features and shallower branches extracting more detailed features.

As shown in Figure 2, parallel concatenating more branches with deeper depths allows
the model to extract more representative and richer features. Specifically, shallower convolu-
tional branches extract more detailed features such as facial texture, while deeper branches
extract features that are more representative of facial features such as facial contours.

As shown in Figure 3, our proposed method only expands the core structure of
Inception module A, while the other parts remain unchanged. The Inception-e method is
to progressively concatenate deeper convolutional branches on top of the core structure.
The nth rank expansion structure is named as Inception-e module (rank = n). Although
this method improves the feature extraction ability of the structure and enables the model
to obtain higher classification accuracy, it is accompanied by a huge parameter cost, and
the number of parameters rises rapidly with the increase of rank.
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2.2. Equivalent Expansion Method—Eception

In order to reduce the number of parameters brought by the extension, the Eception
module is proposed in this paper. This structure is equivalent to the effect of Inception-e
module for feature extraction, but saves a large number of parameters.

As shown in Figure 3, unlike Inception-e module, which takes the output tensor of
the previous convolutional layer of the branches as input, the Eception module only keeps
the last two convolutional layers of the branches and discards the rest of the convolutional
layers, while the penultimate convolutional layer takes the output tensor of the previous
convolutional layer of the adjacent branches as input.

This method effectively improves the efficiency of the convolutional layers and reduces
the number of redundant convolutional layers, thus suppressing the spike in the number
of parameters caused by the expansion. When the size of the output tensor of the core
structure is W × H × (C × rank), the number of 3 × 3 convolutional kernels of the Incption-
e module is NI, the number of 3 × 3 convolutional kernels of the Eception module is NE,
and the comparison of the relationship between the number of 3 × 3 convolutional kernels
and rank of the two modules is shown in Table 1.

Table 1. Comparison of the relationship between the number of 3 × 3 convolutional kernels and the
rank of the Inception-e module and the Eception module.

Rank NI NE
NE
NI

2 3C2 3C2 1.00
3 6C2 5C2 0.83
4 10C2 7C2 0.70
5 15C2 9C2 0.60

. . . . . . . . .
n ( n2+n

2 )C2 (2n − 1)C2 4n−2
n2+n

Obviously, when the rank is ≥3, the Eception module can effectively save the number
of parameters compared to the Inception-e module, and the higher the rank, the larger the
saving ratio.

When reducing the number of parameters, the change in the structure of the Eception
module compared with the Inception-e module does not affect the feature extraction ability
of the module. As shown in Figure 4, the receptive field of the input features are the same
for both. When the input tensor is Xinput, the output tensor Xoutput and X

′
output of the core

structure of the Inception-e module and the Eception module can be represented as

Xoutput = Fr f=3(Xinput)//Fr f=5(Xinput)//Fr f=7(Xinput) (1)

X′
output = F′

r f=3(Xinput)//F′
r f=5(Xinput)//F′

r f=7(Xinput) (2)

where F is the convolution operation, r f is the equivalent receptive field size for that
operation, and // is the connection tensor. The receptive field can be calculated as

r fl = r fl−1 + (kl − 1)× sl (3)

where rfl denotes the receptive field size of the convolution at layer l, rfl−1 denotes the
receptive field size of the convolution at layer l − 1, kl denotes the size of the convolu-
tion kernel at layer l (assuming the convolution kernel is symmetric), and sl denotes the
convolution step size at layer l.

Obviously, multiple convolutions with a small convolution kernel can convolve a
receptive field equal to that of one convolution with a large-sized convolution kernel: e.g.,
Fs=7(.) means that the operation is equivalent to the receptive field of a 7 × 7 convolutional
layer. Clearly, the equivalent receptive field sizes of the convolutions experienced by the
components of Xoutput and X

′
output are the same, so the ability of the Eception module to

extract features is approximately equivalent to that of the Inception-e module. The later
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experiments confirm the idea that the classification accuracy of the Eception module is very
close to that of the Inception-e module.
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2.3. Lightweight Expansion Method—Lception

Cross-replacing the ordinary convolution layers in the Eception module with depth-
wise convolution layers can further reduce the number of parameters of the structure,
which is named the Lception module.

