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Abstract: In this paper, we carry out some research on a predator–prey system with maturation delay,
a stage structure for generalist predators and a Holling type-II functional response, which has already
been proposed. First, for the delayed model, we obtain the conditions for the occurrence of stability
switches of the positive equilibrium and possible Hopf bifurcation values owing to the growth of
the value of the delay by applying the geometric criterion. It should be pointed out that when we
suppose that the characteristic equation has a pair of imaginary roots λ = ±iω(ω > 0), we just need
to consider iω(ω > 0) due to the symmetry, which alleviates the computation requirements. Next,
we investigate the nature of Hopf bifurcation. Finally, we conduct numerical simulations to verify the
correctness of our findings.
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1. Introduction

Interspecies relationships include competition, predation, parasitism and mutualism,
where predation describes the interplay between the predator and prey. It is crucial to
explore the interaction between them and then formulate an appropriate mathematical
model to accurately capture the dynamics of the predator–prey model. The classic predator–
prey model was first put forward by Lotka [1] and Volterra [2]. Since then, a lot of scholars
have incorporated multifarious factors into the classic model to expound intricate biological
processes in a more realistic way [3–6].

Since all biological processes take time to complete, one tends to take into account
time delays in the modeling efforts [7–10]. This will produce delay differential equation
models in most instances. Some of these models result from age structure models or
elaborate formulations, which means that time lags often arise in the survival rates of the
populations, such as e−dτ [11]. Clearly, these models possess delay-dependent parameters,
while most of delay differential equation models only have parameters independent of
time delays [12–16].

In ecological research, stability analysis is a key task. Common stability analysis
includes finite-time stability, exponential stability, local asymptotic stability and global
asymptotic stability [17]. In this paper, we focus on analyzing the local asymptotic stability
of the positive equilibrium. Studying the stability of the delayed system has aroused wide
concern in mathematical biology since the time lag plays a surprisingly vital role in affecting
dynamics of the model. It may make the model stable or unstable, relying on the length of
the time delay [18]. Cooke and Grossman [12] first demonstrated that constructing a system
with stability switches was possible. By combining graphical information with analytical
work, Beretta and Kuang [18] proposed a geometric criterion to effectively study the
stability switches of the model with only one discrete delay. Furthermore, the parameters
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of this model are relevant to the delay. The corresponding characteristic equation for the
above model can be written as

D(λ, τ) := P0(λ, τ) + P1(λ, τ)e−λτ = 0, (1)

where P0(λ, τ), P1(λ, τ) are polynomials in λ. Recently, the prominent geometric method
set forth by Beretta and Kuang [18] has been applied by a lot of scholars [16,19,20]. Subse-
quently, Beretta and Tang [21] extended the geometric stability switch criterion introduced
in [18] to be appropriate for the more general characteristic equation

D(λ, τ) := P0(λ, τ) + P1(λ, τ)e−λτ + P2(λ, τ)e−2λτ = 0, (2)

where P0(λ, τ), P1(λ, τ), and P2(λ, τ) are polynomials in λ.
For the scenario that parameters of the model fail to be related to the delay, Gu

et al. [22] put forward the crossing curves method for general systems with double delays.
They studied the change of system stability for the following characteristic equation as
delays vary.

D(λ, τ, τ1) := P0(λ) + P1(λ)e−λτ + P2(λ)e−λτ1 = 0, (3)

where Pl(λ), l = 0, 1, 2 are polynomials in λ. The application of this crossing curves method
can be found in [23].

The geometric method developed by Gu et al. [22] was extended by An et al. [24] to
explore the stability switches of a system with two discrete delays and delay-dependent
parameters relevant only to one of the time delays. Clearly, the stability of such a model is
absolutely decided by the roots of its characteristic equation

D(λ, τ, τ1) := P0(λ, τ) + P1(λ, τ)e−λτ + P2(λ, τ)e−λτ1 = 0, (4)

where Pl(λ, τ), l = 0, 1, 2 are polynomials in λ whose coefficients, say pkl(τ), are bounded
functions pkl : I −→ R of class C1. Some applications of this geometric method are available
in [11,25,26].

Recently, based on the models in [27–32] and the hypothesis that the predator is
generalist, that is, it can achieve an alternative food apart from the prey, Roy et al. [33]
formulated the following predator–prey model with the generalist predator:

dX
dT

= X(r1 − b1X)− c1XY
1 + aX

,

dY
dT

= Y(r2 − b2Y) +
cc1XY
1 + aX

,
(5)

where X(T) and Y(T) represent the densities of prey and generalist predator populations
at time T, respectively. r1 and r2 are the growth rates of prey and predator populations,
respectively. b1 and b2 denote the intra-specific competition among prey and predator
populations, respectively. c1 refers to the capture rate, a is the time of handling each
captured prey, c represents the efficiency that predators convert consumed prey into new
predators. In order to simplify the calculations, they rescaled model (5) by x = b1X

r1
, y = b2Y

r2
,

t = Tr1 and then obtained the following model:
dx
dt

= x(1 − x)− βxy
1 + αx

,

dy
dt

= yρ̃(1 − y) +
γxy

1 + αx
,

(6)

where β = c1r2
b2r1

, α = ar1
b1

, ρ̃ = r2
r1

and γ = cc1
b1

. All above parameters in model (6) are
supposed to be positive. Moreover, inspired by the modeling method in [27,34,35], they
modified model (6) by considering a stage structure for generalist predators. They classified
the predator population into two stages: the immature stage and the mature stage. It is well
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known that immature predators require some time to mature. In the maturation process,
there exists a natural death of immature predators. After accomplishing the maturation
process, they deviate from the immature class and join the mature class. Thus, it can be
seen that a maturation delay is common in a predator–prey model with a stage structure.
That is to say, there is a close connection between the maturation delay and the model
with stage structure. So the research of the model with a stage structure should focus
on the maturation delay. Based on the above analysis and the hypothesis that immature
predators are incapable of reproducing or capturing prey because they are weaker than
mature predators, model (6) can be converted into

dx
dt

= x(1 − x)− βxya

1 + αx
,

dyj

dt
=

γxya

1 + αx
− γe−δjτx(t − τ)ya(t − τ)

