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Abstract: Researchers in cognitive science have long been interested in modeling human perception
using statistical methods. This requires maneuvers because these multiple dimensional data are
always intertwined with complex inner structures. The previous studies in cognitive sciences com-
monly applied principal component analysis (PCA) to truncate data dimensions when dealing with
data with multiple dimensions. This is not necessarily because of its merit in terms of mathematical
algorithm, but partly because it is easy to conduct with commonly accessible statistical software. On
the other hand, dimension reduction might not be the best analysis when modeling data with no more
than 20 dimensions. Using state-of-the-art techniques, researchers in various research disciplines (e.g.,
computer vision) classified data with more than hundreds of dimensions with neural networks and
revealed the inner structure of the data. Therefore, it might be more sophisticated to process human
perception data directly with neural networks. In this paper, we introduce the multi-dimensional
data analysis platform (MuDAP), a powerful toolbox for data analysis in cognitive science. It utilizes
artificial intelligence as well as network analysis, an analysis method that takes advantage of data
symmetry. With the graphic user interface, a researcher, with or without previous experience, could
analyze multiple dimensional data with great ease.

Keywords: neural network; cognitive science; computer science; analysis toolbox.

1. Introduction

The main challenge of cognitive science is not only revealing apparent facts of per-
ception but clarifying the mechanisms behind perception and cognition. However, the
researchers examining human cognition are always overwhelmed by the complexity of
it. For instance, when perceiving a given face, a viewer is able to extract facial identity,
expression, and social characteristics (such as attractiveness and competence) accurately
and effortlessly [1–3].

The modeling of human perception depends on the repertoire of data analysis methods.
A certain number of researchers in cognitive science are only equipped with classical
statistical analysis tools such as analysis of variance (ANOVA) and linear regression. These
researchers are challenged when studying face perception as many of the dimensions in
face perception are intertwined. For instance, facial identity (“Who is the person?”) and
facial expression (“What is the emotion?”) are widely believed as distinctive. Facial identity
is generally regarded as a kind of invariant information that remains consistent within a
short period of time, while facial expression is regarded as kind of variant information that
is changeable with even tiny muscle movements from time to time [4,5]. Conversely, the
converging evidence suggested that the perceived emotional expression of a face is affected
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by the facial identity of that person, thus, these two aspects of a face are inter-dependent
with each other [6,7]. Similarly, although one may perceive multiple social characteristics
from a face, many of these characteristics are heavily correlated with each other [8]. Several
past studies like [8,9] even suggested that seemingly complicated social characteristics
can be easily represented on a two- or three-dimensional framework. For example, most
frameworks believe that the dominance and the trustworthiness of a face are perceived in
orthogonal mechanisms.

So far, the researchers in cognitive sciences tend to reduce data dimensions when
dealing with face perception data. A common method to conduct dimension-reduction in
multiple dimensional data is principal component analysis (PCA), a kind of multivariate
method. Briefly speaking, in a typical PCA, the original data matrix (in which data are
largely dependent on each other) was transformed into a new matrix formed by the
principal components (PCs) calculated via the linear combinations of the original data [10].
The first PC explains most of the data variance, and the following PCs each explain most
of the remaining variance. PCA has been widely used in modeling perception of social
characteristics, but there are several concerns regarding only using PCA for this kind of
multiple dimensional data.

First of all, PCA is not easy to conduct properly. Though some researchers in face
perception have used PCA to reduce data dimensions [11,12], the operation procedures of
it are not standardized among different labs. In a typical principal component analysis, the
original data are supposed to be continuous variables. Whereas, in many human perception
studies, the data are measured in discrete Likert scales (e.g., 9 point scale in [8]). Although
many treated such data as a kind of continuous variable, some argued this approximation
may jeopardize the rigorousness of data analysis. Furthermore, the implications of principal
component analysis require maneuvers that many researchers may not actually understand
nor even command. For example, the data rotation operation is always recommended
but sometimes left undone [8]. In a recent large scaled replication study [13], the authors
argued the rotation procedure is vital but has been ignored in some seminal works. Second,
PCA is not ideal for all research questions. It operates under the assumption that samples
follow some specific distributions, which can lead to meaningless reductions when dealing
with data that are not uniformly distributed. For example, real human perception data may
contain multiple clusters, but these clusters are not evenly distributed in some unknown
dimensions. Furthermore, reducing data dimensions in human perception data is not
a necessity. The general logic behind the PCA is to reduce the data dimensions with
a mathematical algorithm, but data reduction may not be the omnipotent solution for
modeling face perception with a small number of dimensions [14]. Though computer
science researchers utilize PCA as well, the number of the output dimensions (the number
of PCs) in their typical studies are much greater than the original number of dimensions
dealt with in human cognition studies. For example, in one of the pioneer works using
computer vision techniques in face perception [15], the authors used 50 PCs to reduce the
data dimensions of real face images (with 54, 150 dimensions).

