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Abstract: Cyclotron frequency of a crystal electron is, in general, not an easily accessible
parameter. Nevertheless, its calculation can be simplified when the symmetry properties of
the band structure and those of the motion equations in the magnetic field are simultaneously
taken into account. In effect, a combined symmetry of the electron Hamiltonian and that of
the Lorentz equation provide us with a non-linear oscillator problem of high symmetry. In
the next step, the kinetic energy of the oscillator can be separated from the whole of electron
energy and applied in a new kind of calculation of the cyclotron frequency which is much
more simple than before. In consequence, a detailed approach to the electron circulation,
also in more complex band structures, becomes a relatively easy task. For different crystal
lattices of cubic symmetry taken as examples the cyclotron frequency of the present and a
former method are compared numerically giving the same results.
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1. Introduction. Outline of the Symmetry Properties Concerning the Crystal Electrons Moving in
an External Magnetic Field

In theoretical physics one of the principal aims is to calculate the observed data with a possibly
high accuracy. Simultaneously, another aim is that this approach to experiment should be of a not too
complicated nature. In the solid state theory these two goals are strictly coupled together by the use of
the properties of symmetry.

Conventionally, the symmetry in solids is connected with the crystal geometry given by a regular
spatial arrangement of the atoms. This is a well-known simplification entering the potential part of
the electron Hamiltonian. However, when an external field is acting on a crystal, much of the original
symmetry due to the crystal potential is usually lost. In principle, this situation can lead to difficulties,
see e.g., [1]. But if the potential perturbation, for example that of the magnetic field, is chosen in some
special direction with respect to the crystal lattice, a loss of symmetry in the geometry of the crystal
potential is—to a large extent—compensated by a new kind of symmetry, namely that connected with
the dynamics of electrons moving in the magnetic field.

The purpose of the present paper is to demonstrate that this kind of symmetry, which can be next
applied in calculating the cyclotron frequency in solids, is due to both the properties of the Lorentz
equation governing the electron motion in the presence of the magnetic field and the wave-packet
character of electrons contained in the band of states of a solid. The final effect of such a combination
is a pair of equations much similar to a pair of the Hamilton equations possessed by a one-dimensional
anharmonic oscillator. The variables of the oscillator, which can be associated with the components of
the electron wave vector, have—on one hand—the symmetry properties of the dynamical variables of
position and momentum of the oscillator. On the other hand, the remainder of the symmetry details are
dictated by the crystal Hamiltonian.

In fact, the Hamilton equations coming from the band structure combined with the action of the
magnetic field have been derived some time ago by Wannier [2] and Suhl [3]. But these equations were,
in our opinion, not sufficiently exploited in describing the motion of the crystal electrons due to the
presence of the magnetic field. An attempt to calculate the cyclotron resonance for such electrons has
been done in [3], but it was limited to the s-electrons contained in only one, namely simple cubic, crystal
lattice. The restriction is perhaps because the formalism applied in [3] to the simple cubic case could not
be extended to other lattices. But the experimental interest is focused on crystals rather different than the
simple cubic one, moreover the band structure is based on a different kind of the atomic orbits than s,
see [4,5]. This provides us with a practical aim of the present paper to give a method directed to bridge
a definite computational gap.

Cyclotron frequency Ω is a fundamental electron parameter entering practically almost any
examination of a conducting solid at its Fermi surface in case when an external magnetic field is applied.
This frequency is usually easy to assess when the surface is near to a spherical, or ellipsoidal, shape.
For, in this very special circumstance, the influence of the crystalline background exerted on the electron
states is rather small and the frequency formula is regulated mainly by a suitable choice of the effective
electron mass, see e.g., [6]. An extremely simple example is that of free electrons (see below).



Symmetry 2011, 3 543

In general, when the motion is represented in the space of the wave vector ~k, a conventional attempt
is to calculate the planar area S enclosed by a trajectory of an electron having a constant energy in that
space, and next differentiate that area with respect to the energy E possessed by the circulating electron.
This gives the reciprocal value equal to the cyclotron frequency [6,7]:

Ω =
2πeB

~2c
∂E(~k)

∂S(~k)
(1)

For free electrons we have S = πk2 and E = ~2
2m
k2, thus the frequency (1) becomes

Ω =
eB

mc
(2)

which is a well-known result. A characteristic point is that (2) is a constant independent of the electron
energy and ~k.

