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Abstract: We demonstrate that black hole evaporation can be modeled as a process where one
symmetry of the system is spontaneously broken continuously. We then identify three free parameters
of the system. The sign of one of the free parameters governs whether the particles emitted by the
black hole are fermions or bosons. The present model explains why the black hole evaporation
process is so universal. Interestingly, this universality emerges naturally inside certain modifications
of gravity.
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1. Introduction

Black holes are highly compact objects, generating very strong gravitational fields.
They concentrate all their mass inside a gravitational radius of 2GM, which becomes an
event horizon for the case of spherical symmetry [1,2]. For Kerr black holes (rotating) as
well as charged black holes, some modifications to this expression have been reported [1–4].
In any case, once an object crosses the event horizon of a black hole, it can never escape from
the huge gravitational attraction experienced at such scales. This is a classical perspective
of a black hole. Quantum mechanically, however, it is known that black holes emit particles
in the form of a spectrum of radiation. This was the seminal discover of Hawking [5]. Al-
though Hawking’s original formulation focused on the use of Bogoliubov transformations,
several other methods were developed, including path integrals [6]. Hawking’s mechanism
(radiation) brought a huge theoretical problem, namely, the black hole information para-
dox [7]. The paradox suggests that since black holes emit particles in the form of radiation,
then they come out without any information from the past. This is called loss of unitarity.
Unitarity is one of the fundamental conditions satisfied in quantum mechanics [8,9]. At
present, there is no universally accepted solution for the black hole information paradox,
although it is strongly suspected that the solution must be connected with the concepts
related to the holographic principle [10,11]. Considering this important information prob-
lem, it is of high priority to analyze Hawking radiation from different perspectives. This is
possible now with the outcome of analogue models, some of them including holographic
principles [12,13]. In previous papers, black hole evaporation has been assessed using
analogue models, including an analysis from the perspective of neural networks [14,15].
In this paper, we demonstrate that Hawking radiation is equivalent to the spontaneous
breaking of some symmetry of the system. The general idea is that a black hole starts
with a state with some specific mass, angular momentum, and charge (M1, L1, and Q1).
Although there are many possible internal black hole configurations able to reproduce these
combinations (degenerate vacuum states), at the moment, when the radiation is emitted,
only one of those configurations is allowed. This is equivalent to a system selecting one
specific vacuum state. Subsequently, after the emission of radiation, the system will be in
a different state with M2, L2, and Q2. Since there are many different states with internal
configurations able to satisfy this condition, the system again selects one specific vacuum
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configuration. Each time the system selects a particular vacuum state, then the symmetry is
spontaneously broken and radiation is emitted. In this paper, we construct a model where
a scalar field represents the particle number for the particles emitted by a black hole. The
scalar field Lagrangian then contains a potential term with a scalar field expansion on the
order of quadratic, cubic, and quartic order. The system then has three free parameters.
The relation between the different parameters changes the vacuum configuration and then
the behavior of the particles. In particular, the sign of the parameter related to the cubic
interaction term for the particle number field defines whether the particles evaporating
are fermions or bosons. In the limit, when this parameter vanishes, there is no distinction
between fermions and bosons. We interpret this result in the language of black holes.
This paper is organized as follows: In Section 2, we revise the standard formulation of
the black hole evaporation process. In Section 3, we revise the basic concepts related to
the mechanism of spontaneous symmetry breaking. In Section 4, we formulate the black
hole evaporation process, or equivalently, the particle creation process, as a consequence
of breaking spontaneously the symmetry under exchange of configurations (exchange of
particles) due to the presence of a black hole. In Section 5, we explain how the curvature
effects appear from the particle Lagrangian proposed in order to explain the Hawking
radiation process. Finally, in Section 6, we conclude.

2. Standard Formulation of Black Hole Evaporation

The black hole evaporation process is a quantum effect derived originally inside a
semiclassical approach [5]. It is semiclassical because the derivation is not carried inside
a full formulation of quantum gravity. Instead, the calculation works inside the classical
background of General Relativity with a quantum field moving around. The emission of
particles coming from a black hole can be explained when we observe a Penrose diagram as
shown in Figure 1. We can then imagine an observer located at the infinity with respect to
the event horizon and observing the dynamic of a quantum scalar field, which represents
the matter content perceived at that point in spacetime. The quantum field at that point
can be expanded as

ϕ(x, t) = ∑
p

(
fp b̂p + f̄p b̂+p

)
. (1)

