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1. Introduction

An interesting problem in a two-way contingency table is to investigate whether there are symmetric
patterns in the data: Cell probabilities on one side of the main diagonal are a mirror image of those on the
other side. This problem was first discussed by Bowker [1] who gave the maximum likelihood estimator
as well as a large sample chi-square type test for the null hypothesis of symmetry. The minimum
discrimination information estimator was proposed in [2] and the minimum chi-squared estimator in [3].
In [4–7] new families of test statistics, based on ϕ-divergence measures, were introduced. These families
contain as a particular case the test statistic given by [1] as well as the likelihood ratio test.
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Let X and Y denote two ordinal response variables, X and Y having I levels. When we classify
subjects on both variables, there are I2 possible combinations of classifications. The responses (X, Y )

of a subject randomly chosen from some population have a probability distribution.
Let pij = Pr(X = i, Y = j), with pij > 0, i, j = 1, ..., I . We display this distribution in a
rectangular table having I rows for the categories of X and I columns for the categories of Y . Consider
a random sample of size n on (X,Y ) and we denote by nij the observed frequency in the (i, j)th cell for
(i, j) ∈ I × I with

∑I
i=1

∑I
j=1 nij = n. The classical problem of testing for symmetry is given by

H0 : pij = pji, (i, j) ∈ I × I (1)

versus
H∗

1 : pij ̸= pji, for at least one (i, j) pair (2)

This problem was considered for the first time by Bowker [1] using the Pearson test statistic

X2 =
I∑
i=1

I∑
j=1
i<j

(nij − nji)
2

nij + nji
(3)

for which established that X2 ∼ χ2
k for large n, where k = 1

2
I(I − 1).

In some real problems (i.e., medicine, psychology, sociology, etc.) the categorical response variables
(X,Y ) represent the measure after or before a treatment. In such situations our interest is to determine
the treatment effect, i.e., if X ≥ Y (we assume that X represents the measure after the treatment and Y
before the treatment). In the following we understand that X is preferred or indifferent to Y , according
to joint likelihood ratio ordering, if and only if (iff) pij ≥ pji ∀i ≥ j. In this situation the alternative
hypothesis is

H1 : pij ≥ pji, for all i ≥ j (4)

This problem was first considered by El Barmi and Kochar [8], who presented the likelihood ratio test
for the problem of testing

H0 : pij = pji against H1 : pij ≥ pji, ∀i ≥ j

and considered the application of it to a real life problem: They tested if the vision of both the eyes,
for 7477 women, is the same against the alternative that the right eye has better vision than the left eye.
In [5] these results were extended using ϕ-divergence measures.

In this paper we present an overview on contingency tables with symmetry structure on the basis of
divergence measures. We pay especial attention to the family of ϕ-divergence test statistics for testing
H0 versus H∗

1 , H0 against H1 and also for testing H1 against the alternative H2 of no restrictions over
pij’s, i.e.,

H1 : pij ≥ pji, ∀i ≥ j, against H2 : pij ̸≥ pji, ∀i ≥ j (5)

It is interesting to observe that not only we consider ϕ-divergence test statistics but also we consider
minimum ϕ-divergence estimators in order to estimate of the parameters of the model.
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2. Phi-divergences Measures

We consider the set

Θ = {θ : θ = (pij; 1 ≤ i, j ≤ I, (i, j) ̸= (I, I)) with pij > 0 and
∑I

i=1

∑I
j=1,(i,j)̸=(I,I)pij < 1} (6)

and we denote p(θ) = p = (p11, ..., pII)
T , pII = 1−

∑I
i=1

∑I
j=1,(i,j)̸=(I,I)pij or equivalently by the I×I

matrix p(θ) = [pij].
The ϕ-divergence between two probability distributions p = [pij], q = [qij] was introduced

independently by [9] and [10]. It is defined as follows:

Dϕ(p, q) =
I∑
i=1

I∑
j=1

qijϕ

(
pij
qij

)
, ϕ ∈ Φ∗ (7)

where Φ∗ is the class of all convex functions ϕ : [0,∞) → R ∪ {∞}, such that ϕ (1) = 0, ϕ′′ (1) > 0;
and we define 0ϕ (0/0) = 0 and 0ϕ (p/0) = limu→∞ ϕ (u) /u. For every ϕ ∈ Φ∗ that is differentiable
at x = 1, the function ψ given by