In considering the suitability of PCA as a dimension-reduction technique, t-distributed
stochastic neighbor embedding (t-SNE) emerges as an exemplary alternative [16,17]. No-
tably in its distinction from PCA, t-SNE boasts several advantageous properties. As a non-
linear algorithm, t-SNE excels at preserving the local intricacies of data structures [18,19].
Tailored specifically for visualizing complex, high-dimensional datasets, t-SNE adeptly
generates two- or three-dimensional representations that illuminate data clusters and rela-
tionships, which may remain obscured by linear methods such as PCA. Furthermore, the
robustness of t-SNE for diverse data characteristics sets it apart. It eschews the assumption
of a global Gaussian distribution in favor of a more adaptable probabilistic model, capable
of flexibly accommodating a spectrum of data distributions. Furthermore, what is worth
mentioning is that t-SNE, a projection-based method [20], does not cause serious data
loss, so its clustering results on the two-dimensional plane can reveal hidden information
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that PCA may regard as non-principal components, including new resulting clusters, the
internal structure of the data, etc.

To validate the reliability of the data-dimension-reduction results, network analysis,
a method that takes advantage of data symmetry is necessary [21–23]. Network analysis,
especially in the fields of cognition and psychology [24–26], is a powerful tool for assessing
the reliability of clustering results by leveraging the inherent symmetries within the data. By
examining the strength of connections within the network, this method reflects the degree
of correlation between clustering results, capitalizing on the symmetry of the pairwise
clustering correlation data. By identifying areas where these symmetries hold true, network
analysis can confirm that the clustering results are not merely a product of random chance
but reflect genuine, underlying groupings within the dataset.

It is challenging and unrealistic for scholars who are not majoring in computer science
to use complex dimension-reduction tools, even though in some circumstances, reducing
the data dimension is unnecessary. In the sense of this, the neural network approach
might be the solution. Using state-of-the-art techniques, the researchers in other research
disciplines (specifically, computer vision) classified data with more than hundreds of di-
mensions with neural networks and revealed the inner structure of the data. This fantastic
cutting edge technique has been widely utilized in various applications, such as image
classification [27–30], system identification [31–33], natural language processing [34–36],
autonomous driving [37–40] and fault diagnosis [41–44]. Thus, the neural networks might
be the ideal candidate to further classify perception data. Although some of the researchers
are aware of the neural networks, they have difficulties when applying these techniques.
Specifically, it may take a long time to learn the programming language and build the
environment for the neural network. Thus, it is reasonable to introduce an easy-to-use
platform with a graphic user interface (which is close to much of the statistics software
that the researchers used) for the researchers in cognitive science who are not familiar with
coding.

Considering the aforementioned concerns, this paper offers the multi-dimensional
data analysis platform (MuDAP) for researchers in cognitive science. The MuDAP is
designed with a standardized pipeline and equipped with state-of-the-art neural network
techniques based on existing machine learning libraries in Python. The contribution of this
paper is listed as follows:

1. The framework structure of the multi-dimensional data analysis platform (MuDAP)
is introduced.

2. A graphic visualization data-dimension-reduction algorithm based on t-SNE is uti-
lized to dig the real clusters based on the inner structure of the data.

3. A network analysis taking advantage of the symmetric structure of the data on
correlations between each predicted cluster is performed to verify the reliability of
the clustering results based on the result trustworthiness.