This expansion contains all the information of the quantum field. The original ar-
gument of Hawking suggests that the emission of particles emerges when an observer
compares two vacuum states. The first vacuum state is defined before the black hole is
formed, and then it can be defined as

b̂p|0̄ >= 0. (2)

Then, the expansion (1) corresponds to the field expansion before the formation of the
black hole (past null infinity). However, after the formation of the black hole, the vacuum
configuration changes and the quantum scalar field in Equation (1) now must be expanded
in terms of a different set of modes as follows:

ϕ(x, t) = ∑
p

(
pp âp + p̄p â+p + qp ĉp + q̄p ĉ+p

)
. (3)

Both expansions (1) and (3) must have the same information. From the result (3),
we define a new vacuum state as âp|0 >= 0. This vacuum emerges after the formation
of the black hole. In Equation (3), the modes qp, together with the operators ĉp, are
defined at the event horizon. These modes hide behind the event horizon of the black
hole. Then, the standard calculation suggests that we have to compare the vacuum state
defined in Equation (2) with the vacuum state defined with respect to the operator âp in
Equation (3). These can be done via Bogoliubov transformations. Following the arguments
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of Hawking in [5], we can find that the relation between the modes under discussion respect
the following relation:

âp = up,p′ b̂p′ − vp,p′ b̂+p′ . (4)

Then, we can see why the vacuum perceived after the formation of the black hole
is not empty even if it is devoid of particles before the formation of the black hole. The
density of particles emitted by the black hole is defined by the following expression:

< 0̄|n̂a
p|0̄ >= |vp,p′ |2. (5)

The arguments of Hawking, based on the dynamics of a quantum field interacting
with a black hole, show that the amount of particles emitted by a black hole follow the
following statistical distribution:

< 0̄|n̂a
p|0̄ >=

Γp,p′

e
2πω

κ ± 1
. (6)

The negative sign is taken if the particles escaping the black hole are bosons, while the
positive sign is taken if the emitted particles are fermions. In eq. (6), Γp,p′ represents the
portion of particles going inside the black hole [5]. The Bogoliubov coefficients then satisfy
the following relation:

|up,p′ | = e
πω
κ |vp,p′ |. (7)

Figure 1. The Penrose diagram for the Schwarzschild geometry in GR as it is shown in [5]. The past
null infinity (J−) of the diagram represents all the possible events happening before the formation of
the black hole. On the other hand, the future null infinity represents all the possible events happening
after the formation of the black hole.

3. Spontaneous Symmetry Breaking: Basic Concepts

In this section, we introduce the basic notions of spontaneous symmetry breaking [16–21],
with the intention of applying these concepts at the moment of analyzing the particle creation
process of a black hole. Spontaneous symmetry breaking occurs when the ground state of a
system violates a symmetry that is still satisfied by the Langrangian of the same system. This
occurs for certain combinations of the free parameters of the Lagrangian. A typical case is the
standard linear σ-model (here simplified), where a Lagrangian has the form [21]

£ =
1
2
(∂µϕ)(∂µϕ∗)− V(ϕ, ϕ∗), (8)

with the potential defined as

V(ϕ, ϕ∗) =
1
2

m2ϕ∗ϕ +
λ

4!
(ϕϕ∗)2, (9)

with the two free parameters m2 and λ can be defined. The ground state of this system
is obtained from the condition ∂V/∂ϕ = 0. If m2 > 0, then we obtain the trivial result
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|ϕ0| = 0. In these circumstances, this trivial ground state satisfies all the symmetries of the
Lagrangian. We can then say that the symmetry is not yet broken spontaneously. This also
means that the ground state represents a stable equilibrium as it appears in Figure 2.

Figure 2. Potential with one stable equilibrium point. This is the shape of the potential emerging
when the parameter m satisfies the condition m2 > 0 in eq. (9). In this case, m represents the mass of
the field ϕ, and the symmetry of the system is not spontaneously broken.

However, when m2 < 0, we cannot interpret m as the mass anymore, and for these
cases, the equilibrium condition ∂V/∂ϕ = 0 gives two possible results. The first result
gives |ϕ0| = 0, but this is now an unstable equilibrium condition. This means that the
system does not comfortably stay at this point and, instead, it will find another equilibrium
condition representing stability. The new equilibrium condition corresponds to the second
solution of ∂V/∂ϕ = 0, which gives

|ϕ0|2 = −m2

2λ
= a2. (10)

At the quantum level, we treat the field ϕ as a quantum field, and then we conclude
that the vacuum expectation value of the quantum field is given by

< 0|ϕ2|0 >= a2. (11)

It has been demonstrated that with a decomposition ϕ = ϕ1 + iϕ2, the potential defined
in Equation (9) corresponds to the one appearing in Figure 3 [21,22].