1 + αx(t − τ)
− δjyj,

dya

dt
= yaρ̃(1 − ya) +

γe−δjτx(t − τ)ya(t − τ)

1 + αx(t − τ)
,

(7)

with (x(θ), y(θ)) ∈ C+ ≡ C
[
[−τ, 0],R2

≥0

]
and x(0) > 0, yj(0) > 0, ya(0) > 0. In the above

model, yj and ya represent the densities of immature and mature predator populations,
respectively. δj denotes the death rate of immature predator populations. τ is the maturation
delay and e−δjτ refers to the probability that a juvenile predator grows up to become an
adult predator successfully. The biological significances of the remaining parameters are
the same as those in model (6). For all we know, no one puts forward such a model
apart from Roy et al. [33]. And it is more reasonable and more grounded in reality to
investigate a model with a generalist predator and a maturation delay. Because x(t) and
ya(t) absolutely determined yj(t), they just considered the following delayed model for
further investigation. 

dx
dt

= x(1 − x)− βxy
1 + αx

,

dy
dt

= yρ̃(1 − y) +
γe−δjτx(t − τ)y(t − τ)

1 + αx(t − τ)
.

(8)

For the delayed model (8), they studied the positivity and boundedness of solutions,
the stability of all equilibriums and local bifurcations. The conclusions they have reached
are colorful. However, they demonstrated that under certain conditions, model (8) would
not occur with a stability switch (see Proposition 6.1 in [33]), which means that Hopf
bifurcations would not occur either. The main target of this paper is to extend the work
carried out by Roy et al. [33] to further study the occurrence of stability switches and Hopf
bifurcation near the positive equilibrium for model (8) by dint of the geometric stability
switch criterion introduced in [18]. We hypothesize that incorporating a maturation delay in
a predator–prey model with a stage structure for generalist predators and a Holling type-II
functional response will influence the dynamic behavior of the system, potentially leading
to stability switches and Hopf bifurcations. The subsequent sections will be devoted to
exploring how the maturation delay affects the dynamics of model (8).

The organization of the remainder of the paper is as follows. In Section 2, we apply a
geometric criterion to present the conditions for the occurrence of stability switches and
Hopf bifurcations induced by the maturation delay. Section 3 focuses on the exploration
of the nature of Hopf bifurcation by solving its normal form. To confirm our theoretical
findings, numerical simulations are proceeded in Section 4. Finally, we summarize this
paper with a conclusion section.
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2. A Geometric Criterion for Hopf Bifurcation Values

In this section, we study the occurrence of possible stability switches and Hopf bifur-
cation values induced by the increase in time lag. According to Subsection 5.1 in [33], we
can directly obtain the following details about the existence of positive equilibriums.

Lemma 1. The following statements are correct for the model (8).

(i) If β < 1, there exists at least one interior equilibrium E∗(x∗, y∗) for the delayed model (8).
(ii) If β > 1, there is at least one positive equilibrium E∗(x∗, y∗) with the following sufficient

condition holding:

τ ≥ 1
δj

ln
4(α − 1)βγ

ρ̃(α + 1)[(α + 1)2 − 4αβ]
:= τmin.

It is direct from Subsection 5.2 in [33] that the characteristic equation of the model (8)
at E∗ is

λ2 − (a1 + b3)λ + a1b3 + (a1b2 − a2b1 − b2λ)e−λτ = 0, (9)

where
a1 = 1 − 2x∗ − βy∗

(1 + αx∗)2 , a2 = − βx∗

1 + αx∗
,

b1 =
γe−δjτy∗

(1 + αx∗)2 , b2 = −ρ̃(1 − y∗), b3 = ρ̃(1 − 2y∗).
(10)

When τ = 0, we can further receive the following lemma about the local stability of
E∗ by the use of Routh–Hurwitz criteria.

Lemma 2. When τ = 0, if the condition (H1): a1 + b2 + b3 < 0, a1b3 + a1b2 − a2b1 > 0 holds,
then the interior equilibrium E∗ is locally asymptotically stable.

In what follows, when τ ̸= 0, we plan to explore the stability switches and Hopf
bifurcations of model (8) resulting from the maturation delay τ by applying the geometric
criterion introduced in [18].

Equation (9) can be rewritten as

D(λ, τ) := P0(λ, τ) + P1(λ, τ)e−λτ = 0, (11)

where P0(λ, τ) = λ2 − (a1 + b3)λ + a1b3 and P1(λ, τ) = a1b2 − a2b1 − b2λ.
Obviously, P0(λ, τ) and P1(λ, τ) are analytic functions in λ and differentiable in τ.

To utilize the geometric criterion, we also need to verify the following conclusions (see [18]):

(i) P0(0, τ) + P1(0, τ) ̸= 0 for any τ;
(ii) If λ = iω, ω ∈ R, then P0(iω, τ) + P1(iω, τ) ̸= 0 for any τ;

(iii) lim sup
λ→∞,Reλ≥0

(∣∣∣ P1(λ,τ)
P0(λ,τ)

∣∣∣) < 1 for any τ;

(iv) F(ω, τ) := |P0(iω, τ)|2 − |P1(iω, τ)|2 for each τ has at most a finite number of real
zeros;

(v) Any positive root ω(τ) of F(ω, τ) = 0 is continuous and differentiable in τ whenever
it exists.

