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Abstract: In this work, the non-isothermal Navier–Stokes equations are studied from
the group theory point of view. The symmetry group of the equations is presented and
discussed. Some standard turbulence models are analyzed with the symmetries of the
equations. A class of turbulence models which preserve the physical properties contained in
the symmetry group is built. The proposed turbulence models are applied to an illustrative
example of natural convection in a differentially heated cavity, and the results are presented.
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1. Introduction

In spite of many decades of studies, turbulence modelling still constitutes an important challenge
in engineering science. Indeed, no turbulence model, either with RANS method or with large-eddy
simulation (LES) approach, is really satisfying regarding their mathematical and physical properties.

Symmetry preservation is one of the most important properties that a turbulence model should
own, since the symmetry group traduces mathematically the physical properties of the flow. Nœther’s
theorem [1,2] states indeed that, for a Lagrangian system, each symmetry of the equation corresponds
to a conservation law. For example, a system having a time-translation symmetry is energy conserving.
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In fluid mechanics, the symmetry theory permitted Oberlack to deduce scaling laws, such as algebraic,
logarithmic (wall) or exponential laws [3], which have been validated with DNS data [4]. The symmetry
approach has also been used to study the dynamics of vortices [5], or to investigate spectral properties of
the flow [6].

Speziale was one of the first who tried to include symmetry considerations in turbulence modelling.
After examining existing models [7,8], he proposed a general form of Galilean invariant and 2D-material
indifferent models. This was followed by the work of Fureby and Tabor [9] and by a discussion with
Wang [10,11].

Galilean invariance and 2D-material indifference are only two of the symmetries of the Navier–Stokes
equations. Indeed, these equations own other symmetries (see for example [12]), and namely scale
invariances which are of particular importance for the establishment of scaling laws for example.
However, as pointed out by Oberlack [13], only few turbulence models are consistent with the symmetry
group of the Navier–Stokes equations. From this observation, Razafindralandy and Hamdouni proposed
a way of building models which preserve the physical properties of a flow contained in the symmetry
group [14,15], in the isothermal case. It has been also shown in [15] that the symmetry approach may
lead to numerically satisfying models which provide better results than the Smagorinsky and the dynamic
models.

This paper aims to extend the work done in [15] to the case of non-isothermal flows. Indeed, for these
flows, the subgrid heat flux model is, most of the time, simply deduced from the subgrid stress tensor
model by a Reynolds analogy. This analogy limits the scope of the models for strongly coupled problems
(natural convection, mixed convection). In this paper, we propose to construct a general class of subgrid
stress and heat flux models based on the preservation of the symmetry group (and then the underlying
physical properties) of the non-isothermal Navier–Stokes equations (1). More precisely, these models
are built such that the LES equations (30) admit the symmetries of the initial equations (1). Next, to
reduce the number of arbitrary functions in the class, we impose to the model to derive from a convex
potential. This condition guarantees the stability of the model.

This article is organized as follows. A brief introduction to the symmetry group theory is done in
Section 2. The Lie point symmetries of the Navier–Stokes equations for non-isothermal flows are then
presented. In Section 3., some popular LES models are analyzed with these symmetries. Section 4. is
devoted to the construction of the class of models from the symmetry approach. This class is refined
in Section 5. using the potential consideration. Some examples of simple models which can easily
be integrated into a code for numerical resolution are then deduced. One of these simple models is
numerically implemented in Section 6.
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2. The Symmetry Group of the Equations

Consider the Navier–Stokes equations for an incompressible, non-isothermal Newtonian fluid, with
kinematic viscosity ν and thermal diffusivity κ:

∂u

∂t
+ div(u ⊗ u) +

1

ρ
∇p − div τr − βgθ e3 = 0

∂θ

∂t
+ div(θu) − div hr = 0

div u = 0

(1)

In these expressions,
τr = 2νS and hr = κ∇θ

are respectively the viscous stress tensor and the heat flux. The tensor

S =
∇u +T ∇u

2

is the strain rate tensor. β is the thermal expansion and g the acceleration due to gravity. To simplify, we
also designate equations (1) by

E(q) = 0 with q = (t,x, u, p, θ) (2)