ψ (x) = ϕ (x)− ϕ′ (1) (x− 1)

also belongs to Φ∗. Then we have Dψ(p, q) = Dϕ(p, q), and ψ has the additional property
that ψ′ (1) = 0. Because the two divergence measures are equivalent, we can consider the set Φ∗ to
be equivalent to the set

Φ ≡ Φ∗ ∩ {ϕ : ϕ′ (1) = 0}

An important family of ϕ-divergences in statistical problems, is the power divergence family

ϕ(λ) (x) =
xλ+1 − x+ λ (1− x)

λ (λ+ 1)
; λ ̸= 0, λ ̸= −1 (8)

ϕ(0) (x) = lim
λ→0

ϕ(λ) (x) = x ln x− x+ 1

ϕ(−1) (x) = lim
λ→−1

ϕ(λ) (x) = − ln x+ x− 1

which was introduced and studied by [11]. Notice that ϕ(λ) ∈ Φ. In the following we shall
denote the power-divergence measures by Dϕ(λ)(p, q), λ ∈ R. For more details about ϕ-divergence
measures see [12].

3. Hypothesis Testing: H0 versus H∗
1

We define

B = {(a11, ..., a1I , a22,..., a2I , ..., aI−1I−1, aI−1I)
T ∈ R

I(I+1)
2

−1
+ :

∑
i≤jaij < 1, i, j = 1, .., I}

the hypothesis (1) can be written as

H0 : θ = g(β), β= (p11, ..., p1I , p22, ..., p2I , ..., pI−1I−1, pI−1I)
T∈B (9)
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where the function β is defined by β = (gij; i, j = 1, ..., I, (i, j) ̸= (I, I)) with

gij(β) =

{
pij, i ≤ j

pji, i > j
, i, j = 1, ..., I − 1

and

gIj(β) = pjI , j = 1, ..., I − 1

giI(β) = piI , i = 1, ..., I − 1

Note that p(g(β)) = (gij(β); i, j = 1, ..., I)T , where

gII(β) = 1−
∑I

i,j=1,(i,j) ̸=(I,I)gij(β)

The maximum likelihood estimator (MLE) of β can be defined as

β̂ = argmin
β∈B

DKL(p̂,p(g(β))) a.s.

where DKL(p̂,p(g(β))) is the Kullback–Leibler divergence measure (see [13,14]) defined by

DKL(p̂,p(g(β))) =
I∑
i=1

I∑
j=1

p̂ij log
p̂ij

gij(β)

We denote by θ̂ = g(θ̂) and by p(θ̂) = (p11(θ̂), ..., pII(θ̂))
T . It is well known that pij(θ̂) =

p̂ij+p̂ji
2

,

i = 1, ..., I, j = 1, ..., I .Using the ideas developed in [15], we can consider the minimum ϕ2-divergence
estimator (Mϕ2E) replacing the Kullback–Leibler divergence by a ϕ2-divergence measure in the
following way

θ̂
ϕ2

= argmin
β∈B

Dϕ2((p̂,p(g(β)))); ϕ2 ∈ Φ∗ (10)

where

Dϕ2(p̂,p(g(β))) =
I∑
i=1

I∑
j=1

gij(β)ϕ2

(
p̂ij

gij(β)

)
We denote θ̂

S,ϕ2
= g(β̂

ϕ2
) and we have (see [7,16])

√
n(g(β̂

ϕ2
)−β)

L−→
n→∞

N
(
0, ISF (β)

−1
)

where
ISF (θ) = Σθ −ΣθB(θ)T (B(θ)ΣT

θB(θ))−1B(θ)Σθ

being Σθ = diag(θ)−θθT and B(θ) =
(
∂hij(θ)

∂θij

)
I(I−1)

2
×(I2−1)

. The functions hij are given by

hij(θ) = pij − pji, i < j, i = 1, ..., I − 1, j = 1, ..., I

It is not difficult to establish that the matrix ISF (θ) can be written as

ISF (θ) = MT
βIF (β)