Next, we will corroborate the above results in turn. In addition, it is posited that the
hypothesis (H1) in Lemma 2 is true, that is to say, a1 + b2 + b3 < 0, a1b3 + a1b2 − a2b1 > 0.

(i) P0(0, τ) + P1(0, τ) = a1b3 + a1b2 − a2b1 > 0 for any τ;
(ii) P0(iω, τ) + P1(iω, τ) = −ω2 + (a1b3 + a1b2 − a2b1)− i(a1 + b2 + b3)ω ̸= 0 for any τ

on account of a1 + b2 + b3 < 0;
(iii) For any τ, lim sup

λ→∞,Reλ≥0

(∣∣∣ P1(λ,τ)
P0(λ,τ)

∣∣∣) = lim sup
λ→∞,Reλ≥0

(∣∣∣ a1b2−a2b1−b2λ
λ2−(a1+b3)λ+a1b3

∣∣∣) = 0 < 1;

(iv) Due to
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F(ω, τ) = |P0(iω, τ)|2 − |P1(iω, τ)|2 = ω4 + (a2
1 + b2

3 − b2
2)ω

2 + a2
1b2

3 − (a1b2 − a2b1)
2,

it is clearly true that F(ω, τ) admits at most a finite number of real zeros for each τ;
(v) This conclusion can be verified by the use of the implicit theorem directly.

Assume that λ = ±iω(ω > 0) are a pair of imaginary roots of Equation (11). Be-
cause P0(−iω, τ) = P0(iω, τ) and P1(−iω, τ) = P1(iω, τ), in line with the symmetry, we
just need to take into account λ = iω(ω > 0). Plug iω into Equation (11) and then separate
real and imaginary parts, we obtain{

− b2ω sin(ωτ) + (a1b2 − a2b1) cos(ωτ) = ω2 − a1b3,

(a1b2 − a2b1) sin(ωτ) + b2ω cos(ωτ) = −(a1 + b3)ω,
(12)

which gives 
sin(ωτ) =

−(ω2 − a1b3)b2ω − (a1 + b3)(a1b2 − a2b1)ω

(a1b2 − a2b1)2 + b2
2ω2

,

cos(ωτ) =
(ω2 − a1b3)(a1b2 − a2b1)− (a1 + b3)b2ω2

(a1b2 − a2b1)2 + b2
2ω2

.
(13)

On the other side of the coin, if Equation (11) admits a root λ = iω(ω > 0), then it
follows that

P0(iω, τ)

P1(iω, τ)
= − cos(ωτ) + i sin(ωτ).

Hence, we can rewrite (13) as

sin(ωτ) = Im
(

P0(iω, τ)

P1(iω, τ)

)
, cos(ωτ) = −Re

(
P0(iω, τ)

P1(iω, τ)

)
,

which means that ∣∣∣∣P0(iω, τ)

P1(iω, τ)

∣∣∣∣2 = 1.

Consequently, if ω(τ) satisfies (13), then it must satisfy the following equation:

F(ω, τ) = |P0(iω, τ)|2 − |P1(iω, τ)|2

= ω4 + (a2
1 + b2

3 − b2
2)ω

2 + a2
1b2

3 − (a1b2 − a2b1)
2 = 0.

(14)

Define I ⊆ R+0 as the set of τ such that ω(τ) is a positive root of Equation (14). If I
is empty, then there does not exist any stability switch and Hopf bifurcation value, which
has been discussed and proven in [33]. However, they did not consider the case that I is
nonempty any more. To fill up this gap, we extend the analysis in [33] by supposing that I
is nonempty. In addition, we can sum up the following proposition.

Proposition 1. If conditions (H1) and (H2): a1b3 − a1b2 + a2b1 < 0 hold, then Equation (14)
has a unique positive root ω+(τ), τ ∈ I, which means that I is nonempty.

Proof. By a series of calculations, we can obtain the roots of Equation (14) given by

ω2
+ =

1
2

{
∆

1
2 − (a2

1 + b2
3 − b2

2)
}

, ω2
− =

1
2

{
−∆

1
2 − (a2

1 + b2
3 − b2

2)
}

, (15)

where
∆ = (a2

1 + b2
3 − b2

2)
2 − 4

[
a2

1b2
3 − (a1b2 − a2b1)

2
]
.
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It is direct from (10) and y∗ > 1 that a2
1 + b2

3 − b2
2 > 0. Therefore, ω2

− < 0. Due to
a2

1b2
3 − (a1b2 − a2b1)

2 = (a1b3 + a1b2 − a2b1)(a1b3 − a1b2 + a2b1), we can further obtain
ω2
+ > 0 with conditions (H1) and (H2) holding. The proof is thus completed. □

For any τ ∈ I, the angle θ(τ) ∈ [0, 2π] can be defined as the solution of
sin θ(τ) =

−(ω2
+ − a1b3)b2ω+ − (a1 + b3)(a1b2 − a2b1)ω+

(a1b2 − a2b1)2 + b2
2ω2

+

,

cos θ(τ) =
(w2

+ − a1b3)(a1b2 − a2b1)− (a1 + b3)b2ω2
+

(a1b2 − a2b1)2 + b2
2ω2

+

.

(16)

Hence, for any τ ∈ I, we have ω+(τ)τ = θ(τ) + 2nπ, n ∈ N0. Then, we can construct the
maps τn : I −→ R+0, which is given by

τn(τ) :=
θ(τ) + 2nπ

ω+(τ)
, n ∈ N0, τ ∈ I,

where ω+(τ) > 0 is a root of Equation (14). We further define the functions I −→ R:

Sn(τ) := τ − τn(τ), τ ∈ I, n ∈ N0, (17)

which are continuous and differentiable in τ. Then, we can obtain the following geometric
criterion to certify the transversality condition and describe the direction of λ crossing the
imaginary axis.