4. An embedded neural network training algorithm is proposed to solve the correspond-
ing regression and classification problems using the cluster results as labels.

5. A step-by-step illustration of how to use MuDAP, analyzing the introduced face
perception experiment data, is shown that verifies the function of the MuDAP.

2. Framework Structure

The multi-dimensional data analysis platform (MuDAP) is built within Python, and
its framework structure is first introduced in this section.

2.1. Dataset Import

MuDAP addresses the causal relationship among the class of high dimensional data
in cognition science. The imported original data should be obtained from real sconces, such
as the decision making or perception collected from a questionnaire survey. In this sense,
an element

λi = [ai
1 . . . ai

m li]⊤ (1)
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denotes a set of collected high dimensional data, where ai
j, j = 1, . . . , m is the value at a

featured dimension, m is the total number of element features, and li is the labeled value of
that element. All these collected elements give rise to the dataset Λ and are, hence, stored
in the directory ‘MuPAP/LoadDataFile/. . . ’ with the file name ‘data’ in CSV format.

2.2. Graphic User Interface

As shown Figure A1, MuDAP has a total number of six function buttons in its main
welcome screen, and these buttons correspond to the procedures explained below.

1. Dimension Reduction: This function employs the t-SNE method to reduce the
high dimensional data to fit a 2D plane and plot all the data with their labels in this plane.
It verifies the data structure to confirm if any clusters are formed such that later procedures
like regression or classification can be carried out. If so, the users can manually insert the
center points of the obtained clusters into the memory.

2. Network Analysis: This function can only be performed after the center points of
the clusters are stored. It exploits the relationship between all elements in a cluster and
each original featured dimension via network analysis.

3. User Configuration: This function enables the users to tune the training parameters
shown in Figure A2 according to their identical data structure within the later DNN
training process.

4. Regression Analysis with DNN: This function trains a deep neural network to
predict the distances between any given new element to all existing cluster centers in the
2D plane.

5. Classification Analysis with DNN: This function trains a deep neural network to
predict the closest cluster of any given new element in the 2D plane.

6. Contact Information: The developer contact information of MuDAP is shown in
this function to allow users to make any direct queries.

The toolbox we have developed operates through a three-step process. Initially, the
t-SNE algorithm is utilized to capture the spatial structure of the data without any loss
of information. This step is crucial as it provides a comprehensive overview of the data’s
inherent dimensions. Second, network analysis is employed to establish direct connections
between the various clusters. This analysis is instrumental in validating the relationships
within the data and ensuring the reliability of the clustering results. Finally, a neural
network is trained to perform regression and classification on the data, which are essential
for drawing meaningful insights and predictions. After completing these three steps,
the complex and cumbersome high-dimensional cognitive data can be objectively and
quantitatively described and analyzed.

2.3. User Instructions for MuDAP

Before conducting any further data analysis, the users must check the data structure of
the imported data by using the ‘Dimension Reduction’ function and double check whether
the formed clusters have any consistency with the given labels. If there actually exist
several clusters, the user can insert the centers into storage and perform the following steps.
Then, the ‘Network Analysis’ function is performed to further analyze the relationship
between each identical cluster.

After that, the tuning parameters are set in the ‘User Configuration’ function before
any neural network training procedures. Hence, the DNN is trained to solve the respective
regression and classification problems via the ‘Regression Analysis with DNN’ and ‘Classi-
fication Analysis with DNN’ functions. In this sense, MuDAP is capable of discovering the
causal relationship between the data structure and data type.

3. Neural-Network-Based Training Procedure Description

This section describes the behind-screen mechanism of MuDAP via explaining how to
train the corresponding neural network models for both regression and classification problems.
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3.1. Problem Formulation

First of all, if the ‘Dimension Reduction’ function confirms that the imported data
structures of the obtained data file appear to have some clusters, the user can enter the center
point values of these clusters manually. In this sense, MuDAP is capable of classifying the
data type via calculating the distance between an obtained element point and each cluster
center in the 2D plane. The input and output of a neural network model is given as

zin = [ai
1 ai

2 . . . ai
m]

⊤, (2)

zout = [zi
1 zi

2 . . . zi
n]