−1Mβ
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where IF (β) is the Fisher information matrix corresponding to β ∈ B.
If we consider the family of power divergences we get the minimum power-divergence estimator,

θ̂
S,λ

of θ, under the hypothesis of symmetry, whose expression is given by

θ̂S,λij =

(
p̂λ+1
ij + p̂λ+1

ji

2

) 1
λ+1

I∑
i=1

I∑
j=1

(
p̂λ+1
ij + p̂λ+1

ji

2

) 1
λ+1

, i, j = 1, ..., I (11)

For λ = 0 we get

θ̂S,0ij =
p̂ij + p̂ji

2
, i, j = 1, ..., I

hence, we obtain the maximum likelihood estimator for symmetry introduced by [1]. For λ = −1, we
obtain as a limit case

θ̂S,−1
ij =

(p̂ij p̂ji)
1
2

I∑
i=1

I∑
j=1

(p̂ij p̂ji)
1
2

, i, j = 1, ..., I

i.e., the minimum discrimination estimator for symmetry introduced and studied in [2]. For λ = 1 we
get the minimum chi-squared estimator for symmetry introduced in [3],

θ̂S,1ij =

(
p̂2ij + p̂2ji

2

)1/2

I∑
i=1

I∑
j=1

(
p̂2ij + p̂2ji

2

)1/2

We denote θ̂
ϕ2

= g(β̂
ϕ2
) and by

p(θ̂
ϕ2
) = (p11(θ̂

ϕ2
), ...., pII(θ̂

ϕ2
))T (12)

the (Mϕ2E) of the probability vector that characterizes the symmetry model. Based on p(θ̂
ϕ2
) it is

possible to define a new family of statistics for testing (1) that contains as a particular case Pearson test
statistic as well as likelihood ratio test. This family of statistics is given by

T ϕ1n (θ̂
ϕ2
) ≡ 2n

ϕ′′
1 (1)

Dϕ1(p̂,p(θ̂
ϕ2
)) =

2n

ϕ′′
1 (1)

I∑
i=1

I∑
j=1

pij(θ̂
ϕ2
)ϕ1

(
p̂ij

pij(θ̂
ϕ2
)

)
(13)

We can observe that the family (13) involves two functions ϕ1 and ϕ2, both belonging to Φ∗.
We use the function ϕ2 to obtain the (Mϕ2E) and ϕ1 to obtain the family of statistics. If we consider
ϕ1(x) =

1
2
(x− 1)2 and ϕ2(x) = x log x−x+1 we get Pearson test statistic whose expression was given

in (3) and for ϕ1(x) = ϕ2(x) = x log x− x+ 1 we get the likelihood ratio test given by

G2 = 2
I∑
i=1

I∑
j=1
i<j

nij log
2nij

nji + nij
(14)

In the following theorem the asymptotic distribution of T ϕ1n (θ̂
ϕ2
) is obtained.
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Theorem 1 The asymptotic distribution of T ϕ1n (θ̂
ϕ2
) is chi-squared with m = I(I − 1)/2 degrees of

freedom.

Proof. See Chapter 8 in [12].
Thus, for a given significance level α ∈ (0, 1), the critical value of T ϕ1n (θ̂

ϕ2
) may be approximated

by χ2
m,α, the upper 100α% of the chi-square distribution with m degrees of freedom, i.e., reject the

hypothesis of symmetry iff
T ϕ1n (θ̂

ϕ2
) ≥ χ2

m,α (15)

Now we are going to analyze the power of the test. Let q = (q11, ..., qII)
T be a point at the alternative

hypothesis, i.e., there exist at least two indexes i and j for which qij ̸= qji. We denote by θϕ2a the point
on Θ verifying

θϕ2a = argmin
θ∈Θ0

Dϕ2(q,p(θ))

where Θ0 is given by
Θ0 = {θ ∈ Θ : θ = g(β) for some β ∈ B}

It is clear that
θϕ2a = (fij(q); i, j = 1, ..., I, (i, j) ̸= (I, I))T

and
p(θ̃

ϕ2

a ) = (fij(q); i, j = 1, ..., I, )T ≡ f(q)

with

fII(q) = 1−
I∑
i=1

I∑
j=1

(i,j)̸=(I,I)

fij(q)