Theorem 1. Assume that (H2) holds and that Sn(τ) admits one positive root τ∗ ∈ I for some
n ∈ N0, then at τ = τ∗, Equation (11) has a pair of simple conjugate pure imaginary roots
λ+(τ∗) = iω+(τ∗), λ−(τ∗) = −iω+(τ∗), which crosses the imaginary axis from left to right
when δ(τ∗) > 0 and crosses the imaginary axis from right to left when δ(τ∗) < 0, where δ(τ∗) is
the transversality condition denoted by

δ(τ∗) = sign
{

dReλ

dτ

∣∣∣∣
λ=iω+(τ∗)

}
= sign

{
dSn(τ)

dτ

∣∣∣∣
τ=τ∗

}
. (18)

Proof. Compared to the proof of Theorem 2.2 in [18], we just need to further prove the
transversality condition (18). From Theorem 2.2 in [18], we obtain that

δ(τ∗) = sign
{

dReλ

dτ

∣∣∣∣
λ=iω+(τ∗)

}
= sign

{
F′

ω(ω+(τ
∗), τ∗)

}
sign

{
dSn(τ)

dτ

∣∣∣∣
τ=τ∗

}
. (19)

It is direct from Equation (14) that

F′
ω(ω+(τ

∗), τ∗) = 4ω3
+ + 2ω+(a2

1 + b2
3 − b2

2) = 2ω+(2ω2
+ + a2

1 + b2
3 − b2

2).

On the other hand, from (15), we can obtain ω2
+ = 1

2

{
∆

1
2 − (a2

1 + b2
3 − b2

2)
}

, which

implies that 2ω2
+ + a2

1 + b2
3 − b2

2 = ∆
1
2 . Therefore, F′

ω(ω+(τ∗), τ∗) = 2ω+(τ∗)∆
1
2 > 0,

which is equivalent to sign{F′
ω(ω+(τ∗), τ∗)} = 1. The proof is completed. □

Clearly, Sn(τ) > Sn+1(τ) for all n ∈ N0, τ ∈ I. Hence, if S0(τ) < 0 on I, then
Sn(τ)(n ∈ N0) admits no zeros on I. To sum up, we show the following theorem with
respect to the stability switches of E∗ and the occurrence of Hopf bifurcations.

Theorem 2. Take into account model (8) with conditions (H1) and (H2) being satisfied.

(i) If S0(τ) admits no positive real root τ ∈ I, then when β < 1, E∗ is locally asymptotically
stable for any τ > 0 and when β > 1, E∗ is locally asymptotically stable for τ ≥ τmin.
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(ii) Assume that for some n ∈ N0, Sn(τ) admits the unique positive real root τn ∈ I and satisfies
dSn(τn)/dτ > 0. If β < 1, then E∗ is locally asymptotically stable for τ ∈ (0, τ0) and
unstable for τ ∈ (τ0, ∞). Moreover, the model (8) undergoes a Hopf bifurcation at E∗ when
τ = τn, n ∈ N0. If β > 1, then E∗ is locally asymptotically stable for τ ∈ (0, τ0) ∩ [τmin, ∞)
and unstable for τ ∈ (τ0, ∞) ∩ [τmin, ∞).

(iii) Assume that for some n ∈ N0, Sn(τ) has two positive real roots τ1
n , τ2

n ∈ I and satisfies
dSn(τ1

n)/dτ > 0, dSn(τ2
n)/dτ < 0. Clearly, τ1

0 < τ1
1 < τ1

2 < · · · < τ2
2 < τ2

1 < τ2
0 .

If β < 1, then E∗ is locally asymptotically stable for τ ∈ (0, τ1
0 ) ∪ (τ2

0 , ∞) and unstable for
τ ∈ (τ1

0 , τ2
0 ). In addition, a Hopf bifurcation occurs at E∗ when τ = τ1

n , τ2
n , n ∈ N0. If β > 1,

then E∗ is locally asymptotically stable for τ ∈
(
(0, τ1

0 ) ∪ (τ2
0 , ∞)

)
∩ [τmin, ∞) and unstable

for τ ∈ (τ1
0 , τ2

0 ) ∩ [τmin, ∞).
(iv) Assume that for some n ∈ N0, Sn(τ) has k positive real roots τk

n ∈ I and that ωk
n is the

corresponding root of (12), n ∈ N0, k ∈ N. Similar to the above process, we can probe into
the stability switches and Hopf bifurcation of E∗ by judging the value of β and the sign of
dSn(τk

n)/dτ.

3. Direction of Hopf Bifurcation and Stability of Bifurcated Periodic Solutions

In this section, we intend to apply the center manifold theorem and normal form
method put forward by Hassard et al. [36] to discuss the direction of Hopf bifurcation and
the stability of bifurcated periodic solutions of model (8) at τ = τk

n .
Let τ = τk

n + µ, µ ∈ R. Therefore, the model (8) experiences a Hopf bifurcation when
µ = 0. Let x1(t) = x(τt)− x∗, y1(t) = y(τt)− y∗ and replace x1(t), y1(t) with x(t), y(t),
respectively. Then model (8) can be converted to the functional differential equation in the
phase space C = C

(
[−1, 0],R2) as

U̇(t) = Lµ(Ut) + f (µ, Ut), (20)

where U(t) = [x(t), y(t)]T ∈ R2, Ut(θ) = U(t + θ) ∈ C, Lµ : C → R2 and f : R× C → R2

are given as follows.