As in Figure 3, to obtain the Lception module, the ordinary convolutional layers of
the Eception module are cross-replaced as depthwise convolutional layers with activation
function h-swish [36] and convolutional kernels of size 5 × 5. The use of depthwise
convolution allows the structure to further reduce the number of parameters on top of
the Eception module. The introduction of h-swish instead of RELU as the activation
function of the depthwise convolution layers can improve the model performance by
effectively avoiding the neuron death phenomenon. In addition, since the weights of the
depthwise convolutional layers are very sparse, using a larger convolutional kernel (such
as a convolutional kernel of size 5 × 5) can effectively expand the perceptual field of the
Lception module with only a very small parameter cost.

As shown in Figure 5, depthwise convolution, as a very sparse convolution method,
must implement effective inter-channel feature communication to enable it to extract fea-
tures effectively. Depthwise convolution achieves inter-channel feature communication
through pointwise convolutional layers, while our approach uses depthwise convolutional
layers crossed with ordinary convolutional layers to achieve inter-channel feature com-
munication as well. Moreover, since we retain the ordinary convolutional layers with
5 × 5 convolutional kernels, this structure has a larger perceptual field than the depthwise
convolution, and can extract more abstract and useful features for classification.
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Figure 5. Comparison of the depthwise separable convolution with the proposed method.

3. Experiments and Analysis
3.1. Experimental Datasets

Four datasets are used for our experiments, including the benchmark dataset Cifar10,
and three facial expression classification datasets RAF-DB [37], FER2013 [38], and FERplus
(FER+) [39].

To verify the performance of the proposed model, the benchmark dataset Cifar10 is
mainly used for the experiments. In the Cifar10 dataset, the training set includes 50,000 images
and the test set includes 10,000 images, totaling 60,000 32 × 32 color images in 10 classes. To
facilitate the experiments, both the training set and the test set images are enlarged to 96 × 96
size and normalized, and data enhancement is done only for the training set.

The FER2013 dataset consists of 35,887 grey scale images of size 48 × 48 in seven cate-
gories, including: 1—Surprise, 2—Fear, 3—Disgust, 4—Happiness, 5—Anger, 6—Neutral,
7—Sadness. It includes 28,709 images in the training set (set to be the training set),
3589 images in the public test set (set to be the validation set), and 3589 images in the
private test set (set to be the test set). We normalize all images and only do data augmenta-
tion on the training set.

The FER+ dataset is relabeled from FER2013. When using the majority mode, it
includes 25,045 images in the training set, 3191 images in the validation set, and 3137 images
in the test set, totaling 31,373 48 × 48 grayscale images in eight categories. The FER+ set
has one more category than FER2013 and RAD-DB set: 8—Contempt. We normalize all
images and only do data augmentation on the training set.

The RAF-DB dataset, including single-label and double-label, totals 29,672 images.
These are used in this paper, including 12,271 images in the training set and 3069 images
in the test set, totaling 15,340 100 × 100 color images in seven categories. To facilitate the
experiment, both the training and test sets were cropped to 96 × 96 size and normalized,
and only the training set was data enhanced.

In Figure 6, some images of the FER+ dataset and RAF-DB dataset are given.
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3.2. The Network Models and Experimental Conditions

Table 2 shows the network models for the experiments using the Cifar10 dataset.
On the classifier, the global pooling flattening tensor is firstly utilized, then Dropout
regularization [40] is performed to discard 20% of the features, and finally, the classification
is achieved using a full connection layer with an activation function of Softmax. We consider
that due to the different sizes of input images, the number of modules used in the models
of other datasets will also be adjusted accordingly, and other settings are similar to those
shown in Table 1.

Table 2. The network model structures when using the Cifar10 dataset.