From this example, we can see that when m2 > 0, the stable vacuum condition is
< 0|ϕ|0 >= ϕ0 = 0, and it is unique. On the other hand, when m2 < 0, the stable vacuum
condition is now < 0|ϕ|0 >= ϕ0 = a, and it is not unique. Yet, the system still has to
select one among all the possible equivalent ground states. In the next section, we see that
the relevant dynamical quantum field for the case of black holes is the particle number
operator n̂p, with a zero vacuum expectation value before the formation of a black hole
(no spontaneous symmetry breaking at this point). After the formation of the black hole,
one symmetry is spontaneously broken, and then the vacuum expectation value of n̂p is
different from zero. Following the standard formulation, when m2 < 0, once the system
selects a ground state, this ground state violates certain symmetries of the Lagrangian. If
we define all the symmetry transformations of the potential (9) as U(g), then the violation
of some of these groups of symmetries means that the transformations [22]
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U(g)ϕ0 ̸= ϕ0 (12)

do not keep invariant the ground state in general. The symmetry transformation could
be more explicitly defined as U = eiĜα, with U being a unitary operator and Ĝ being a
Hermitian operator. Yet still, there remains some subgroup of symmetries (generators) that
still represent a symmetry for the ground state. The relevant expression here is

U(h)ϕ0 = ϕ0. (13)

Here, we can again define some symmetry generators Ĥ that are unbroken. In sum-
mary, when the symmetry of a system is spontaneously broken, then the ground state
(stable equilibrium condition) is degenerate (multiple ground states), and once the system
selects one of the possible ground states, the selected state violates some of the symmetries
still satisfied by the original Lagrangian. Additionally, the ground state takes a non-trivial
value (different from zero).

Figure 3. The potential (9) for the case where the symmetry of the system is spontaneously broken.
This occurs when m2 < 0. For this case, there exists a multiplicity of ground states, and the system
selects one of them arbitrarily, depending on the direction of an external perturbation.

4. Black Hole Evaporation as a Consequence of Spontaneous Symmetry Breaking

The black hole evaporation effect can be also obtained if we take the particle number
operator n̂a

p as the quantum scalar field. Then, we define its Lagrangian as the one con-
taining a kinetic term and potential term with the field expansion done up to fourth-order,
without omitting the cubic term in the field expansion. Working in this way, we have a
Lagrangian of the form

£ =
1
2

∂µn̂a
p(ω)∂µn̂a

p(ω)− V(n̂a(ω)), (14)

with the partial derivative taken with respect to the frequency ω, namely, ∂µ = ∂ω = ∂
∂ω .

The potential term in Equation (14) is

V(n̂p) =
1
2

m2n̂2
p +

β

3
n̂3

p +
λ

4
n̂4

p. (15)
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In Equation (15), we have omitted the index a for simplicity. Although, in principle,
the ground state for the potential is defined by solving the equation ∂V/∂n̂ = 0, we cannot
assume this to be the correct result in this case because the spacetime curvature forces the
field n̂p to have a kinetic term at its most stable configuration. Still, it can be proved that
the symmetry of the system under exchange of internal configurations consistent with
the black hole entropy (exchange of particles) is spontaneously broken when m2 < 0. In
addition, the signature of the parameter β tells us whether the particles evaporating are
bosons or fermions. In other words, we have two solutions for this case. The first solution
corresponds to the boson statistics, and the second one corresponds to the fermion statistics.
Both statistics are identical to the ones defined in Equation (6) and equally obtained inside
the standard formalism due to Hawking. A black hole naturally emits both types of
particles. When the surface gravity of a black hole tends to zero, the statistics of fermions
and bosons emitted by the black hole have a similar behavior. However, when the surface
gravity of a black hole increases, then more bosons than fermions are emitted [5]. From
these explanations, it is clear that the parameter β must be related to the surface gravity,
as we will demonstrate in a moment. Now, we can proceed to analyze the behavior of
the solution of the Euler–Lagrange equations obtained from the Lagrangian defined in
Equation (14).