The notation fij(q) indicates that the elements of the vector θϕ2a depend on q. For instance, for the
power-divergence family ϕ(λ) (x) we have

fij(q) =

(
qλ+1
ij + qλ+1

ji

) 1
λ+1

I∑
i=1

I∑
j=1

(
qλ+1
ij + qλ+1

ji

) 1
λ+1

, i, j = 1, ..., I

We also denote
θ̂
S,ϕ2

= (pS,ϕ2ij ; i, j = 1, ..., I, (i, j) ̸= (I, I))T

and then
p(θ̂

S,ϕ2
) = (pS,ϕ2ij ; i, j = 1, ..., I)T ≡ f(p̂)

where f = (fij; i, j = 1, ..., I)T . If the alternative q is true we have that p̂ tends to q and p(θ̂
S,ϕ2

) to
p(θϕ2a ) in probability.

If we define the function
Ψϕ1(q) = Dϕ1(q,f(q))

we have

Ψϕ1 (p̂) = Ψϕ1(q) +
I∑
i=1

J∑
j=1

∂Dϕ1(q,f(q))

∂qij
(p̂ij − qij) + o (∥p̂− q∥)
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Then the random variables √
n (Dϕ1(p̂,f(p̂))−Dϕ1(q,f(q)))

and
√
n

I∑
i=1

J∑
j=1

∂Dϕ1(q,g(q))

∂qij
(p̂ij − qij)

have the same asymptotic distribution. If we define

lij =
∂Dϕ1(q,f(q))

∂qij
(16)

and l = (lij; i, j = 1, ..., I)T , we have
√
n(Dϕ1(p̂,f (̂p))−Dϕ1(q,f(q)))

L−→
n→∞

N (0,lTΣql) (17)

where Σq = diag(q)−qqT .
If we consider the maximum likelihood estimator instead of minimum ϕ-divergence estimator, we get

lTΣql =
I∑
i=1

I∑
j=1
i̸=j

qij(m
ϕ1
ij )

2 −

 I∑
i=1

I∑
j=1
i̸=j

qijm
ϕ1
ij


2

where

mϕ1
ij =

1

2
ϕ1

(
2qij

qij + qji

)
+

1

2
ϕ1

(
2qji

qij + qji

)
+

qij
qij + qji

(
ϕ′
1

(
2qij

qij + qji

)
− ϕ′

1

(
2qji

qij + qji

))
It is also interesting to observe, if we consider the power divergence measure, that

mλ
ij =

1

2λ(λ+ 1)

((
2pij

pij + pji

)λ+1

+

(
2pji

pij + pji

)λ+1

− 2

)

+
1

λ

pji
pij + pji

((
2pij

pij + pji

)λ
−
(

2pji
pij + pji

)λ)
For λ→ 0 and λ = 1 we get

m0
ij = log

2pij
pij + pji

and m1
ij =

p2ij − 3p2ji + 2pijpji

2(pij + pji)2

respectively. Therefore, the corresponding asymptotic variances are given by

σ2
(0) =

I∑
i=1

I∑
j=1
i̸=j

pij

(
log

2pij
pij + pji

)2

−

 I∑
i=1

I∑
j=1
i ̸=j

pij log
2pij

pij + pji


2

and

σ2
(1) =

I∑
i=1

I∑
j=1
i̸=j

pij

(
p2ij − 3p2ji + 2pijpji

2(pij + pji)2

)2

−

 I∑
i=1

I∑
j=1
i̸=j

pij
p2ij − 3p2ji + 2pijpji

2(pij + pji)2


2

Based on the previous result we can formulate the following theorem.
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Theorem 2 The asymptotic power for the test given in (15), at the alternative q, is given by

βn,ϕ1,ϕ2(q) = 1− Φn

(
1

lTΣql

(
ϕ′′
1 (1)

2
√
n
χ2
m,α −

√
nDϕ1(q,f(θ

ϕ2
a ))

))
where Φn(x) is a sequence of distributions functions tending uniformly to the standard normal
distribution function Φ (x).