Lµ(ϕ) =
(

τk
n + µ

)
[B1ϕ(0) + B2ϕ(−1)] and f (µ, ϕ) = (τk

n + µ)( f1, f2)
T ,

where ϕ(θ) = (ϕ1(θ), ϕ2(θ))
T ∈ C,

B1 =

(
a1 a2
0 b3

)
τ=τk

n

,

B2 =

(
0 0
b1 b2

)
τ=τk

n

,

f1 = k11ϕ2
1(0) + k12ϕ1(0)ϕ2(0),

f2 = k21ϕ2
2(0) + k22ϕ2

1(−1) + k23ϕ1(−1)ϕ2(−1),

with

k11 =
αβy∗

(1 + αx∗)3 − 1, k12 = − β

(1 + αx∗)2 ,

k21 = −ρ̃, k22 = −αγy∗e−δjτ
k
n

(1 + αx∗)3 , k23 =
γe−δjτ

k
n

(1 + αx∗)2 .

By utilizing the Riesz representation theorem, it is quite easy to know that there is a
2 × 2 matrix function η(θ, µ) filled with bounded variation (θ ∈ [−1, 0]), such that

Lµ(ϕ) =
∫ 0

−1
dη(θ, µ)ϕ(θ), ϕ ∈ C

(
[−1, 0],R2

)
.
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As a matter of fact, we can select

η(θ, µ) =
(

τk
n + µ

)
B1δ(θ)−

(
τk

n + µ
)

B2δ(θ + 1),

where δ represents the Dirac-delta function. For ϕ ∈ C1([−1, 0],R2), we define

A(µ)ϕ(θ) =


dϕ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1
dη(µ, s)ϕ(s), θ = 0,

and

R(µ)ϕ(θ) =

{
0, θ ∈ [−1, 0),

f (µ, ϕ), θ = 0.

Then Equation (20) is equal to

U̇t = A(µ)Ut + R(µ)Ut. (21)

For ψ ∈ C1
(
[0, 1],

(
R2)∗), the adjoint operator A∗ of A(0) can be denoted by

A∗ψ(s) =


− dψ(s)

ds
, s ∈ (0, 1],∫ 0

−1
dηT(t, 0)ψ(−t), s = 0.

(22)

For ϕ ∈ C1([−1, 0],R2), ψ ∈ C1
(
[0, 1],

(
R2)∗), a bilinear form is given by

⟨ψ(s), ϕ(θ)⟩ = ψ̄(0)ϕ(0)−
∫ 0

−1

∫ θ

ξ=0
ψ̄(ξ − θ)dη(θ)ϕ(ξ)dξ, (23)

where η(θ) = η(θ, 0).
Through the argument in the previous section, we see that ±iωk

nτk
n are the eigenvalues

of A(0). Hence, they are also the eigenvalues of A∗. Moreover, we hold the assumption
that q(θ) = (1, ρ)Teiθωk

nτk
n and q∗(s) = D(1, ρ∗)Teisωk

nτk
n are the eigenvectors of A(0) and A∗,

which correspond to eigenvalues iωk
nτk

n and −iωk
nτk

n , respectively.
A careful calculation gives

ρ =
iωk

n − a1

a2
and ρ∗ = − a1 + iωk

n

b1eiωk
nτk

n
.

Direct from Equation (23), we obtain

⟨q∗(s), q(θ)⟩ = q∗T
(0)q(0)−

∫ 0

−1

∫ θ

ξ=0
q∗T

(ξ − θ)dη(θ)q(ξ)dξ

= D̄
(
1, ρ∗

)( 1
ρ

)
−
∫ 0

−1

∫ θ

ξ=0
D̄
(
1, ρ∗

)
e−iωk

nτk
n(ξ−θ)dη(θ)

(
1
ρ

)
eiωk

nτk
n ξ dξ

= D̄
[

1 + ρ∗ρ −
∫ 0

−1

∫ θ

ξ=0

(
1, ρ∗

)
eiθωk

nτk
n dη(θ)

(
1
ρ

)
dξ

]
= D̄

[
1 + ρ∗ρ + τk

ne−iωk
nτk

n
(
1, ρ∗

)
B2

(
1
ρ

)]
= D̄

[
1 + ρ∗ρ + τk

ne−iωk
nτk

n (b1ρ∗ + b2ρρ∗)
]
.
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As a result, we define

D̄ =
[
1 + ρ∗ρ + τk

ne−iωk
nτk

n (b1ρ∗ + b2ρρ∗)
]−1

such that ⟨q∗(s), q(θ)⟩ = 1.
Furthermore, we can easily obtain ⟨q∗(s), q̄(θ)⟩ = 0 due to ⟨q∗, A(0)q̄⟩ = ⟨A∗(0)q∗, q̄⟩.
In what follows, we intend to apply the same nations as those in [36]. We plan to work

out the coordinates to describe the center manifold C0 at µ = 0. When µ = 0, the solution
of Equation (21) is denoted by Ut. Define

z(t) = ⟨q∗, Ut⟩, W(t, θ) = Ut(θ)− zq(θ)− z̄q̄(θ) = Ut(θ)− 2Re{z(t)q(θ)}. (24)

On the center manifold C0, it follows that

W(t, θ) = W(z(t), z̄(t), θ) ≜ W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ W30(θ)

z3

6
+ · · · , (25)

where z and z̄ refer to local coordinates for C0 in the direction of q∗ and q∗. If Ut is real, it is
obvious to recognize that W is real. In consequence, we only consider real solutions.

For the solution of Equation (21) Ut ∈ C0, because of µ = 0, we obtain

ż(t) =
〈
q∗, U̇t

〉
= ⟨q∗, A(0)Ut + R(0)Ut⟩

= ⟨A∗(0)q∗, Ut⟩+ q∗(0) f (0, Ut)

≜ iωk
nτk

nz + q∗(0) f0(z, z̄).