⊤, (3)

to denote the imported data features and the obtained results associated with each clusters,
so the dimension n denotes the total number of clusters. For each element λi ∈ Λ, the
distances z̃i

j, j = 1, . . . , n from its t-SNE plot position to all cluster centers are measured to
generate the regression benchmark vector

z̃i = [z̃i
1 z̃i

2 . . . z̃i
n]

⊤. (4)

Then, denote the index l̂i of the cluster with the shortest distance to each t-SNE plot.
Using these values, the classification benchmark vector is

ẑi = [ẑi
1 ẑi

2 . . . ẑi
n]

⊤, (5)

whose elements are defined as

ẑi
j =

{
1, j = l̂i,

0, else.
(6)

After defining the above regression and classification benchmark vectors, randomly
split the original dataset Λ into a training set Λtrain and a testing set Λtest for later on
training procedures with a given proportion. Using the above notations, the corresponding
regression and classification problems for high dimensional data are stated as below.

Definition 1. The High Dimensional Data Regression Problem is defined as updating the
essential parameters of the neural network iteratively alongside the training epochs based on the
data from the training set Λtrain, so that the mean square error loss function

L(zi, z̃i) =
1
n
∥zi − z̃i∥, (7)

is minimized for all elements in Λtrain.

Definition 2. The High Dimensional Data Classification Problem is defined as updating the
essential parameters of the neural network repeatedly alongside the training epochs based on the
data from the training set Λtrain, such that the cross entropy loss function

L(zi, ẑi) = −
n

∑
j=1

ẑi log zi(j), (8)

is minimized for every element in Λtrain.

3.2. Neural Network Structure

MuDAP typically employs neural network models to solve the above-mentioned
regression and classification problems in Definitions 1 and 2, and an exemplary neural
network model is shown in Figure 1 for a direct view. As seen in this figure, the general
structure of the embedded model within MuDAP has m units in its input layer and n units
in its output layer, respectively. There are k hidden layers in the dashed red box, and each
of them has ri units in it. The layer-to-layer data transformation is described by
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zin
i+1 = Wi+1zout

i , (9)

where zout
i ∈ Rri is the i-th layer output, zin

i+1 ∈ Rri+1 is the (i + 1)-th layer input, and
Wi+1 ∈ Rri+1×ri is a transfer matrix. Moreover, each unit embeds the activation function
fi,j(·) as

zout = fi,j(zin) = RReLU(zin + bi,j), (10)

where RReLU(·) is a randomized leaky rectified linear unit function

RReLU(x) =

{
x, x ⩾ 0,

ax, else,
(11)

and a is a small scalar. The activation function RReLU(·) contributes to the network model
with non-linear properties to approach the non-linear logistics function in practice. The
output layer computes the result using

zout
k+1 = RReLU(zin

k+1), (12)

for the regression problem, and
zout

k+1 = g(zin
k+1), (13)

for the classification problem with g(·) being a softmax function

g(x)i =
ex(i)

∑n
j=1 ex(j)

. (14)

Figure 1. The structure of the embedded neural network model.

3.3. A Training Algorithm Description

After generating an appropriate neural network model, the embedded neural net-
work training algorithm shown in Algorithm 1 is proposed to handle the problems in
Definitions 1 and 2. This algorithm first divides the training set Λtrain into a series of
batches with an equal number of elements, and it employs all elements in each batch to
train the parameters with the neural network model. Any batch size larger than 1 is capable
of compensating for the negative effect of a single poor/wrong data sample using the other
good data in the same batch.

In addition, the estimation accuracy rates of elements within Λtrain and Λtest are
denoted as

ϕtrain =
∑λ∈Λtrain

λacc

len(Λtrain)
, ϕtest =

∑λ∈Λtest λacc

len(Λtest)
, (15)

and considered the performance index of the classification problem, where the correction
number of each element λi is denoted as
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λacc
i =

{
1, arg max zi = li,

0, else.
(16)

Algorithm 1 The embedded neural network training algorithm.

Input: The dataset Λ with high dimensional data structure, the mean square error loss
function (7), the cross entropy loss function (8), initial model parameters Wi and bi,j, the
training element number η, the training batch size nbatch and the total training epoch
number nepoch.