In this paper, we consider multiparameter, one point transformations of the form

Ta : q = (t,x, u, p, θ) 7−→ q̂ = (t̂, x̂, û, p̂, θ̂) (3)

where q̂ = q̂(q, a) depends continuously on the real, eventually local, parameter a. We assume that the
parametrization is such that a = 0 corresponds to the identity. Transformation (3) is a said a symmetry
of (1) if it maps each solution of (1) to another solution, i.e.,

E(q) = 0 =⇒ E(q̂) = 0 (4)

The set of the multi-parameter symmetries of (1) constitutes a local Lie group G called the symmetry
group of (1). G is characterized by its variation at the vicinity of a = 0 which is represented by the
vector field or infinitesimal generator

X = ηt

∂

∂t
+ ηx

∂

∂x
+ ηy

∂

∂y
+ ηz

∂

∂z
+ ηu

∂

∂u
+ ηv

∂

∂v
+ ηw

∂

∂w
+ ηp

∂

∂p
+ ηθ

∂

∂θ
(5)

where

ηq =
dq̂

da

∣∣∣∣∣
a=0

(6)
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Knowing the ηq’s, the expression of q̂ can be obtained by solving the system
dq̂

da
= ηq(q̂)

q̂(q, a = 0) = q

(7)

For locally integrable equations, Lie’s theory (see [2,16]) permits to replace the symmetry condition
(4) by the following one which provides an algorithmic way to compute all the Lie point symmetries of
the equations:

X(2).E = 0 when E(q) = 0 (8)

X(2) is a prolongation of the vector field X, defined in (5), which takes into account the derivative terms
in E up to the second order. More precisely,

X(2) = X + ηt
u

∂
∂ut

+ ηx
u

∂
∂ux

+ ηy
u

∂
∂uy

+ ηz
u

∂
∂uz

+ ηxx
u

∂
∂uxx

+ ηyy
u

∂
∂uyy

+ ηzz
u

∂
∂uzz

+ ηt
v

∂
∂vt

+ ηx
v

∂
∂vx

+ ηy
v

∂
∂vy

+ ηz
v

∂
∂vz

+ ηxx
v

∂
∂vxx

+ ηyy
v

∂
∂vyy

+ ηzz
v

∂
∂vzz

+ ηt
w

∂
∂wt

+ ηx
w

∂
∂wx

+ ηy
w

∂
∂wy

+ ηz
w

∂
∂wz

+ ηxx
w

∂
∂wxx

+ ηyy
w

∂
∂wyy

+ ηzz
w

∂
∂wzz

+ ηt
p

∂
∂pt

+ ηx
p

∂
∂px

+ ηy
p

∂
∂py

+ ηz
p

∂
∂pz

+ ηt
θ

∂
∂θt

+ ηx
θ

∂
∂θx

+ ηy
θ

∂
∂θy

+ ηz
θ

∂
∂θz

+ ηxx
θ

∂
∂θxx

+ ηyy
θ

∂
∂θyy

+ ηzz
θ

∂
∂θzz

(9)

The coefficients are defined recursively by:

ηs
q = Dsηq −

∑
r=t,x,y,z

∂q

∂r
Drηs (10)

D is the total derivation operator.
When condition (8) is applied, we get equations in terms of ηq’s, the resolution of which gives the

following infinitesimal generators of (1):

X1 =
∂

∂t
(11)

X2 = ζ(t)
∂

∂p
(12)

X3 = βg x3

∂

∂p
+

1

ρ

∂

∂θ
(13)

X4 = x2

∂

∂x1

− x1

∂

∂x2

+ u2

∂

∂u1

− u1

∂

∂u2

(14)

X4+i = αi(t)
∂

∂xi

+ α̇i(t)
∂

∂ui

− ρ xiα̈i(t)
∂

∂p
i = 1, 2, 3, (15)
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X8 = 2t
∂

∂t
+

3∑
j=1

xj

∂

∂xj

−
3∑

j=1

uj

∂

∂uj

− 2p
∂

∂p
− 3θ

∂

∂θ
(16)

where ζ and the αi’s are arbitrary functions of time. The dot symbol ( ˙ ) stands for derivation.
We can also consider symmetries (which are sometimes called equivalence transformations) of the

form
(t,x, u, p, θ, ν, κ) 7−→ (t̂, x̂, û, p̂, θ̂, ν̂, κ̂) (17)