4.1. Emission of Particles

Here, we explore the solutions for the field equations corresponding to the Lagrangian
in Equation (14). The system in general, has the tendency for looking for some equilibrium
configuration, but it is unable to reach such condition, and instead it emits particles at each
instant of selection of some configuration. The solution to the field equations, obtained
from the Lagrangian (14), is given by

n̂a =
A

e−γω ± 1
, (16)

with the corresponding parameters m2 = −γ2, β = 3γ2/A, and λ = −2γ2/A, as they are
defined inside the potential (15). The sign of β defines whether the emitted particles are
bosons or fermions. If we compare Equation (16) with Equation (6), then γ takes negative
values in this case. Note that the parameters m, β, and λ do not depend on the sign taken
by γ. After doing the corresponding comparisons, then γ is related to the surface gravity as

γ = −2π

κ
. (17)

Then, the surface gravity is equivalent to κ = −2π/γ. It is a trivial task to notice
that A = Γp,p′ inside the present comparison. Note that since m2 is negative in this
case, the symmetry under exchange of particles (keeping the same total mass, angular
momentum, and charge) is spontaneously broken. Then a black hole is just an unstable
system, permanently trying to find its ground state configuration, but it never reaches it
until it evaporates completely.

4.2. The Connection of β with the Particle Statistic

To see the connection between the sign of β and the statistic followed by the parti-
cles emitted, we analyze the Euler Lagrange equations obtained from Equation (14) but
considering dimensionless coupling constants. In such a case, we obtain

(∂µ∂µ + m̄2)na
R + β̄(na

R)
2 + λ̄(na

R)
3 = 0. (18)

Here, the sub-index R makes reference to the fact that we are dealing with a dimen-
sionless equation that will give a dimensionless solution. We can convert easily the dimen-
sionless solution toward the full solution (16). To obtain the fermionic statistic, we need
to satisfy the set λ̄ = −2, β̄ = 3, and m̄2 = −1. On the other hand, to obtain the bosonic
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statistic, the same set of parameters are valid, except the value of β̄, which for the bosonic
case takes the value β̄ = −3. It is a trivial task to demonstrate the following expressions

m2 = m̄2γ2, β =
β̄γ2

A
, λ =

λ̄γ2

A
. (19)

Then, the change in sign of the dimensionless parameter β̄ affects the sign of β, and
then the statistic followed by the emitted particles depends on the signature taken by β.
Combining Equation (19), with Equation (17), we obtain

β =
4π2 β̄

Aκ2 . (20)

From this expression, it is clear that when β̄ → 0, then κ → 0. Then, more properly,
when β̄ = 0, an equal amount of fermions and bosons are emitted by the black hole. How-
ever, if instead we keep β̄ = ±3 in agreement with the paragraphs following Equation (18),
then the condition for obtaining an equal amount of fermions and bosons is β → ±∞, with
the positive sign corresponding to the fermionic statistic.

4.3. Symmetry Analysis of the Phenomena

Taking into account the theory developed in Section 3, we can see that the ground
(vacuum) state for the black hole is characterized by the value of the particle number
operators n̂p. The symmetry of the black hole corresponds to the invariance under internal
particle distributions, as far as the mass, angular momentum, and charge of the black hole
does not change. For simplicity, let us consider the scenario of a Schwarzschild black hole,
where there is no angular momentum and there is no charge. For this case, for a given mass
M, the ground state of the black hole is invariant under exchange of particles or internal
changes of configuration. Let us define this symmetry with the unitary operator U(g),
with a generator Ĝ, this time indicating the exchange of particles internally. Before the
formation of the black hole, the ground state is trivial and then the vacuum expectation
value satisfies < 0|n̂a

p|0 >= 0. This result is obtained from the potential (15) when m2 > 0,
β > 0, and λ > 0. However, when m2 < 0, β > 0, and λ < 0, the vacuum configuration
changes, the trivial ground state < 0|n̂a

p|0 > is now unstable, and then the system evolves
towards a new stable vacuum state configuration with < 0|n̂a

p|0 > ̸= 0, which is degenerate
in agreement with the black hole entropy, which counts the number of possible internal
configurations. The new vacuum expectation value of the particle number operator is
then given by Equation (16). Under these conditions, the black hole selects a specific
vacuum configuration, and then the ground state does not respect anymore the symmetry
under exchange of configurations. It is under these circumstances that the ground state,
represented by the vacuum expectation value < 0|n̂a

p|0 > ̸= 0, becomes non-trivial, and
then the particle emission process continues. This process is continuous, and it only finishes
when the black hole evaporates completely (ignoring any possible quantum gravity effect
at the Planck scale). Let us define the particle exchange (Hermitian) operator as P̂. Then, the
symmetry operation is defined by the unitary operator U(p) = e−iP̂α. Before the formation
of a black hole, for the trivial vacuum state, the particle exchange operation will not change
the vacuum condition. In this case then

