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Abstract

:

We compute the number of symmetric r-colorings and the number of equivalence classes of symmetric r-colorings of the quaternion group.
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The symmetry of a group G with respect to an element g∈G is the mapping


σg:G∋x↦gx−1g∈G.








This is an old notion, which can be found in the book [1]. And it is a very natural one, since


σg=λg∘ι∘λg−1=ρg∘ι∘ρg−1,








where


λg:G∋x↦gx∈G,ρg:G∋x↦xg∈G,andι:G∋x↦x−1∈G








are the left translation, the right translation, and the inversion, respectively. Indeed, it follows from λg(x)=gx that λg−1(gx)=x, so λg−1(x)=g−1x. Consequently, λg−1=λg−1. Similarly, ρg−1=ρg−1. Then


λg∘ι∘λg−1(x)=λg∘ι∘λg−1(x)=g(g−1x)−1=gx−1gandρg∘ι∘ρg−1(x)=ρg∘ι∘ρg−1(x)=(xg−1)−1=gx−1g.











Various aspects of symmetries on groups had been studied in [2].



Now let G be a finite group and let r∈N. An r-coloring of G is any mapping χ:G→{1,…,r}. A coloring χ of G is symmetric if there is g∈G such that χ(gx−1g)=χ(x) for all x∈G. That is, a coloring is symmetric if it is invariant under some symmetry. Define the equivalence relation ∼ on the set of all r-colorings of G by


χ∼φifandonlyifthereisg∈Gsuchthatχ(xg−1)=φ(x)forallx∈G.








That is, colorings are equivalent if one of them can be obtain from the other by a right translation.



Note that in the case of a finite cyclic group Zn these notions have a very simple geometric illustration. Identifying Zn with the vertices of a regular n-gon we obtain that a coloring is symmetric if it is invariant with respect to some mirror symmetry with an axis crossing the center of the polygon and one of its vertices.


[image: Symmetry 02 00069 i001]

Colorings are equivalent if one of them can be obtained from the other by rotating about the center of the polygon.


[image: Symmetry 02 00069 i002]

Obviously, the number of all r-colorings of G is r|G|. Applying Burnside’s Lemma [3, I, §3] shows that the number of equivalence classes of r-colorings of G is equal to


1|G|∑g∈Gr|G:⟨g⟩|,








where ⟨g⟩ is the subgroup generated by g. However, counting symmetric r-colorings and equivalence classes of symmetric r-colorings of G turned out to be quite a difficult question.



Let Sr(G) denote the set of symmetric r-colorings of G. In [4] it was shown that if G is Abelian, then


|Sr(G)|=∑X≤G∑Y≤Xμ(Y,X)|G/Y||B(G/Y)|r|G/X|+|B(G/X)|2and



(1)






|Sr(G)/∼|=∑X≤G∑Y≤Xμ(Y,X)|B(G/Y)|r|G/X|+|B(G/X)|2.



(2)




Here, X runs over subgroups of G, Y over subgroups of X, μ(Y,X) is the Möbius function of the lattice of subgroups of G, and B(G)={x∈G:x2=e}.



Given a finite partially ordered set, the Möbius function is defined as follows:


μ(a,b)=1ifa=b−∑a<z≤bμ(z,b)ifa<b0otherwise.








See [3, IV] for more information about the Möbius function.



In the case of Zn formulas 1, 2 were reduced to the following elementary ones [4]:



If n is odd then


|Sr(Zn)/∼|=rn+12and|Sr(Zn)|=∑d|nd∏p|nd(1−p)rd+12.








If n=2lm, where l≥1 and m is odd, then


|Sr(Zn)/∼|=rn2+1+rm+122and|Sr(Zn)|=∑d|n2d∏p|n2d(1−p)rd+1.








As usual, p denotes a prime number.



Recently, an approach for computing |Sr(G)| and |Sr(G)/∼| in the case of an arbitrary finite group G has been found [5]. The approach is based on constructing the partially ordered set of so called optimal partitions of G.