Experimental Structure in Cifar10 Output Size

Input 96 × 96

Inception-e module Eception module Lception module
96 × 96channel = 32 channel = 32 channel = 32

1/2 MaxPool 48 × 48

Inception-e module Eception module Lception module
48 × 48channel = 64 channel = 64 channel = 64

1/2 MaxPool 24 × 24

Inception-e module Eception module Lception module
24 × 24channel = 96 channel = 96 channel = 96

1/2 MaxPool 12 × 12

Inception-e module Eception module Lception module
12 × 12channel = 128 channel = 128 channel = 128

1/2 MaxPool 6 × 6

Inception-e module Eception module Lception module
6 × 6channel = 160 channel = 160 channel = 160

1/2 MaxPool 3 × 3

Global Average Pool 1 × 1

Dropout (0.2)

Fully-concatenate, softmax 10

For experimental conditions, on the Cifar10 dataset:

1. Optimizer: SGD [41]
2. Training batch: 32
3. Momentum: 0.9
4. Regularization: L2 regularization of the weights of all convolutional layers.

On the RAF-DB, FER+, FER2013 datasets:
No momentum acceleration is used. Considering the small dataset, the training epochs

are extended. The rest of the conditions are the same as above.

3.3. Validation of the Three Expansion Methods

Some experiments were conducted to validate the proposed three expansion methods.
Overall Accuracy (OA) is adopted as a measure of the classification accuracy of the model,
and OA can be expressed as:

OA =
TP + TN

TP + TN + FP + FN
(4)

TP denotes the number of positive classes predicted as positive, FN denotes the
number of positive classes predicted as negative, FP denotes the number of negative
classes predicted as positive, and TN denotes the number of negative classes predicted
as negative.

In this section, the Cifar10 dataset is used for the experiments. Figure 7 shows the ex-
perimental results of the classification accuracy, number of parameters, and time complexity
of the proposed three methods under each rank.
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For the Inception-e module, as seen in Figure 7a, parallel concatenating more and
deeper convolutional branches can effectively improve the classification accuracy of the
model. Inception-e module (rank = 6) has the highest classification accuracy of 90.4%, which
is a 2.1% improvement over Inception module A. As seen in Figure 7b, the classification
accuracy can be effectively improved by the Inception-e, but this expansion is accompanied
by a huge number of parameters. The larger the rank, the faster the number of parameters
rises, even up to 13.4 M when rank = 6.

For the Eception module, as seen in Figure 7a, the accuracy of the Eception module is
close to that of the Inception-e module, which indicating that the two modules are equivalent
in their ability to extract features. At rank = 6, the Eception module achieves the highest
classification accuracy of 90.2%, which is 1.8% higher than that of Inception module A and
only 0.2% lower than that of Inception-e module (rank = 6). As seen in Figure 7b, the Eception
module effectively reduces the number of parameters that added to the expansion compared
to the Inception-e module. For example, the Eception module (rank = 6) has 6.6 M parameters,
which is 49% less than that of the Inception-e module (rank = 6) of the same rank.

For the Lception module, as shown in Figure 7a, the classification accuracy of the
Lception module approximates that of the other two methods, and the classification accu-
racy of the Lception module (rank = 6) reaches 90.2%, which is 1.9% higher than Inception
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module A, only 0.2% lower than that of the Inception-e module (rank = 6), and basically
similar to that of the Eception module (rank = 6). The number of parameters of the Lception
module (rank = 6) is 3.6 M, which is only 27% of Inception-e (rank = 6) and 55% of Eception
(rank = 6). The classification accuracy of Lception (rank = 4) is 1.5% higher than that of
Inception module A and pays only 0.15 M more parameters.

In summary, compared with the classical Inception module A, the proposed Inception-
e, Eception, and Lception modules all have significant advantages in classification accuracy.
By using more and deeper branches, the Inception-e module effectively improves the ability
to extract features. The Eception module effectively reduces the number of parameters
and achieves higher classification accuracy by improving the structure, while the Lception
module greatly reduces the number of parameters and achieves a lighter network by re-
placing the traditional convolutional crossover in the Eception module with depthwise
convolution. In addition, the Lception module makes more effective use of intra-regional
correlation by increasing the perceptual field of convolutional kernels on the image, and
obtains more discriminative image features, thus overcoming the degradation of classifica-
tion performance caused by the reduction of the number of convolutional kernels due to
the replacement of the depthwise convolution layer.