U(p) < 0|n̂a
p|0 >=< 0|n̂a

p|0 >= 0. (21)

On the other hand, after the formation of the black hole, the symmetries under ex-
change of particles are lost at the vacuum level due to spontaneous symmetry breaking,
and then we have in general

U(p) < 0|n̂a
p|0 > ̸=< 0|n̂a

p|0 > . (22)

The effect of U(p) over the ground state is to map it towards another equivalent but
different ground state. The symmetry under exchange of particles, which is connected
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with the black hole entropy, when broken spontaneously, is then the mechanism behind
the emission of particles of a black hole. In the following section, we explain the generic
character of the Lagrangian (14).

5. Curvature Effects Appearing from the Particle Lagrangian

The first impression coming from the Lagrangian (14) is that gravity is apparently ab-
sent, and then all the calculations would represent a simple coincidence between the results
obtained by Hawking in Equation (6) and the one obtained in this paper in Equation (16).
However, these types of coincidences do not exist, and here we prove that, in fact, gravity
appears implicit inside the Lagrangian defined in Equation (14). The Lagrangian of a
standard scalar field moving along a flat spacetime (without gravity) is defined as

£ =
1
2

∂µϕ(x)∂µϕ(x)− m̄2ϕ2(x). (23)

Here, m̄ is the mass of the quantum field moving along the flat spacetime. The
vacuum state of this quantum field is simply ϕ(x) = 0 if we ignore the residual vacuum
energy coming from the ground state of the quantum harmonic oscillator [21]. Now, let us
introduce gravity over this system such that the quantum field moves now along a curved
spacetime with minimal coupling. In such a case, the Lagrangian takes the form

£ =
1
2
√
−g

(
gµνϕ,µ(x)ϕ,ν(x)− m2ϕ2(x)

)
(24)

Here, the gravity effects emerge from the deviations in the metric with respect to the
Minkowski spacetime. Although the spacetime curvature generated by a black hole is
very large, for an initial explanation, we can apply perturbation theory over the spacetime
metric in order to analyze how the terms appearing on the potential (15) emerge. Pertur-
bative theory takes the small deviations of the metric gµν with respect to Minkowski as
gµν ≈ ηµν + hµν. Here, ηµν is the Minkowski spacetime, while hµν is the perturbation
around Minkowski. In this way,

√−g ≈ 1 + 1
2 h + 1

8 h2 − 1
4 h2

µν + ... up to second order, with
h = 0 in a vacuum and h ∝ T when there is a source term T ∝ ϕ2(x) at the ground state.
We can also make similar statements for the case hµν ∝ Tµν since at this point, we are only
concerned about proportionality relations. Then, the Lagrangian near the ground state
(ignoring kinetic terms) now becomes

£ ≈ −1
2

(
1 +

1
2

h +
1
8

h2 − 1
2

h2
µν

)
m̄2ϕ2. (25)

If we expand the Lagrangian (24) by considering the previous comments and the
result (25), then it is evident that terms of different orders on the field ϕ(x) will emerge if
we take into account that h ∝ T ∝ ϕ2(x). This also means that terms of different orders in
the particle number operator n̂p will emerge, considering that naively n̂p ∝ ϕ2(x), given
the fact that the scalar fields are linear functions of the annihilation and creation operators.
With these arguments, the Lagrangian (25) generates terms of the form

£ = an̂p + bn̂2
p + cn̂3

p + ... (26)

The expansion includes higher-order terms at the non-linear level, which increase in
relevance. If we compare Equation (26) with Equation (25), then obviously certain terms
in the expansion in Equation (26) would correspond to the terms in the potential (15) in
a direct way. There will be other terms in the expansion difficult to compare unless a
re-summation between terms emerges at the event horizon level. Yet still, we can see that
each term in Equation (15) can be reproduced from the Einstein–Hilbert expansion no
matter what. These types of re-summation methods appear in massive gravity in order
to eliminate an undesirable ghost at the non-linear level [23–25]. Since massive gravity
converges to General Relativity when the gravitational field is strong, then the amount of
particles emitted from the event horizon of a black hole in General Relativity is the same
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amount of particles emitted from the event horizon of a black hole inside the non-linear
theory of massive gravity, as it was demonstrated in [26,27]. Based on this interesting aspect
of black holes, it is important to realize that although the metric expansions developed
in [23–25] were performed according to a massive theory of gravity (non-linear), still the
same formalism is general in the sense that we can use it to analyze certain aspects of gravity.
In [23], it is illustrated how the deviations with respect to Minkowski can be represented
in a non-linear theory of gravity as gµν = ηµν + hµν = Hµν + Special terms. Here, the
special terms refer to those terms carrying out gravitational degrees of freedom by using
the Stückelberg trick [28]. In this way, at the end of the calculations, it is demonstrated that
if we want to find the source term of the Einstein equations, it can be calculated from a
potential term containing quadratic, cubic, and fourth-order terms in the metric (the same
order corresponds to the particle number operator) [25]