Output: Wi and bi,j (the model parameters ).
1: initialization: Training epoch number set at i = 1.
2: Split η elements of Λ to Λtrain and the rest to Λtest randomly.
3: The int(η/nbatch) batches form from Λtrain.
4: while i ⩽ nepoch do
5: for j ⩽ int(η/nbatch) do
6: Calculate the summation of (7) or (8) regarding the j-th batch.
7: Calculate the gradients of Wi and bi,j with respect to the obtained sum.
8: Conduct adaptive moment estimation (Adam) gradient descent training to update Wi

and bi,j using the obtained gradients.
9: end for

10: Obtain the estimation accuracy rates of the updated model from the data in Λtrain
and Λtest.

11: Set i = i + 1 to the next training epoch.
12: end while
13: return Wi and bi,j (the updated model parameters).

4. Data Analysis

Here is a step-by-step illustration of using MuDAP. In this case, we analyzed the data
from a previous study. We first introduce the experimental design and the data structure,
then show how to analyze the data via MuDAP.

4.1. Design Parameter Specifications

To obtain the perception data, a total number of 32 independent participants were
asked to make their individual judgments on 40 different faces. In this sense, each par-
ticipant rated these faces from 1–7 based on 8 common social traits and also expressed
their subjective feelings on the corresponding possible academic major, i.e., Science and
Engineering or Humanity and Social Science. In addition, the authors denoted 1 for least
emotional and 7 for most emotional and asked the participants to rate the perceived emo-
tion of each face between 1–7. Therefore, 32 × 40 = 1280 human perception elements were
then collected to provide a dataset Λ, and each element was denoted as

λi = [a1
i a2

i . . . a8
i , bi, ci]

⊤, (17)

where aj
i, j = 1, . . . , 8 is the subject perception value on each social traits, bi is the perceived

emotion of that face, and ci represents the binary feeling concerning academic major. To avoid
the subjective interference in decision making, the authors further transferred these values into
either 0 or 1 to yield a sparse enough data structure. The data have been kept publicly available
at the Open Science Framework (OSF) and can be accessed at https://osf.io/4zf8t/ (accessed
on 22 February 2022).

4.2. t-SNE Plot Analysis

The first step is to examine whether the obtained 8 social trait ratings plus the perceived
emotion are capable of determining the perceived academic major of an identical face. To
deal with this case, [a1

i a2
i . . . a8

i , bi]
⊤ and ci are treated as a data tuple, as well as a label.

https://osf.io/4zf8t/
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The t-SNE method is then utilized to plot the 2D projection of the original high dimensional
data on a 2D plane, and the results are shown in Figure 2. It is clear from this figure that the
data form nine clusters; however, the corresponding labels are rather random and mixed.
A conclusion is made that a neural network cannot be trained to accurately tell the correct
subject feelings on academic majors using [a1

i a2
i . . . a8

i , bi]
⊤.

-30 -20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

40
Data Structure at Low Dimension

Figure 2. 2D plot of [a1
i a2

i . . . a8
i , bi]

⊤ with marked label ci using t-SNE.

Based on the previous model of face perception proposed in [5], the social traits belong
to the invariant aspect of the face, while the emotional expression belongs to the variant
aspect of the face. To model the face perception in a better way, we would like to elucidate
the data structure of [a1

i a2
i . . . a8

i ]
⊤ without the disturbance of the emotion effect (i.e., the

variant facial information). Hence, we used the same t-SNE method to model these data
(see Figure 3) with bi as the label to see whether there exists any relationship between the
social traits and the perceived emotion of the face. To none of our surprise, there was no
relationship between them.

-30 -20 -10 0 10 20 30

-40

-30

-20

-10

0

10

20

30
Data Structure at Low Dimension

Figure 3. 2D plot of [a1
i a2

i . . . a8
i ]
⊤ with marked label bi using t-SNE.

In addition, we further check the data structure of [a1
i a2

i . . . a8
i , bi, ci]

⊤ without ap-
plying any labels, whose results are plotted in Figure 4. It is obvious that there were now
12 clusters of data in total, which means the subject feelings certainly extend the potential
recognition types for the faces.
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Figure 4. 2D plot of [a1
i a2

i . . . a8
i , bi, ci]

⊤ without any marked labels using t-SNE.