For the proposed three model structures, some experiments are conducted on the
Cifar10 dataset. The experimental results show that, as an extended structure of Inception
module A, all three methods effectively improve the classification performance compared to
Inception module A. The proposed Lception module can obtain the classification accuracy
that approximates that of the Inception-e module and the Eception module with the mini-
mum number of parameters, which fully demonstrates the effectiveness of the methods.

3.4. Grad-CAM Visual Analysis

In order to more intuitively illustrate the impact of different expansion methods on
network performance, some images of different classes are selected in RAF-DB and the
Grad-CAM [42] method is utilized to visualize and analyze the four structures of Inception
module A, the Inception-e module (rank = 6), the Eception module (rank = 6), and the
Lception module (rank = 6). The experimental results are shown in Figure 8.
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The color of the heat map reflects how much the network pays attention to the region,
and the darker the color indicates that the neural network pays more attention to the
region. As shown from these visualization results, all three of our proposed expansion
modules focus on a larger range and more features than Inception module A. This further
demonstrates the effectiveness of the proposed expansion method. This is because with
more and deeper branching structures, the module is able to capture more global features
while still retaining the ability to extract fine-grained features.

3.5. Comparison with More Methods

To further verify the performance of the proposed modules, we selected Lception mod-
ule (rank = 4), Eception module (rank = 4), and Eception module (rank = 8) to compare with
some classical networks, lightweight networks, and some facial expression classification
methods, and the comparison results are shown in Table 3.

Table 3. Comparison of experimental results (using FER+ dataset).

FER+

Parameters OA

Lception module (rank = 4) ours 1.3 M 86.9
Eception module (rank = 4) ours 2.3 M 87.3
Eception module (rank = 8) ours 4.8 M 87.6

Original Inception module * 1.4 M 85.2
Inception module A * 1.2 M 86.3
VGG-11-GAP * 2.4 M 86.5
VGG-13-GAP * 3.5 M 85.0

VGG-13 [43] 9.4 M 84.4
VGG-19 [43] 20.0 M 84.4
ResNet18 [43] 11.2 M 84.8

MobilNet v1 [43] 1.1 M 83.5
MobilNet v2 [43] 2.2 M 81.4
ShuffleNet v1 [43] 0.9 M 84.1
ShuffleNet v2 [43] 1.3 M 80.4

ESRs [44] - 87.2
SHCNN [45] - 86.5
LER [43] - 85.7
TFE-JL [46] - 84.3

The * in Table 3 indicates that the structure was performed under the same experi-
mental environment as the method proposed in this paper. VGG-GAP refers to the use of
global average pooling instead of flatten operation to spread the tensor on top of classical
VGG and uses only one layer of fully connected layer for classification. Some results are
also cited from the literature [43] for a number of networks when using the FER+ dataset.

As shown in Table 3, the overall accuracy of Lception module (rank = 4) is 86.9,
Eception module (rank = 4) is 87.3%, and Eception module (rank = 8) is 87.6% on the FER+
dataset. There are different degrees of improvement compared with original Inception
module and Inception module A. Compared with other classical structures VGG-11-GAP,
VGG-13-GAP, VGG-13, VGG-19, ResNet18, Lception module (rank = 4), Eception module
(rank = 6) uses a smaller number of parameters to obtain higher classification accuracy. For
example, on the FER+ dataset, the number of parameters of Lception module (rank = 4) is
only 6.5% of that of VGG-19, but the accuracy is 2.5% higher than that of VGG-19, which
is a significant advantage. Compared with the lightweight networks Mobilenet v1 [47]
and Mobilenet v2, and Shufflenet v1 and Shufflenet v2 [48], the accuracy of the proposed
Lception module (rank = 4) is increased by 2.8%~6.5% in the FER+ set with a slightly
increased number of parameters.