Such symmetries take a solution of (1) into a solution of other non-isothermal Navier–Stokes equations
with different values of ν and κ. Applying condition (8) leads to the infinitesimal generator

X9 =
3∑

j=1

xj

∂

∂xj

+
3∑

j=1

uj

∂

∂uj

+ 2p
∂

∂p
+ θ

∂

∂θ
+ 2ν

∂

∂ν
+ 2κ

∂

∂κ
(18)

With these generators, we deduce the symmetry groups of (1) using (7). They are:

• the group of time translations, corresponding to X1:

(t,x, u, p, θ) 7−→ (t + a, x, u, p, θ) (19)

• the group of pressure translations, corresponding to X2:

(t,x, u, p, θ) 7−→ (t,x, u, p + ζ(t), θ) (20)

• the group of pressure-temperature translations, corresponding to X3:

(t,x, u, p, θ) 7−→ (t,x, u, p + a βg x3, θ + a
1

ρ
) (21)

• the group of horizontal rotations, corresponding to X4:

(t,x, u, p, θ) 7−→ (t, Rx, Ru, p, θ) (22)

where R is a 2D (constant) rotation matrix, with RTR = Id and det R = 1, Id being the identity
matrix,

• the (three-parameter) group of generalized Galilean transformations, spanned by the X4+i’s,
i = 1, 2, 3:

(t,x, u, p, θ) 7−→ (t,x + α(t), u + α̇(t), p + ρ x ¦ α̈(t), θ) (23)

• the group of the first scaling transformations generated by X8:

(t,x, u, p, θ) 7−→ (e2a t, ea x, e−a u, e−2a p, e−3a θ) (24)

which shows how u, p and θ change when the spatio-temporal scale is multiplied by (ea, e2a),
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• and the group of the second scaling transformations corresponding to X9:

(t,x, u, p, θ, ν, κ) 7−→ (t, ea x, ea u, e2a p, ea θ, e2a ν, e2a κ) (25)

which shows the consequence of the modification of the spatial scale.

Note that space translations correspond to transformations (23) where α = (αi)i is constant and the
classical Galilean transformations to the case where α is linear.

The non-isothermal Navier–Stokes equations (1) own other known symmetries. These symmetries
are not local continuous transformations like the previous ones and cannot be computed in the same way.
They are:

• the reflections which are discrete symmetries:

(t,x, u, p, θ) 7→ (t, Λx, Λu, p, ι3θ) (26)

where Λ is a reflection matrix:

Λ =

ι1 0 0

0 ι2 0

0 0 ι3

 with ιi = ±1, i = 1, 2, 3,

• and the material indifference in the limit of a 2D horizontal flow in a simply connected domain
[17] which is a time-dependent rotation:

(t,x, u, p) 7→ (t, x̂, û, p̂) (27)

with

x̂ = R(t) x, û = R(t) u + Ṙ(t) x, p̂ = p − 3ωφ +
1

2
ω2‖x‖2

where R(t) is an horizontal 2D rotation matrix with angle ωt, ω a real parameter, φ the usual 2D
stream function defined by:

u = curl(φe3) (28)

and ‖•‖ indicates the Euclidian norm. The material indifference constitutes a non-local symmetry
of the equations.

Note that the vertical reflection (corresponding to ι3 = −1 in (26)) stops to be a symmetry of the
equations if we impose that θ ≥ 0.

The combination of all these symmetries constitutes a group, called the symmetry group of (1). In the
next section, we analyse turbulence models using this symmetry group. To achieve this, the symmetries
will be gathered in four categories:

– the time, the pressure and the generalized Galilean translations,

– the pressure-temperature translations,

– the reflections, the horizontal (constant or time-dependent) rotations,

– the scaling transformations.
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3. Model Analysis

Solving (1) numerically is very high resource consuming (in terms of machine memory and
computation time) because many scales are present in the flow. Large-eddy simulation can considerably
reduce the required resource using the following approach. Instead of solving (1), one computes an
approximate solution (u, p, θ) which contains only the large scales of the actual velocity u, pressure p

and temperature θ of the fluid. This approximated solution is defined by a low-pass filtering, that is by
the convolution with a filter kernel K which separates large and small scales:

v = K ∗ v (29)

for any field v.
The equations of u are obtained by filtering (1):

∂u

∂t
+ div(u ⊗ u) +

1

ρ
∇p − div(τ r − τ) − βgθ e3 = 0

∂θ

∂t
+ div(θu) − div(hr − h) = 0

div u = 0.