To validate if the recorded data have any causal relationships, we, hence, checked the
data structure of [a1

i a2
i . . . a8

i ]
⊤ with a1

i being the label. The obtained results are plotted in
Figure 5, and no causal relationship can be observed from the figure. The similar procedures
were performed for each value of aj

i , j = 1, . . . , 8, being the label, but no causal relationship
could be found either. Therefore, we have to reach the sad conclusion that the current data
do not have any causal relationships between them.

-30 -20 -10 0 10 20

-50

-40

-30

-20

-10

0

10

20

30
Data Structure at Low Dimension

Figure 5. 2D plot of [a1
i a2

i . . . a8
i ]
⊤ with marked label a1

i using t-SNE.

4.3. Perception Data Analysis

For further analysis, we use the results in the above subsection with respect to
[a1

i a2
i . . . a9

i ]
⊤. We insert each cluster center into the ‘x-axis’ and ‘y-axis’ textboxes in

the ‘Dimension Reduction’ function screen and then click the ‘Add’ button to save the
results into memory.

Then, we analyze the relationship between each facial feature and face cluster using
the ‘Network Analysis’ function. For each type of face cluster, we count how many aj

i ,
j = 1, . . . , 8 and bi in the exact type have value 1, and the corresponding percentage values
are listed in Table 1. The results suggest that the perception of the faces can be summarized
as nine types in this figure. In this table, each value represents the weight of that social
characteristic in that type of face. For instance, the Type 1 face belongs to people who are
perceived as not attractive nor dominant but trustworthy, competent, moral, masculine,
mature, sociable, and expressive.
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Table 1. The summary of the MuDAP output. Each data point indicates the percentage of the social
characteristic of that type of face. For instance, face Type 1 is not regarded as attractive.

Unit: % Attractive Competence Trustworthy Dominant Moral Masculine Mature Social Expressive

Type 1 0.00 91.76 81.18 0.00 84.71 98.82 83.53 88.24 80.00
Type 2 0.00 87.50 56.25 97.66 67.19 16.41 85.94 73.44 81.25
Type 3 0.00 92.93 100.00 100.00 89.90 100.00 98.99 87.88 100.00
Type 4 29.67 76.37 49.45 97.25 54.95 89.01 79.67 43.96 35.71
Type 5 100.00 97.21 100.00 100.00 98.61 100.00 100.00 100.00 100.00
Type 6 94.41 76.92 65.03 99.30 78.32 51.05 62.24 93.01 55.24
Type 7 100.00 90.22 90.22 0.00 91.30 100.00 83.70 97.83 100.00
Type 8 100.00 82.09 86.57 0.00 86.57 20.90 82.09 97.01 64.18
Type 9 4.06 56.35 62.94 0.51 69.04 4.06 56.85 75.13 60.41

Moreover, for each type of personality, we check through each face type to see the
corresponding number of ‘1’ for this personality, then divide the sum to obtain the percent-
age number, and the outputs are listed in Table 2. With this table, we are able to qualify to
what extent each facial characteristic determines each type of personality. The 5th type of
personality encompasses all nine characteristics and is the type that has the high probability.
The ‘attractiveness’ largely determines 5th, 6th, 7th and 8th types of personalities; the
‘trustworthiness’ largely determines the 3rd, 5th and 9th ones; the ‘dominance’ largely
determines the 2nd, 3rd, 4th, 5th and the 6th ones; the ‘masculinity’ largely determines the
1st, 3rd, 4th, 5th and the 7th ones.

Table 2. The summary of the percentage of (‘1’ at) each facial characteristic involved in each type of
observed personality.