We consider a contiguous sequence of alternative hypotheses that approaches the null hypothesis
H0 : θ = p(g(β)), for some unknown β ∈ B, at the rate O

(
n−1/2

)
. Consider the multinomial

probability vector
pn,ij = pij(g(β)) + dijn

−1/2, i = 1, ..., I, j = 1, ..., I

where d = (d11, ..., dII)
T is a fixed I2 × 1 vector such that

∑I
i=1

∑I
j=1dij = 0, recall that n is

the total count parameter of the multinomial distribution and β ∈ B. As n → ∞, the sequence
of multinomial probabilities {pn}n∈N with pn = (pn,ij, i = 1, ..., I, j = 1, ..., I)T , converges to a
multinomial probability in H0 at the rate of O

(
n−1/2

)
. Let

H1,n : pn = p(g(β)) + dn−1/2, β ∈ B (18)

In the next theorem we present the asymptotic distribution of the family of test statistics T ϕ1n (θ̂
ϕ2
)

defined in (13), under the contiguous alternative hypotheses given in (18).

Theorem 3 Under H1,n, given in (18), the family of test statistics T ϕ1n (θ̂
ϕ2
) is asymptotically

noncentrality chi-squared distributed with I (I − 1) /2 degrees of freedom and noncentrality parameter

δ =
1

2

I∑
i=1

I∑
j=1
i ̸=j

d2ij
pij

−
I∑
i=1

I∑
j=1
i<j

dijdji
pij

Proof. See Chapter 8 in [12].
An interesting a simulation study can be seen in [7]. In that study some interesting alternative test

statistics appear to the classical Pearson test statistics and likelihood ratio test.

4. Hypothesis Testing: H0 versus H1 and H1 versus H2

In this section we consider the three hypotheses, H0, H1, H2 given in (1), (4), (5) respectively and
some test statistics based on ϕ-divergence

Dϕ(p̂, p̂
(0)) and Dϕ(p̂, p̂

(1)) (19)

for testing H0 against H1 and H1 against H2.
In the expression (19), p̂ is the maximum likelihood estimator (MLE) of p given by p̂ = [p̂ij], where

p̂ij = nij/n; and p̂(0) and p̂(1) denote the MLEs of p under H0 and H1 respectively. These MLEs were
obtained by [8]. Let

θij =
pij

pij + pji
, for i > j
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then H0 : θij = 1/2 (for i > j) and H1 : θij ≥ 1/2 (for i > j), and

θ̂ij =
nij

nij + nji
, θ̂

(0)
ij = 1/2 and θ̂

(1)
ij = max

(
nij

nij + nji
,
1

2

)
for i > j

It follows that p̂(0) and p̂(1)are given by

p̂
(0)
ij =

nij + nji
2n

and p̂(1)ij =
nij + nji

n
max

(
nij

nij + nji
,
1

2

)
Then we have

Dϕ(p̂, p̂
(0)) =

I∑
i=1

I∑
j=1
i>j

nij + nji
2n

(
ϕ(2θ̂ij) + ϕ(2(1− θ̂ij))

)
and

Dϕ(p̂, p̂
(1)) =

I∑
i=1

I∑
j=1
i>j

nij + nji
n

(
θ̂
(1)
ij ϕ

(
θ̂ij

θ̂
(1)
ij

)
+ (1− θ̂

(1)
ij )ϕ

(
(1− θ̂ij)

(1− θ̂
(1)
ij )

))

To solve the problem of testing H1 against H2, [8] consider the likelihood ratio test statistic

T12 = 2
I∑
i=1

I∑
j=1
i>j

(
nij ln θ̂ij + nji ln(1− θ̂ij)− nij ln(θ̂

(1)
ij )− nji ln(1− θ̂

(1)
ij )
)

This statistic is such that
T12 = 2nDKL(p̂, p̂

(1)) (20)

where DKL(p̂, p̂
(1)) is the Kullback–Leibler divergence given by (20) with ϕ(x) = ϕ(0)(x) defined

above. Then the likelihood ratio test statistic is based on the closeness, in terms of the Kullback–Leibler
divergence measure, between the probability distributions p̂ and p̂(1). Thus, one could measure the
closeness between the two probability distributions using a more general divergence measure if we are
able to obtain its asymptotic distribution. One appropriate family of divergence measures for that purpose
is the ϕ-divergence measure.