(30)

In these equations,
τ = u ⊗ u − u ⊗ u

is the subgrid stress tensor and
h = θu − θu

the subgrid heat flux. In order to close the equations, these two terms must be modelled, i.e., replaced by
functions of (u, p, θ), called turbulence model. A “good” turbulence model is one with which (u, p, θ)

has the same properties as (u, p, θ) from certain point of view. In our approach, we require that (u, p, θ)

has the same symmetry properties as (u, p, θ). This requirement is important because, as underlined
earlier, the symmetry group contains important physical information on the flow.

More precisely, the model should be such that each symmetry of (1) applied to (u, p, θ) is also a
symmetry of (30) applied to (u, p, θ). When it is the case, the model will be said invariant.

3.1. Subgrid Models

In what follows, we recall some popular turbulence models and analyze them according to the
symmetry-compatibility requirement.

• The most widely used model is the Smagorinsky model, which was derived by adopting the
concept of turbulent viscosity for τ and an analogy for h:

τ d = −2(Csδ)
2|S|S, h = −

(Csδ)
2

Prsg

|S|∇θ (31)
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where |S| is a norm of S defined by

|S|2 = 2
∑
ij

S
2

ij (32)

Cs is the Smagorinsky constant, and Prsg the subgrid Prandtl number which is a constant. The
superscript d stands for the deviatoric operator, i.e.,:

τ d = τ −
(

1

3
tr τ

)
Id (33)

Id being the identity matrix.

• Using Germano–Lilly procedure ([18]), the model constants can be calculated in a dynamic way
to give more flexibility to the model. This leads to the dynamic model:

τ d = −2 Cτδ
2|S|S, h = −Chδ

2|S|∇θ (34)

where Cτ = tr(LM)/ tr(M2), Ch = tr(L′TM ′)/ tr(M ′TM ′) and

L = ũ ⊗ u − ũ ⊗ ũ M = δ̃
2

|S̃|S̃ − δ
2 |̃S|S

L′ = θ̃u − θ̃ũ M ′ = δ
2
S̃∇θ − δ̃

2

S̃∇̃θ

(35)

The tilde symbolizes a test filtering, with a width δ̃ ≥ δ.

• Another model, which introduces the buoyancy term, is the Eidson model ([19]):

τ d = −2 CEδ
2

√
|S|2 −

βg

Prsg

∂θ

∂x3

S h = −
CEδ

2

Prsg

√
|S|2 −

βg

Prsg

∂θ

∂x3

∇θ (36)

where CE is a constant. In practice, when the term under the root sign is negative, the model is set
to zero.

• To avoid having a negative radicand, Peng and Davidson ([20]) propose a modified version of the
Eidson model:

τ d = −2 CEδ
2 1

|S|

(
|S|2 −

βg

Prsg

∂θ

∂x3

)
S

h = −
CEδ

2

Prsg

1

|S|

(
|S|2 −

βg

Prsg

∂θ

∂x3

)
∇θ

(37)

• Another model, based on the scale-similarity hypothesis, is the scale-similarity model, adapted
from Bardina model to the non-isothermal case:

τ d = ũ ⊗ u − ũ ⊗ ũ, h = θ̃ u − θ̃ ũ (38)
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• The scale similarity hypothesis can be used to obtain others models which are combined with the
Smagorinsky model to give a mixed model in the following form ([21–24]):

τ d = τ d
s − 2(Csδ)

2|S|S, and h = hs −
(Csδ)

2

Prsg

|S|∇θ (39)

From the point of view of the symmetries, these models behave generally in the same way; so, we
study only the following generic model:

τ d = (ũ ⊗ u − ũ ⊗ ũ)d − 2(Csδ)
2|S|S, and h = θ̃ u − θ̃ ũ −

(Csδ)
2

Prsg

|S|∇θ (40)

Note that the Eidson model seems not to have been used for many years. However, it is studied here
because the analysis of this model could be used as a basis for the analysis of other models which may
or may not be present in this paper.