Unit: % Attractive Competence Trustworthy Dominant Moral Masculine Mature Social Expressive

Type 1 0.00 7.37 7.08 0.00 7.06 10.00 6.80 7.08 7.11
Type 2 0.00 10.58 7.38 15.04 8.43 2.50 10.54 8.88 10.88
Type 3 0.00 8.69 10.15 11.91 8.73 11.79 9.39 8.22 10.36
Type 4 8.40 13.13 9.23 21.30 9.80 19.29 13.89 7.55 6.80
Type 5 44.63 26.35 29.44 34.54 27.75 34.17 27.49 27.10 30.02
Type 6 21.00 10.39 9.54 17.09 10.98 8.69 8.52 12.56 8.26
Type 7 14.31 7.84 8.51 0.00 8.24 10.95 7.38 8.50 9.62
Type 8 10.42 5.19 5.95 0.00 5.69 1.67 5.27 6.14 4.50
Type 9 1.24 10.48 12.72 0.12 13.33 0.95 10.73 13.98 12.45

Using the network analysis explained in [24] (with the threshold predetermined by a
Sigmoid function), we can better clarify the relationship among the facial characteristics we
tested (Table 3). First, it is obvious that three characteristics, attractiveness, dominance, and
masculinity, are only determined by themselves. This finding is coherent with the theory
from [9] (using PCA) that the various facial characteristics are driven by three PCs. The other
facial characteristics are more likely to be secondary characteristics, which are driven by
the aforementioned three characteristics. Interestingly, the expressiveness, representing the
emotional valence, is not driven by any characteristic directly, indicating its uniqueness in
face perception compared with other social characteristics. For a visual view, the relationship
between the nine features obtained from network analysis is then shown in Figure 6.

Table 3. The outcome matrix of network analysis on 9 observed types of personalities. Each value
represents the degree to which one character (row) is predicted by another character (column), e.g.,
the value 92.90 indicates that the Type4 is largely determined by Type1.

Unit: % Attractive Competence Trustworthy Dominant Moral Masculine Mature Social Expressive

Attractive 99.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Competence 98.30 92.30 92.80 97.40 90.40 98.70 92.80 89.40 94.80
Trustworthy 92.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Dominant 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00
Moral 98.20 0.00 84.30 0.00 0.00 87.80 0.00 80.10 86.60
Masculine 0.00 0.00 0.00 0.00 0.00 99.00 0.00 0.00 0.00
Mature 94.30 87.60 89.40 97.00 84.00 98.40 90.40 0.00 92.20
Social 99.80 89.40 96.50 0.00 95.20 91.70 87.60 96.90 97.30
Expressive 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 6. The visual view of the relationship between the 9 features using network analysis, where
solid lines are values 90–100, dashed lines are for values 80–90, and arrows are the pointing directions.

We then applied the same analysis on the relationship among nine observed types of
personalities (Table 4). The 5th type of personality is linked with all kinds of personalities
but the 1st and the 8th ones. Therefore, one may conclude that the 5th type of personality
might be the most typical male professor. However, the 1st and the 8th types of personalities
do not originate from any kind of personality. Considering the small numbers of these two
types, it is possible these two types are simply the collections of undefined personalities.
Similarly, the relationships between the nine types obtained from network analysis are
illustrated in Figure 7.

Table 4. The outcome matrix of network analysis on 9 facial characteristics. Each value represents the
degree to which one character (row) is predicted by another character (column), e.g., the value 92.97
indicates that the trustworthiness is largely determined by attractiveness.

Unit: % Type1 Type2 Type3 Type4 Type5 Type6 Type7 Type8 Type9

Type1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Type2 0.00 90.80 0.00 94.07 0.00 0.00 0.00 0.00 0.00
Type3 0.00 0.00 96.55 0.00 97.76 0.00 0.00 0.00 0.00
Type4 89.30 88.57 99.95 96.87 99.99 98.82 98.93 0.00 0.00
Type5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Type6 0.00 0.00 98.92 0.00 99.99 99.40 99.38 93.81 0.00
Type7 0.00 0.00 0.00 0.00 95.27 0.00 91.13 0.00 0.00
Type8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Type9 0.00 0.00 89.79 0.00 95.71 0.00 88.89 0.00 0.00

Figure 7. The visual view of the relationship between the 9 types using network analysis, where solid
lines are for values 90–100, dashed lines are for values 80–90, and arrows are the pointing directions.
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4.4. Neural Network Analysis

Based on the clustering results obtained in the previous two subsections, the following
two neural-network-based regression and classification tasks will naturally be derived.