The proposed Eception module and Lception module also show advantages over
other neural network-based methods for facial expression classification. SHCNN [45] is
a shallower neural network and the model achieves 86.5% accuracy on the FER+ dataset.
The core method of [44] consists of ensembles with shared representations (ESRs) based on
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convolutional networks. The classification accuracy of the ESR-9 achieves 87.15% on the
FER+ dataset. In [43], a lightweight emotion recognition (LER) model was proposed that
combines densely connected convolutional layers and model compression techniques into
a framework that eliminates redundant parameters, obtaining an accuracy of 85.67% on
the FER+ dataset. The method in [46] obtained a classification accuracy of 84.29% on the
FER+ dataset. The listed Eception (rank = 6) and Lception (rank = 4) can obtain a higher
classification accuracy compared to the above methods.

As shown in Table 4, we also conducted some experiments using the FER2013 dataset.
The literature [49] uses transfer learning to classify facial expressions. By fine-tuning
classical convolutional neural networks, the feature extraction capability of large classical
networks can be effectively utilized. The literature [50] proposes to judge the reliability
of the current classification result using a multi-layer perceptron (MLP) classifier. If the
result is unreliable, the given face image is used as a query condition to search for similar
images. Then, another MLP is trained to predict the final emotion category by summarizing
the classification output vectors of the query image and its retrieved similar images. The
literature [51] presents a generic convolutional neural network model for real-time CNNs.
The literature [52] proposes several differently structured subnets. These subnets are
compact CNN models trained individually. The whole network is composed by assembling
these subnets together. Compared to these models, our proposed method can obtain higher
accuracy on the FER2013 dataset.

Table 4. Comparison of experimental results (using FER2013 dataset).

FER2013

OA

Lception module (rank = 4) ours 68.4
Eception module (rank = 4) ours 68.5
Eception module (rank = 8) ours 67.9

Alexnet [49] 66.7
GoogLenet [50] 64.6
GoogLenet + MLP [50] 65.8
mini-Xception [51] 66.0
Subnet3 [52] 62.4
Subnet Ensemble [52] 65.0

In summary, the comparison with Inception module A demonstrates that the proposed
extension methods are effective in improving the model accuracy by paying only a smaller
number of parameters. Compared with some classical structures, lightweight structures,
and other mainstream methods, the proposed Eception module and Lception module can
obtain higher classification accuracy. This is because the proposed modules parallelize more
branches, allowing them to extract richer and more abstract features. However, the shape of
the convolutional kernels used in these modules are symmetric, which makes the number
of parameters in the modules tend to be larger than those using asymmetric convolutional
kernels. This issue will be addressed in our next research work. The paper involves relevant
code that will be uploaded at https://github.com/LIUZHENQUANS/EMI (accessed on
14 March 2024).

4. Conclusions

In this paper, we investigate the extension methods of the Inception module and
propose a new idea of extending the network structure. By carefully designing the network
structure, it can provide the improvement of classification performance with a large margin
than that of the original network, and with fewer parameters.

Specifically, we first propose the Inception-e module, which improves the classification
accuracy by concatenating more and deeper convolutional branches, and then propose the
Eception module to solve the problem of excessive parameters due to the increase of depth

https://github.com/LIUZHENQUANS/EMI


Symmetry 2024, 16, 494 14 of 16

and width. Then, the Lception module is designed based on the Eception module by cross-
replacing the ordinary convolution in the Eception module with depthwise convolution.
The experimental results show that the extended network structure can effectively improve
the classification accuracy as well as reduce the number of network parameters. We
also found that the convolution kernels used in the proposed methods are symmetric.
Considering that models using asymmetric convolution kernels can obtain larger receptive
field with the same number of parameters, further application of asymmetric convolution
kernels based on the proposed method may be beneficial to improve the model performance,
which is a possible direction for future related work.

It is worth noting that the method proposed in this paper has strong generalization
ability. It can be applied not only to the Inception network, but also other similar classical
network structures. In the future, we will continue to explore more effective network
structures to improve the classification performance of networks.
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