The presented models will be analyzed according to their invariance under each of the symmetries
of (1). It will be assumed that the filter does not destroy the symmetry properties of the equations.
Oberlack deduced in [25] an example of such a filter. Its kernel has the following form:

G(x) =
s + 3

4π`s+3
||x||s1B(`)(x) (41)

where s is a real number greater than 3, ` ∈ R and B(`) the centered ball of radius `.
In what follows, each category of symmetries will be taken one by one, and we investigate which

models are invariant under the symmetries within the considered category.

3.2. Time, Pressure and Galilean Translations

All the above models are invariant under time and pressure translations (19) and (20) because neither
t nor p is explicitly present in their expressions.

Applied to the filtered variables, the generalized Galilean transformations (23) is:

(t,x, u, p, θ) 7→ (t̂, x̂, û, p̂, θ̂) = (t,x + α(t), u + α̇(t), p + ρx ¦ α̈(t), θ) (42)

• Since ∇̂u = ∇u and θ̂ = θ, the Smagorinsky (31) and the Eidson (36)-(37) models are invariant
under the generalized Galilean transformations.

• For the scale-similarity model (38), we have:

˜̂u ⊗ û − ˜̂
u ⊗ ˜̂

u = ˜(u + α̇) ⊗ (u + α̇) − ˜(u + α̇) ⊗ ˜(u + α̇) = ũ ⊗ u − ũ ⊗ ũ (43)

and ˜̂
θ û −

˜̂
θ

˜̂
u = ˜θ (u + α̇) − θ̃ ˜(u + α̇) = θ̃ u − θ̃ ũ (44)

The model is then invariant under the generalized Galilean transformations.
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• Next, since Ŝ = S and ∇̂θ = ∇θ, we can write that

M̂ = M, M̂ ′ = M ′

and from (43) and (44) that
L̂ = L, L̂′ = L′

The invariance of the dynamic model (34) follows from these expressions.

• Lastly, the mixed model (40) is generalized-Galilean invariant like the Smagorinsky and the
scale-similarity models.

All the models are then invariant under the three symmetry groups composed by time, pressure and
generalized Galilean transformations.

3.3. Pressure-Temperature Translations

The filtered equations (30) are invariant under the pressure-temperature translations

(t,x, u, p, θ) 7→ (t̂, x̂, û, p̂, θ̂) = (t,x, u, p + a βg x3, θ + a
1

ρ
) (45)

if and only if τ̂ = τ and ĥ = h.

• The Smagorinsky and the Eidson models (31), (36) and (37) are invariant under the
pressure-temperature translations because Ŝ = S and θ̂ = θ.

• Next,
˜̂u ⊗ û − ˜̂

u ⊗ ˜̂
u = ũ ⊗ u − ũ ⊗ ũ, and

˜̂
θ û −

˜̂
θ

˜̂
u = (θ̃ u + a

1

ρ
ũ) − (θ̃ ũ + a

1

ρ
ũ) = θ̃ u − θ̃ ũ

(46)

The scale-similarity model (38) is then invariant.

• For the dynamic model (34), L, M and L′ are unchanged. And since ∇̂θ = ∇θ, M ′ remains also
unchanged. The model is then invariant.

• At last, the invariance of the Smagorinsky and the scale-similarity models leads to the invariance
of the mixed model (40) under the pressure-temperature translations.

3.4. Reflections and Rotations

Let us first consider the reflections about the horizontal coordinate axes e1 and e2, the horizontal
(constant) rotations and the horizontal 2D material indifference. The reflection about the vertical axis e3

will be treated separately because, unlike the other transformations, it modifies the temperature variable
θ. The transformations, applied to the filtered variables, are then

(t,x, u, p, θ) 7→ (t̂, x̂, û, p̂, θ̂) = (t, Υx, Υu, p, θ) (47)
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where Υ = R or Λ with ι3 = 1.
Equations (30) are invariant under (47) if and only if

τ̂ = Υ τTΥ and ĥ = Υh (48)

• It is straight forward to show that

Ŝ = Υ S
T

Υ and ∇̂θ̂ = Υ∇θ (49)

The Smagorinsky and the Eidson models (31), (36) and (37) are then invariant under the two first
reflections and the horizontal rotations.