The neural network model used in this paper has a total number of five hidden layers,
and the numbers of units in these layers are further defined as follows:

r1 = 64, r2 = 128, r3 = 64, r4 = 32, r5 = 16, r5 = 9, (18)

respectively. The regression problem is solved using the ‘Regression Analysis with DNN’
function by setting the following configurations

nbatch = 10, nepoch = 50, η = 1, 024, γ = 0.003, (19)

where γ is the learning rate of the Adam gradient descent training procedure. The training
loss and the testing loss along the time line are shown in Figure 8 with different colors.
The mean square training loss declines from over 1000 to below 1, which indicates that the
trained neural network accurately predicts the distances between the t-SNE plot of an extra
element and the nine cluster centers.
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Figure 8. The training results of the neural network for the regression problem.

After that, the classification problem is solved using the ‘Classification Analysis with
DNN’ function by setting the following configurations:

nbatch = 10, nepoch = 100, η = 1, 024, γ = 0.0003. (20)

The training results are shown in Figure 9 with blue denoting the training accuracy and
orange denoting the testing accuracy. The training accuracy rate ϕtrain rises from the initial
value 11% to the final value close to approximately 80% after 100 epochs, and the testing
accuracy rate ϕtest finally reaches 83%. This confirms that the training neural network can
accurately predict which cluster is the closest one to the t-SNE plot of an extra element.

With nine social characteristics (or even with fewer PCs), it is mathematically possible
to formulate more possible combinations of face type. However, with the DNN analysis, it
is obvious that not every combination is possible in real life. This is not practical in classical
PCA. In this case, the MuDAP (powered by DNN) is able to illustrate the inner structure
of social characteristics and may benefit future research in personality and social traits.
For instance, future researchers may study why certain types are formed and why certain
combinations do not exist.
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Figure 9. The training results of the neural network for the classification problem.

5. Conclusions and Future Work

The researchers in cognitive science have long been interested in modeling and classi-
fying the human perception data. This task requires a powerful and easy-to-use analysis
platform. Although classical dimension reduction methods like PCA are powerful for
building an initial framework, they are not capable of classifying the data and revealing the
inner structure and clustering of these data. DNN, on the other hand, has been well-proven
to be an ideal method for this kind of research question. However, DNN is not easy to
train and implement. Here, the multi-dimensional data analysis platform (MuDAP) with
a graphical user interface has been developed to assist cognitive science researchers in
handling complex human perception data and classifying its potential structures. The
operations of this toolbox are structured into three steps. Initially, dimension reduction
based on the t-SNE algorithm captures the spatial structure of the data, identifying nine
cluster centers without information loss. Subsequently, network analysis is employed to
establish direct connections between each cluster, thereby verifying the reliability of the
aforementioned results. Finally, the nine cluster centers are designated as labels, and a
neural network is trained to perform both regression and classification on the data. MuDAP
facilitates the objective, qualitative, and quantitative analysis of complex, high-dimensional
cognitive data, simplifying the research process for cognitive scientists in fields outside of
computer science.

In this paper, analyzing the data from the experiment using MuDAP demonstrated
that the platform is capable of elucidating the inner structures of various social characteris-
tics (the DNN) and can show the relationship among the different types of personalities
(the network analysis). Moreover, using the MuDAP, we are able to show that the fa-
cial characteristics of male faces can be summarized in nine types determined mainly by
attractiveness, dominance and masculinity but not expressiveness. This finding is inac-
cessible following dimensional reduction, which only shows the essential components of
the social characteristics. Finally, with the help of our trained DNN, new-coming test data
are classified into correct clusters, and their distance to each cluster center is predicted
accurately.

The MuDAP is an easy-to-use and powerful data analysis platform for cognitive
scientists dealing with multiple dimensional data. With this, researchers without expertise
in coding can process massive amounts of data with great ease at the GUI. The output of
the data offers data classification, which is useful for multiple dimensional data analysis.
Therefore, the analysis from the MuDAP complements the usage of the current data
analysis methods.
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Figure A2. User configuration interface of MuDAP.
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