The equation above can be rewritten as

ż(t) = iωk
nτk

nz + g(z, z̄),

with

g(z, z̄) = q∗(0) f0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2

+ · · · . (26)

Being aware that Ut(θ) = (xt(θ), yt(θ))T = W(t, θ) + zq(θ) + z̄q̄(θ), q(θ) = (1, ρ)Teiθωk
nτk

n

and Equation (25), we have

xt(θ) = zeiθωk
nτk

n + z̄e−iθωk
nτk

n + W(1)
20 (θ)

z2

2
+ W(1)

11 (θ)zz̄ + W(1)
02 (θ)

z̄2

2
+ O(|(z, z̄)|3),

yt(θ) = ρzeiθωk
nτk

n + ρ̄z̄e−iθωk
nτk

n + W(2)
20 (θ)

z2

2
+ W(2)

11 (θ)zz̄ + W(2)
02 (θ)

z̄2

2
+ O(|(z, z̄)|3).

Consequently, from Equation (26), we obtain

g(z, z̄) =q∗(0) f0(z, z̄) = D̄
(
1, ρ∗

)
τk

n

(
k11x2

t (0) + k12xt(0)yt(0)
k21y2

t (0) + k22x2
t (−1) + k23xt(−1)yt(−1)

)
=D̄τk

n

[
k11

(
z + z̄ + W(1)

20 (0)
z2

2
+ W(1)

11 (0)zz̄ + W(1)
02 (0)

z̄2

2
+ O(|(z, z̄)|3)

)2

+ k12

(
z + z̄ + W(1)

20 (0)
z2

2
+ W(1)

11 (0)zz̄ + W(1)
02 (0)

z̄2

2
+ O(|(z, z̄)|3)

)
×
(

ρz + ρ̄z̄ + W(2)
20 (0)

z2

2
+ W(2)

11 (0)zz̄ + W(2)
02 (0)

z̄2

2
+ O(|(z, z̄)|3)

)]
+ D̄τk

nρ∗
[

k21

(
ρz + ρ̄z̄ + W(2)

20 (0)
z2

2
+ W(2)

11 (0)zz̄

+ W(2)
02 (0)

z̄2

2
+ O(|(z, z̄)|3)

)2
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+ k22

(
ze−iωk

nτk
n + z̄eiωk

nτk
n + W(1)

20 (−1)
z2

2
+ W(1)

11 (−1)zz̄

+ W(1)
02 (−1)

z̄2

2
+ O(|(z, z̄)|3)

)2

+ k23

(
ze−iωk

nτk
n + z̄eiωk

nτk
n + W(1)

20 (−1)
z2

2
+ W(1)

11 (−1)zz̄

+ W(1)
02 (−1)

z̄2

2
+ O(|(z, z̄)|3)

)
×
(

ρze−iωk
nτk

n + ρ̄z̄eiωk
nτk

n

+W(2)
20 (−1)

z2

2
+ W(2)

11 (−1)zz̄ + W(2)
02 (−1)

z̄2

2
+ O(|(z, z̄)|3)

)]
.

Comparing the above formula with Equation (26), we can obtain

g20 = 2D̄τk
n(k11 + ρk12) + 2D̄τk

nρ∗(ρ2k21 + e−2iωk
nτk

n k22 + ρe−2iωk
nτk

n k23),

g11 = D̄τk
n [2k11 + (ρ̄ + ρ)k12] + D̄τk

nρ∗[2ρρ̄k21 + 2k22 + (ρ̄ + ρ)k23],

g02 = 2D̄τk
n(k11 + ρ̄k12) + 2D̄τk

nρ∗(ρ̄2k21 + e2iωk
nτk

n k22 + ρ̄e2iωk
nτk

n k23),

g21 = D̄τk
n

[(
4W(1)

11 (0) + 2W(1)
20 (0)

)
k11 +

(
2W(2)

11 (0) + W(2)
20 (0) + ρ̄W(1)

20 (0) + 2ρW(1)
11 (0)

)
k12

]
+ D̄τk

nρ∗
[(

4ρW(2)
11 (0) + 2ρ̄W(2)

20 (0)
)

k21 +
(

4W(1)
11 (−1)e−iωk

nτk
n + 2W(1)

20 (−1)eiωk
nτk

n
)

k22

+
(

2W(2)
11 (−1)e−iωk

nτk
n + W(2)

20 (−1)eiωk
nτk

n + ρ̄W(1)
20 (−1)eiωk

nτk
n + 2ρW(1)

11 (−1)e−iωk
nτk

n
)

k23

]
.

We further require to derive the expression of W20(θ) and W11(θ) on account of their
appearance in g21.

From Equations (21) and (24), we gain

Ẇ = U̇t − żq − ˙̄zq̄

=

{
AW − 2Re

{
q∗(0) f0q(θ)

}
, θ ∈ [−1, 0),

AW − 2Re
{

q∗(0) f0q(θ)
}
+ f0, θ = 0,

≜ AW + H(z, z̄, θ),

(27)

where

H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ · · · . (28)

Notice that Ẇ = Wz ż + Wz̄ ˙̄z = AW + H(z, z̄, θ), that is to say

[W20(θ)z + W11(θ)z̄]
[
iωk

nτk
nz + g(z, z̄)

]
+ [W11(θ)z + W02(θ)z̄]

[
−iωk

nτk
n z̄ + ḡ(z, z̄)

]
+ · · ·

= AW20(θ)
z2

2
+ AW11(θ)zz̄ + AW02(θ)

z̄2

2
+ · · ·+ H20(θ)

z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ · · · .

Paying attention to the corresponding coefficients, we can obtain

(A − 2iωk
nτk

n)W20(θ) = −H20(θ),

AW11(θ) = −H11(θ),

(A + 2iωk
nτk

n)W20(θ) = −H02(θ),

· · ·

(29)

From (27), we observe that for θ ∈ [−1, 0),

H(z, z̄, θ) = −q∗(0) f0q(θ)− q∗(0) f̄0q̄(θ) = −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ). (30)
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Comparing the coefficients of the above equation with those in Equation (28), we have

H20(θ) = −g20q(θ)− ḡ02q̄(θ), H11(θ) = −g11q(θ)− ḡ11q̄(θ). (31)

It is direct from (29), (31) and the definition of A that{
Ẇ20(θ) = 2iωk

nτk
nW20(θ) + g20q(θ) + ḡ02q̄(θ),

Ẇ11(θ) = g11q(θ) + ḡ11q̄(θ),

which indicates that
W20(θ) =

ig20q(0)
ωk

nτk
n

eiθωk
nτk

n +
iḡ02q̄(0)
3ωk

nτk
n

e−iθωk
nτk

n + E1e2iθωk
nτk

n ,

W11(θ) = − ig11q(0)
ωk

nτk
n

eiθωk
nτk

n +
iḡ11q̄(0)

ωk
nτk

n
e−iθωk

nτk
n + E2,

(32)

where E1 =
(

E(1)
1 , E(2)

1

)
∈ R2, E2 =

(
E(1)

2 , E(2)
2

)
∈ R2. In addition, they are all constant

vectors. Next, we shall be devoted to finding appropriate E1 and E2.
It is obvious that when θ = 0, H(z, z̄, 0) = −2Re

{
q∗(0) f0q(0)

}
+ f0. So it follows that

H20(0) = −g20q(0)− ḡ02q̄(0) + 2τk
n

(
k11 + ρk12

ρ2k21 + e−2iωk
nτk

n k22 + ρe−2iωk
nτk

n k23

)
, (33)

H11(0) = −g11q(0)− ḡ11q̄(0) + τk
n

(
2k11 + (ρ̄ + ρ)k12

2ρρ̄k21 + 2k22 + (ρ̄ + ρ)k23

)
. (34)

Moreover, according to the expression of A and (29), we obtain∫ 0

−1
dη(θ)W20(θ) = 2iωk

nτk
nW20(0)− H20(0), (35)

and ∫ 0

−1
dη(θ)W11(θ) = −H11(0). (36)

Now, substituting the first equation of (32) and (33) into (35) and observing that(
iωk

nτk
n I −

∫ 0

−1
eiθωk

nτk
n dη(θ)

)
q(0) = 0,

and (
−iωk

nτk
n I −

∫ 0

−1
e−iθωk

nτk
n dη(θ)

)
q̄(0) = 0,

then we obtain

(
2iωk

nτk
n I −

∫ 0

−1
e2iθωk

nτk
n dη(θ)

)
E1 = 2τk

n

(
k11 + ρk12

ρ2k21 + e−2iωk
nτk

n k22 + ρe−2iωk
nτk

n k23

)
,

which results in(
2iωk

n − a1 −a2

−b1e−2iωk
nτk

n 2iωk
n − b3 − b2e−2iωk

nτk
n

)
E1 = 2

(
k11 + ρk12

ρ2k21 + e−2iωk
nτk

n k22 + ρe−2iωk
nτk

n k23

)
,
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that is

E1 = 2

(
2iωk

n − a1 −a2

−b1e−2iωk
nτk

n 2iωk
n − b3 − b2e−2iωk

nτk
n

)−1(
k11 + ρk12

ρ2k21 + e−2iωk
nτk

n k22 + ρe−2iωk
nτk

n k23

)
. (37)

Similarly, substituting the second equation of (32) and (34) into (35), we receive

E2 =

(
−a1 −a2
−b1 −b2 − b3

)−1( 2k11 + (ρ̄ + ρ)k12
2ρρ̄k21 + 2k22 + (ρ̄ + ρ)k23

)
. (38)

Thus, we can determine g21 from (32), (37) and (38). Furthermore, we are able to
calculate such values:

c1(0) =
i

2ωk
nτk

n

(
g20g11 − 2|g11|2 −

|g02|2

3

)
+

g21

2
,

µ2 =− Re{c1(0)}
Re
{

λ′(τk
n
)} ,

β2 =2Re{c1(0)},

T2 =−
Im{c1(0)}+ µ2Im

{
λ′
(

τk
n

)}
ωk

nτk
n

,

(39)

which describe the nature of bifurcated periodic solutions in the center manifold at the
threshold value τ = τk

n . Therewith, we can present the following theorem.

Theorem 3. The following statements are all correct.

(i) The direction of the Hopf bifurcation is determined by the sign of µ2. If µ2 > 0(< 0), the Hopf
bifurcation is supercritical (subcritical).

(ii) The stability of the bifurcated periodic solutions is decided by the sign of β2. If β2 > 0(< 0),
the bifurcated periodic solutions are unstable (stable).

(iii) The period of the bifurcated periodic solutions is decided by the sign of T2. The period increases
(decreases) if T2 > 0(< 0).

4. Numerical Simulation

In this section, we provide a comprehensive analysis of how the maturation delay in-
fluences ecological dynamics of model (8) by giving some numerical examples. In addition,
we will provide some biological interpretations.

In the first place, in accordance with the values of parameters in [33] and conditions
given in the theoretical part of our paper, we choose

α = 2.78, β = 0.6, ρ̃ = 0.04, γ = 0.7, δj = 0.2, (40)

with initial conditions (0.1, 0.1).
When τ = 0, there exists one and only one positive equilibrium E∗(0.0532, 1.8115).