• Moreover,
û ⊗ û = Υ(u ⊗ u)TΥ and θ̂û = Υ(θu) (50)

This leads to the invariance of the scale-similarity model (38).

• For the dynamic model (34), we have

L̂ = Υ LTΥ, M̂ = Υ MTΥ, L̂′ = Υ L′, M̂ ′ = Υ M ′ (51)

Hence, Ĉτ = Cτ and Ĉh = Ch. Consequently, this model verifies (48).

• Finally, relations (49) and (50) lead to the invariance of the mixed model (40).

All the models are invariant under the horizontal rotations and the two first reflections. Let us now
consider the reflection in the third direction. The filtered equations (30) are invariant if and only if

τ̂ = Λ3τ
TΛ3 and ĥ = −Λ3h (52)

where Λ3 is the diagonal matrix Λ3 = diag(1, 1,−1).

• For this reflection, we have:

Ŝ = S and ∇̂θ̂ = −Λ3∇θ (53)

These relations imply the invariance of the Smagorinsky model (31).

• In addition,
∂θ̂

∂x̂3

=
∂θ

∂x3

(54)

Thus, the Eidson models verify (52) and is invariant. In the same way, it can be shown that model
(37) is invariant under the third reflection.

• For the scale-similarity model (38),

û ⊗ û = u ⊗ u and θ̂û = −Λ3θu (55)

This model is then invariant.
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• Next, for the dynamic model (34),

L̂ = L, M̂ = M, L̂′ = −Λ3L
′, M̂ ′ = −Λ3M

′ (56)

Hence, Ĉτ = Cτ and Ĉh = Ch. It follows that the dynamic model is invariant under the third
reflection.

• Lastly, the invariance of the mixed model (40) under the third reflection follows from the invariance
of the Smagorinsky and the scale-similarity models.

All the models are invariant under the horizontal rotations and the reflections. The last symmetries of
the non-isothermal Navier–Stokes equations are the scaling transformations.

3.5. Scaling Transformations

The two scaling transformations can be combined into the following two-parameter scaling
transformations:

(t,x, u, p, θ, ν, κ) 7→ (e2a t, eb+a x, eb−a u, e2b−2a p, eb−3a θ, e2b ν, e2b κ). (57)

The first scaling transformations correspond to b = 0 and the second ones to a = 0. The filtered
equations (30) are invariant under (57) if and only if

τ̂ = e2b−2a τ and ĥ = e2b−4a h (58)

• Since Ŝ = e−2a S and ∇̂θ = e−4a ∇θ, we have, for the Smagorinsky model (31):

τ̂ = e−4a τ and ĥ = e−6a h (59)

The model verifies (58) neither when a = 0 nor when b = 0. Thus, it is invariant neither under the
first nor under the second scaling transformations.

• The first terms of the Eidson models (36)-(37) are similar to the Smagorinsky model. These models
are not invariant under the scaling transformations.

• The scale-similarity model (38) is invariant under the two types of scaling transformations because

˜̂u ⊗ û − ˜̂
u ⊗ ˜̂

u = e2b−2a(ũ ⊗ u − ũ ⊗ ũ) and

˜̂
θ û −

˜̂
θ

˜̂
u = e2b−4a(θ̃ u − θ̃ ũ)

(60)

Condition (58) is verified.

• For the dynamic model (34), we have:

L̂ = e2b−2a L, M̂ = e−4a M, L̂′ = e2b−4a L′, M̂ ′ = e−6a M ′ (61)

This implies that
Ĉτ = e2b+2a Cτ , Ĉh = e2b+2a Ch. (62)
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Thus,
τ̂ = e2b−2a τ and ĥ = e2b−4a h (63)

The dynamic model is invariant.

• At last, the mixed model (40) is not invariant under the scaling transformations because of the
Smagorinsky part. However, the (Leonard) terms which correspond to the scale-similarity model
are invariant.

Table 1. Result of model analysis. See Razafindralandy and Hamdouni [28].