As a generalization of the test statistic given in (20) for testing H1 against H2 we introduce the family
of test statistics

T ϕ12 =
2n

ϕ′′(1)
Dϕ(p̂, p̂

(1)) (21)

To test H0 against H1, El Barmi and Kochar [8] consider the likelihood ratio test statistic

T01 = 2
I∑
i=1

I∑
j=1
i>j

(
nij ln θ̂

(1)
ij + nji ln(1− θ̂

(1)
ij )− nij ln(

1
2
)− nji ln(

1
2
)
)

It is clear that
T01 = 2n

(
DKL(p̂, p̂

(0))−DKL(p̂, p̂
(1))
)

As a generalization of this test statistic we consider in this paper the family of test statistics

T ϕ01 =
2n

ϕ′′(1)

(
Dϕ(p̂, p̂

(0))−Dϕ(p̂, p̂
(1))
)

(22)
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If ϕ = ϕ(0) then T ϕ12 = T12 and T ϕ01 = T01, and hence the families of test statistics T ϕ12 and T ϕ01 can be
considered as generalizations of the test statistics T12 and T01 respectively.

In order to get the asymptotic distribution of the test statistics given in (21) and (22), we first define
the so-called chi-bar squared distribution with n degrees of freedom, denoted by χ̄2

n.

Definition 4 Let U = max(0, Z) where Z ∼ N (0, 1), so that the c.d.f. of U is given by

FU(u) =

{
Φ(u), u > 0

0, u < 0

where Φ denotes the standard normal cumulative distribution function. Let V =
∑n

k=1 U
2
k , where

U1, ..., Un are independent and distributed like U , then V ∼ χ̄2
n.

It is readily shown that

E(V ) =
1

2
n and Var(V ) =

5

4
n

This distribution is related to χ2 distribution. It can be readily shown that

Pr(V > v) =
n∑
l=0

(
n

l

)
1

2n
Pr(χ2

l > v)

by conditioning on L, the number of non-zero Uis.
Furthermore, like the χ2

n distribution, the χ̄2
n distribution is stochastically increasing with n. If V ∼ χ̄2

n

and V ∼ χ̄2
n′ , where n < n′, then V is stochastically smaller than V ′ : Pr(V > t) ≤ Pr(V ′ > t). This

follows since V ′ ∼ V +W where W ∼ χ̄2
n−n′ with V and W independent. For more details about the

chi-bar squared distribution see [17].
The following theorem present the asymptotic distribution of T ϕ01.

Theorem 5 Under H0, T ϕ01
L−→ χ̄2

K as n→ ∞ where K = I(I − 1)/2.

Proof. See [7].
If we consider the family of power divergences given in (8), we have the power divergence family of

test statistics defined as
T λ01 = T

ϕ(λ)
01

which can be used for testing H0 against H1. Therefore some important statistics can now be expressed
as members of the power divergence family of test statistics T λ01, that is, T 1

01 is the Pearson test statistic
(X2

01), T−1/2
01 is the Freeman–Tukey test statistic (F 2

01), T
−2
01 is the Neyman-modified test statistic (NM2

01),
T−1
01 is the modified loglikelihood ratio test statistic (NG2

01), T 0
01 is the loglikelihood ratio test statistic

(G2
01) introduced by [8] and T 2/3

01 is Cressie–Read test statistic (see [11]).

Theorem 6 Under H1, T
ϕ
12

L−→ χ̄2
M as n → ∞, where M is the number of elements in the set {(i, j) :

i > j, pij = pji} ≤ K = 1
2
I(I − 1) and

lim
n→∞

Pr(T ϕ12 ≥ t) ≤
K∑
l=0

(
K

l

)
1

2K
Pr(χ2

l ≥ t)
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If we consider the family of power divergences given in (8), we have the power divergence family of
test statistics defined as

T λ12 = T
ϕ(λ)
12

which we can use for testing H1 against H2.