Usource = U2 + α3U3 + α4U4. (27)

This potential contains three free parameters that can be paired with three free param-
eters of the Einstein–Hilbert action after considering the field equations [25]

Gµν = −m2Xµν, (28)

with Xµν = δU
δgµν − 1

2 Ugµν. It is important to remark here that there is a direct connection
between the series expansion of the standard Einstein–Hilbert action and the potential
expansion defined in Equation (27) through the Euler–Lagrange equations, which give
us the field equations in (28). In Equation (27), since each term Un ∝ gn

µν ∝ ϕ2n ∝ nn
p,

then we have a direct correspondence between the potential defined in Equation (27) and
the potential proposed in Equation (15). Then, the Hawking radiation effect is so general
that the form of the Lagrangian reproducing it from Equation (15) appears in theories
intending to generate source terms with degrees of freedom being able to move through an
event horizon. The result is generic, and it explains why the Hawking radiation obeys the
bosonic/fermionic statistics of a black body. In other words, if the Lagrangian (14) had a
different potential term instead of (15), then the statistics followed by the spectrum of a
black hole would change dramatically. This can be seen if we evaluate the Euler–Lagrange
equations over Equation (14).

6. Conclusions

In this paper, we have proved that it is possible to model the black hole evaporation
process as a mechanism of continuous symmetry breaking, where the black hole is perma-
nently selecting some specific vacuum configuration, forcing the system to emit particles.
This means that a black hole, having a degenerate vacuum state in agreement with its
entropy, will select a ground state among all the possibilities consistent with its mass,
angular momentum, and charge. Once this occurs, the system emits radiation, decaying
towards a new configuration with different values of charge, angular momentum, and
mass. The process then continues until the black hole evaporates completely. This means
that the black hole is permanently looking for one stable configuration, but it never reaches
it and that is why the Hawking radiation process emerges. We have also identified and
analyzed some free parameters for the field theory, which is able to model the black hole
evaporation process. Inside the free parameters, the signature of β or the signature of its
dimensionless counterpart β̄ determine whether the particles evaporating are fermions or
bosons. The Lagrangian proposed for modeling the scalar field moving around a black
hole is naturally coupled to gravity because the higher-order terms or self-interaction
terms are precisely a consequence of this coupling. Finally, we have demonstrated the
generic character of the Hawking radiation by showing that similar potential forms emerge
from theories reproducing the propagation of gravitational degrees of freedom through
black hole event horizons [25]. In fact, by using the standard and generic method where a
non-linear formulation of gravity can include a source term (depending on the scalar field),
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a potential of the form (15) emerges. This should not be a surprise because in massive
gravity, the degrees of freedom propagating in addition to the tensorial (spin-2) component
is a scalar (spin-0) component. Then, in gravity in general, the propagation of a scalar field
in the presence of curvature effects is a generic process. In other formulations of gravity,
additional terms on the potential defined in Equation (15) might appear, depending on the
corrections to the evaporation process proposed by the different theories. Then, for example,
at the quantum regime [29–31], naturally certain modifications to the Hawking approach
are required, and this will bring as a consequence modifications of the Lagrangian (14).
These modifications might appear as quantum corrections to the Lagrangian (14), and they
can generate additional spontaneous symmetry breaking patterns [32]. These ideas will be
discussed further in future papers. The proposed formulation is the ideal one for analyzing
the black hole information paradox by using as a starting point the Lagrangian proposed in
Equation (14). In the past, other authors made some attempts, formulating the black hole
evaporation process via the spontaneous symmetry breaking of certain symmetries [33] or
by using neural network model approaches inspired by Bose–Einstein condensates [15].
However, these approaches are not as generic as the one proposed in this article. In future
papers, we will be exploring the black hole information paradox from this perspective.
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