Time, pressure, Pressure-temperature Rotation, reflection, Scaling
Galilean material indifference

Smagorinsky invariant invariant invariant non-invariant

Dynamic invariant invariant invariant invariant

Eidson invariant invariant invariant non-invariant

Modified Eidson invariant invariant invariant non-invariant

Similarity invariant invariant invariant invariant

Mixed invariant invariant invariant non-invariant

Table 1 summarizes the result of the analysis. It can be observed from it that only the similarity
and the dynamic models are invariant under the scaling transformations. The scaling transformations
have a particular importance though because, for example, Oberlack used them to obtain wall laws
which was validated in [4], [26] and [27]. Hence, a model which breaks the scaling symmetries cannot
capture these wall laws. As mentioned by Oberlack in [25], the inability of the Smagorinsky model
to properly represent the near-wall behaviour of the flow can be related to its non-invariance under the
scaling transformations. In the same way, any solution that is self-similar according to one or both
of the scaling transformations cannot be reproduced by a non-invariant model ([14]). In addition, the
conservation laws that are related to these symmetries are violated. These observations lead us to propose
new turbulent models which are compatible with the symmetries of the equations.

4. Symmetry-Invariant LES Models

In this section, we consider the symmetries of (1) by category. We then build a class of models which
are consistent with these categories of models. Doing so, we will end up with models which are invariant
under all of the symmetries of the equations.
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Translations (19), (20), (21) and (23) remains symmetries of (30) if τ and h depend only on S and
T = ∇θ:

−τ = L(S, T) (64)

−h = F(S, T) (65)

Next, rotations (22), reflections (26) and the material indifference (27) are symmetries of (30) if the
model has the following form

−τ d = E1S + E2( Adj S)d + E3(T ⊗ T)d

+ E4

[
S(T ⊗ T)

]d
+ E5

[
S(T ⊗ T)S

]d

−h = E6T + E7S T + E8S
2T

(66)

where the coefficients Ei are scalar functions of the invariants obtained from S and T which are:

X = tr S
2
, ξ = det S, ϑ = T2

, ω1 = T ¦ S T, ω2 = S T ¦ S T

and Adj is the adjoint operator defined by

S(Adj S) = (det S) Id.

Expressions (66) are obtained from the theory of invariants and the equality of traces.
Equations (30) are invariant under the scale transformation (24) if and only if

τ̂ = e−2a τ and T̂ = e−4a T,

that is
Ei(X̂ , ξ̂, ϑ̂, ω̂1, ω̂2) = ebia Ei(X , ξ, ϑ, ω1, ω2), i = 1, ..., 8 (67)

with
b1 = 0, b2 = 2, b3 = 6, b4 = 8, b5 = 10, b6 = 0, b7 = 2, b8 = 4.

Deriving with respect to a and taking a = 0 give:

X
∂Ei

∂X
+

3

2
ξ
∂Ei

∂ξ
+ 2ϑ

∂Ei

∂ϑ
+

5

2
ω1

∂Ei

∂ω1

+ 3ω2

∂Ei

∂ω2

= ciEi (68)

where

c1 = 0, c2 = −
1

2
, c3 = −

3

2
, c4 = −2, c5 = −

5

2
, c6 = 0, c7 = −

1

2
, c8 = −1

The associated characteristic equations are

dX
X

=
2

3

d ξ

ξ
=

d ϑ

2ϑ
=

2

5

d ω1

ω1

=
d ω2

3ω2

=
d Ei

ciEi

(69)
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Hence, the Ei must be of the form:

Ei(X , ξ, ϑ, ω1, ω2) = X ciE ′
i(v1, v2, v3, v4)

where the vi’s are the invariants:

v1 =
ξ

X 3/2
, v2 =

ϑ

X 2
, v3 =

ω1

X 5/2
, v4 =

ω2

X 3.
(70)

Finally, the second scaling transformation (25) is a symmetry of equations (30) if

E ′
i = νFi, i = 1, ..., 5

and
E ′

i = κFi, i = 6, ..., 8.