Given a partition π of G, the stabilizer and the center of π are defined by


St(π)={g∈G:foreveryx∈G,xandxg−1belongtothesamecellofπ}andZ(π)={g∈G:foreveryx∈G,xandgx−1gbelongtothesamecellofπ}.








St(π) is a subgroup of G and Z(π) is a union of left cosets of G modulo St(π). Furthermore, if e∈Z(π), then Z(π) is also a union of right cosets of G modulo St(π) and for every a∈Z(π), ⟨a⟩⊆Z(π). We say that a partition π of G is optimal if e∈Z(π) and for every partition π′ of G with St(π′)=St(π) and Z(π′)=Z(π), one has π≤π′. The latter means that every cell of π is contained in some cell of π′, or equivalently, the equivalence corresponding to π is contained in that of π′. The partially ordered set of optimal partitions of G can be naturally identified with the partially ordered set of pairs (A,B) of subsets of G such that A=St(π) and B=Z(π) for some partition π of G with e∈Z(π). For every partition π, we write |π| to denote the number of cells of π.



In [5] it was shown that for every finite group G and r∈N,


|Sr(G)|=|G|∑x∈P∑y≤xμ(y,x)|Z(y)|r|x|and



(3)






|Sr(G)/∼|=∑x∈P∑y≤xμ(y,x)|St(y)||Z(y)|r|x|



(4)




where P is the partially ordered set of optimal partitions of G.



The partially ordered set of optimal partitions π of G together with parameters |St(π)|, |Z(π)| and |π| can be constructed by starting with the finest optimal partition {{x,x−1}:x∈G} and using the following fact:



Let π be an optimal partition of G and let A⊆G. Let π1 be the finest partition of G such that π≤π1 and A⊆St(π1), and let π2 be the finest partition of G such that π≤π2 and A⊆Z(π2). Then the partitions π1 and π2 are also optimal.



In this note we compute explicitly the numbers |Sr(Q)| and |Sr(Q)/∼| where Q={±1,±i,±j,±k} is the quaternion group.



First, we list all optimal partitions π of Q together with parameters |St(π)|, |Z(π)| and |π|.



The finest partition

	
π: {1}, {−1}, {±i}, {±j}, {±k}.



	
St(π)={1}, Z(π)={±1}.



	
|St(π)|=1, |Z(π)|=2, |π|=5.





Then one partition

	
π: {±1}, {±i}, {±j}, {±k}.



	
St(π)={±1}, Z(π)=Q.



	
|St(π)|=2, |Z(π)|=8, |π|=4.





Three partitions of the form

	
π: {±1,±i}, {±j,±k}.



	
St(π)={±1,±i}, Z(π)=Q.



	
|St(π)|=4, |Z(π)|=8, |π|=2.





And the coarsest partition

	
π: {Q}.



	
|St(π)|=8, |Z(π)|=8, |π|=1.








Next, we draw the partially ordered set P of optimal partitions together with parameters |St(π)|, |Z(π)|, |π|. The picture below shows also the values of the Möbius function of the form μ(a,1). [image: Symmetry 02 00069 i003] Finally, by formulas 3, 4, we obtain that


|Sr(Q)|=|Q|∑x∈P∑y≤xμ(y,x)|Z(y)|r|x|=8(r512+r4(18−12)+3r2(18−18)+r(18−38+28))=4r5−3r4,










|Sr(Q)/∼|=∑x∈P∑y≤xμ(y,x)|St(y)||Z(y)|r|x|=r512+r4(14−12)+3r2(12−14)+r(1−32+12)=12r5−14r4+34r2.











Thus, we have showed that

Proposition. 

For every r∈N, |Sr(Q)|=4r5−3r4 and |Sr(Q)/∼|=12r5−14r4+34r2.







In particular, |S2(Q)|=80 and |S2(Q)/∼|=15, while the number all 2-colorings of Q is 28=256 and the number of equivalence classes of all 2-colorings of Q is


1|Q|∑g∈Q2|Q/⟨g⟩|=18(28+24+622)=37.











We conclude this note with the list of all symmetric 2-colorings of Q, up to equivalence.


[image: Symmetry 02 00069 i004]
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