Remark 7 In the same way as previously we can obtain the test statistics T 0
12 = G2

12, T−1
12 = NG2

12,
T 1
12 = X2

12, T
−1/2
12 = F 2

12, T
−2
12 = NM2

12 and T 2/3
12 .

We will refer here to the example of [18, Section 9.5], where the test proposed by Bowker [1] is
applied. The proposed tests in this paper may be used in the situation such that it is hoped that a new
formulation of a drug will reduce some side-effects.

Example We consider 158 patients who have been treated with the old formulation and records are

available of any side-effects. We might now treat each patient with the new formulation and note
incidence of side-effects. Table 1 shows a possible outcome for such an experiment. Do the data
in Table 1 provide any evidence regarding a less severity of side-effects with the new formulation
of the drug? BA The two test statistics given in (21) and (22) are appropriate for this problem. For

Table 1. Side-effect levels for old and new formulation.

Side-effect levels-new formulation
None Slight Severe Total

Side-effect None 83 4 3 90

levels-old Slight 17 22 5 44

formulation Severe 4 9 11 24

Total 104 35 19 158

the test statistic T ϕ01 given in (22) the null hypothesis is that for all off-diagonal counts in the table the
associated probabilities are such that all pij = pji. The alternative is that pij ≥ pji for all i ≥ j. We
have computed the members of the family {T λ01} given in Remark 7 and the corresponding asymptotic
p-values P λ

01 = Pr(χ̄2
3 > T λ01) which are given in the following table:

Table 2. Asymptotic p-values for T λ01.

λ −2 −1 −1/2 0 2/3 1

T λ01 14.43 11.48 10.58 9.96 9.46 9.33

P λ
01 0.001 0.003 0.004 0.006 0.007 0.008

On the other hand, if we consider the usual Pearson test statistic X2, we have that the value of
this statistic is 9.33. In this case using the chi-squared distribution with 3 degrees of freedom, the
corresponding asymptotic distribution found by Bowker [1], Pr(χ2

3 > X2) = 0.025. Then for all
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the considered statistics there is evidence of a differing incidence rate for side-effects under the two
formulations, moreover this difference is towards less severe side effects under the new formulation.
Therefore, the two considered tests lead to the same conclusion: There is a strong evidence of a
bigger incidence rate for side-effects under the old formulation. The conclusion obtained in [18] is
in accordance with our conclusion.

Acknowledgements

This work was supported by Grants MTM 2009-10072 and BSCH-UCM 2008-910707.

References

1. Bowker, A. A test for symmetry in contingency tables. J. Am. Statist. Assoc. 1948, 43, 572–574.
2. Ireland, C.T.; Ku, H.H.; Koch, G.G. Symmetry and marginal homogeneity of an r× r contingency

table. J. Am. Statist. Assoc. 1969, 64, 1323–1341.
3. Quade, D.; Salama, I.A. A note on minimum chi-square statistics in contingency tables. Biometrics

1975, 31, 953–956.
4. Menéndez, M.L.; Pardo, J.A.; Pardo, L. Tests based on ϕ-divergences for bivariate symmetry.

Metrika 2001, 53, 15–29.
5. Menéndez, M.L.; Pardo, J.A.; Pardo, L. Tests for bivariate symmetry against ordered alternatives

in square contingency tables. Aust. N. Z. J. Stat. 2003, 45, 115–124.
6. Menéndez, M.L.; Pardo, J.A.; Pardo, L. Tests of symmetry in three-dimensional contingency tables

based on phi-divergence statistics. J. Appl. Stat. 2004, 31, 1095–1114.
7. Menéndez, M.L.; Pardo, J.A.; Pardo, L.; Zografos, K. On tests of symmetry, marginal homogeneity

and quasi-symmetry in two contingency tables based on minimum ϕ-divergence estimator with
constraints. J. Stat. Comput. Sim. 2005, 75, 555–580.

8. El Barmi, H.; Kochar, S.C. Likelihood ratio tests for symmetry against ordered alternatives in a
square contingency table. Stat. Probab. Lett. 1995, 2, 167–173.
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