This condition is only sufficient but not necessary.
To sum up, we get the following class of subgrid models which are consistent with the symmetry

group of (1): 

−τ d = νF1S + νX−1/2F2 Adjd S + νX−3/2F3(T ⊗ T)d

+ νX−2F4[S(T ⊗ T)]d] + νX−5/2F5S[(T ⊗ T)S]d]

−h = κ
(
F6 + X−1/2F7S + X−1F8S

2
)

T

(71)

This class of models contains eight arbitrary functions. This number can be lowered using some
hypothesis that we shall see in the next section.

5. Model Simplification

In order to reduce the degree of freedom of the model, we propose to restrain the class (71) to models
which derive from a potential. This restriction is legitimated by the fact that, like τr and hr, τ and h

represent respectively a (subgrid) stress and a (subgrid) heat flux. Moreover, τr and hr are derived from
the potentials ν tr S

2
and κ||T||2/2, in the sense that

τr =
∂ν tr S

2

∂S
and hr =

∂

∂T

(
1

2
κ||T||2

)
(72)
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Hence, τ and h should also be derived from potentials. This condition leads to the following class of
models (see [14]):

−τ d = ν

[
2gm − 3v1

∂gm

∂v1

− 4v2

∂gm

∂v2

− 5v3

∂gm

∂v3

− 6v4

∂gm

∂v4

]
S

+ ν

[
X−1/2

∂gm

∂v1

Adjd S + X−3/2
∂gm

∂v3

(T ⊗ T)d + 2X−2
∂gm

∂v4

[S(T ⊗ T)]d

]

−h = κ

(
∂gt

∂v2

I3 + X−1/2
∂gt

∂v3

S + X−1
∂gt

∂v4

S
2

)
T

(73)

where gm and gt are arbitrary functions of the vi’s.
Note that the assumption that the model derives from a convex potential ensures the stability of the

model [14].

Further simplifications can be done on class (73) according to the type of model we wish to obtain.

5.1. Strongly Coupled Model

If gm and gt are only functions of v1 and v2, we get:
−τ d = ν

(
2gm − 3v1

∂gm

∂v1

− 4v2

∂gm

∂v2

)
S + ν

1

||S||
∂gm

∂v1

AdjdS

−h = κhtT

(74)

where ht =
∂gt

∂v2

. This is a strongly coupled model in the sense that both τ and h depend on S and θ.

5.2. Decoupled Model

We can obtain a decoupled model where τ does not depend on the temperature. For this, we can take
gm function only of v1 and gt function of v2. It follows:

−τ d = ν(2gm − 3vġm)S + ν
1

||S||
ġmAdjdS

−h = κht T

(75)

5.3. Linear Model

If gm and ht are linear functions of v, that is:

gm = Cmv, ht = Ctv
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where Cm are Ct are the constants of the model, which may depend on the grid size, then

−τ d = νCm

(
− det S

1∥∥S
∥∥3S + Adjd S

1∥∥S
∥∥
)

−h = κCt

det S∥∥S
∥∥3 T

(76)

In the next section, we carry out a numerical test with the simple linear model (76) to illustrate the
implementation.

6. Numerical Example

Consider the case of an air flow in a differentially heated cavity (see Figure 1). The thermal expansion
and the Prandtl number are such that

βg = 0.03, and Pr = 0.711.

Figure 1. Differentially heated cavity.

Insulated ceiling

Insulated floor

The code used for the simulation is based on a finite difference scheme, explicit in time [29]. The time
step is 2×10−4s and the grid size (62 × 62 × 18). We use the experimental results in [30] as reference
solution.

The mean temperature profile along an horizontal line, passing through the center of the cavity, is
shown in Figure 2. It can be observed from it that the model can yield results that are quite close to the
experimental data. This is more evident for the velocity profile which fits the experiment results, as seen
in Figure 3. Note that these results were obtained with one of the simplest (linear) form of gm and ht.
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Figure 2. Mean temperature profile at y = 1.25 m.
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Figure 3. Mean velocity profile at y = 1.25 m.
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7. Conclusions

We proposed a way to build symmetry-consistent LES models, without using a Reynolds analogy
for the subgrid heat flux. One of the most simple models was implemented numerically to serve as an
example. In this example, it can be observed that the mean velocity profile obtained with the model is in
good agreement with experiments, while the mean temperature is overestimated. A better choice of the
functions gm and gt involved in (73) is to be analyzed in a future important work.
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