Moreover, E∗ is locally asymptotically stable based on Lemma 2, just as shown in Figure 1.
Biologically, when it takes no time for immature predators to mature, two populations can
coexist in a stable state for a long time.

We draw the image of the function Sn(τ)(n = 0, 1) versus τ with the parameters
satisfying (40) by using Matlab, just as illustrated in Figure 2. Figure 2a manifests that
S0(τ) has two zeros, one is τ1

0 = 0.0556, the other is τ2
0 = 4.3889, and dSn(τ1

0 )/dτ > 0,
dSn(τ2

0 )/dτ < 0. Moreover, we find that S1(τ) < 0 for all τ ∈ I from Figure 2b. Because
Sn(τ) > Sn+1(τ) for all n ∈ N0, τ ∈ I. Hence, Sn(τ)(n = 1, 2, · · · ) admits no zeros on I.
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Figure 1. Dynamic behavior of the model (8) with τ = 0, α = 2.78, β = 0.6, ρ̃ = 0.04 and
γ = 0.7. In this case, the interior equilibrium E∗ is locally asymptotically stable. (a) Time series plot,
(b) phase portrait.

(a)

-6 -4 -2 0 2 4

τ

-54

-52

-50

-48

-46

-44

S
1
(τ
)

(b)

Figure 2. Graphs of Sn(τ) in terms of maturation delay τ with the values of parameters given in (40).
(a) S0(τ), it has two zeros, named τ1

0 and τ2
0 , (b) S1(τ), it has no zeros on I.

It is direct from Figure 2 and Theorem 2 that E∗ is locally asymptotically stable for
τ ∈ (0, 0.0556) ∪ (4.3889, ∞) and unstable for τ ∈ (0.0556, 4.3889). By considering the
maturation delay as the bifurcation parameter, we further plot the bifurcation diagrams
of the model (8) to demonstrate the switching process of E∗, just as illustrated in Figure 3.
From a biological perspective, if the value of the maturation delay belongs to the interval
(0, 0.0556), both populations can survive and tend to a stable state. Once the matura-
tion delay passes through the threshold value τ1

0 = 0.0556, the positive equilibrium E∗

loses it stability and a Hopf bifurcation occurs, which also means that both individuals
can still exist but their densities fluctuate periodically with time. When the maturation
delay exceeds the threshold value τ2

0 = 4.3889, the positive equilibrium E∗ regains its
stability, that is to say, both populations can coexist for a long time. We choose some τ
with different values for simulations which are displayed in Figure 4. When τ = 0.04,
4.7 ∈ (0, 0.0556) ∪ (4.3889, ∞), E∗ is locally asymptotically stable, just as illustrated in
Figure 4a,f. When τ = 0.09, 0.1, 2, 4.2 ∈ (0.0556, 4.3889), E∗ is unstable, just as illustrated in
Figure 4b–e. These simulations indicate that stability switches occur as τ moves from 0.04
to 2 to 4.7.
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Figure 3. Bifurcation diagrams of the model (8) by considering τ as the bifurcation parameter. (a) x(t),
(b) y(t).
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Figure 4. Dynamics of the model (8) with different values of τ. (a) τ = 0.04, (b) τ = 0.09, (c) τ = 0.1,
(d) τ = 2, (e) τ = 4.2, (f) τ = 4.7.
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5. Conclusions

In this paper, an existing delayed predator–prey model with maturation delay, a stage
structure for generalist predators and a Holling type-II functional response was investigated.
We first obtained the conditions for the existence of the stability switches of the positive
equilibrium and Hopf bifurcations caused by the increase in the value of the maturation
delay for model (8) by utilizing the geometric criterion proposed by Beretta and Kuang [18].
After that, we discussed the properties of Hopf bifurcation by dint of the normal form
method and center manifold theory. At last, we confirmed our theoretical findings by
numerical simulations. Notice that, the authors in [29] considered a predator–prey model
with a Holling-II type functional response and a prey refuge and then investigated the Hopf
bifurcation of the model by seeing some key parameters as bifurcation parameters, such as
the refuge parameter and death rate of the predator. Roy et al. [33] further introduced the
maturation delay and generalist predator into the modeling framework and then proposed
model (7). Based on model (7), we extended the research carried out in [33]. We further
studied the stability-switching properties of the positive equilibrium and Hopf bifurcation
by considering the maturation delay as a bifurcation parameter, which was not conducted
in [33]. Moreover, the authors in [29,33] all applied the traditional theoretical method
to study the bifurcation. Compared to the method in [29,33], we utilized a geometric
method, which is novel and practical. The results we obtained in this article are very
important in respect of ecology and are essential for enhancing the predictive power of the
mathematical model and have significant implications for understanding and managing
predator–prey interactions in real-world ecosystems. They indicate that the delay lengths
affect the stability of the model. As a result, we can legitimately control the value of the
maturation delay to make E∗ stable, which is beneficial to the coexistence of populations,
beneficial to biodiversity protection.

Some interesting topics also deserve further considerations. For example, one can
introduce additional biological delays in model (7), such as gestation delay, because the
predator spends time in reproducing after consuming the prey and then try to study the
stability switching properties of the positive equilibrium on the two-delay plane. If we
consider other types of functional responses, what changes may take place? Moreover,
a model incorporating stochastic elements to mimic random environmental fluctuations
could be more realistic. Conducting a thorough sensitivity analysis of the key parameters
could be conducive to identify which factors most significantly affect the stability of the
model. Performing robustness checks would be helpful to ensure that the conclusions are
not sensitive to specific starting points or configurations. Hence, considering a model with
the above factors and further carrying out some analysis and checks are necessary. All of
these are presented here for further research.
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