But a circulation of electrons in the crystal lattices does not provide us with so simple results.
Consequently, in order to approach that problem in a possibly simple manner, a different formalism
than that represented in (1) is applied. This takes into account not only the symmetry of the
crystal Hamiltonian but also the properties of symmetry characteristic for the motion equations in the
magnetic field.

2. The Formalism

A planar electron motion performed by an electron in a constant magnetic field ~B is governed by the
Lorentz equation. Its essence is that if the action of an external electric field is negligible [8] we have

~
d~k

dt
=
e

c
(~v × ~B) (3)

This equation describes the motion of the electron wave packet labeled by the wave vector ~k and
having in a real space the velocity ~v. It is valid for not too strong B, so the band structure is not essentially
perturbed by its degeneracy into Landau levels. In fact, (3) is equivalent to a pair of the Hamilton
equations of classical mechanics. This is so because for the field ~B directed, say, along the axis z,
Equation (3) can be presented as an equation pair:

~
dkx
dt

=
e

c
vyBz (4)

~
dky
dt

= −e
c
vxBz (5)

The components kx, ky of the wave vector behave in (4), (5) like position and momentum
variables, say

x = kx, px = ky (6)

because of the well-known property [7]

vx =
1

~
∂E

∂kx
, vy =

1

~
∂E

∂ky
(7)
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where E is the electron energy. It should be noted that the one-electron Hamiltonians for crystals in the
magnetic field based on the components of vector ~k seem to be developed first in [9].

For the sake of simplicity the constant parameters entering (3)–(7) can be abbreviated to

Bz = e = c = ~ = m = 1 (8)

with the substitutions (6) and (8), Equations (4) and (5) become:

dx

dt
=
∂E

∂px
(9)

dpx
dt

= −∂E
∂x

(10)

Equations (9) and (10) simplify essentially the problem, because the energy expressions E(kx, ky) for
an electron circulating in a (kx, ky)-plane (component kz behaves like a constant parameter) are rather
easily accessible quantities. For example, in the tight-binding approach to the s-electrons in cubic crystal
lattices, we have the energies [10]

Esc = β[3− cos(kxalatt)− cos(kyalatt)− cos(kzalatt)] (11)

for the simple cubic (sc) lattice the nearest neighbors of the central site in (0, 0, 0) are here in positions
(±alatt, 0, 0), (0,±alatt, 0), (0, 0,±alatt)

Ebcc = β1− cos(kxalatt) cos(kyalatt) cos(kzalatt) (12)

for the body-centered cubic (bcc) lattice the nearest neighbors are in positions (±alatt,±alatt,±alatt),

2Efcc = β [3− cos(kxalatt) cos(kyalatt)− cos(kyalatt) cos(kzalatt)− cos(kzalatt) cos(kxalatt)] (13)

for the face centered cubic (fcc) lattice [the nearest neighbors of the central site are in positions
(±alatt,±alatt, 0), (0,±alatt,±alatt), (±alatt, 0,±alatt)].

The β are multiples of the hopping integrals βlatt between the nearest atomic neighbors in the crystal
lattices, for example in the sc lattice β = 2βsc, the alatt is the edge length of the elementary cube of a
crystal cell. The constant terms of 1 and 3 are introduced in order to make (11), (12) and (13) at small
kx, ky and kz proportional to the free-electron expression:

Efree =
β

2

(
k2x + k2y + k2z

)
a2latt =

β

2

(
x2 + p2x + k2z

)
a2latt (14)

In this case the constant term ~2/2m entering the free-electron energy in (1) is replaced by

βa2latt
2

(15)

The parameter β has dimension of energy. A substitution of (14) into (1) replaces the
frequency (2) by

Ω =
eB

c

βa2latt
~2

(16)

In Sections 3–8 we discuss and apply the Hamiltonian expressions of (11)–(13) assuming

β = alatt = 1 (17)
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3. Crystal Hamiltonians as the Oscillator Problems

When the motion is limited, for the sake of definiteness, to a plane

kz = const = 0 (18)

the energies (11), (12) and (13) become, respectively, equivalent to the
following Hamiltonian expressions

Esc(kz = 0) = Csc = 2− cosx− cos px (19)

Ebcc(kz = 0) = Cbcc = 1− cosx cos px (20)

2Efcc(kz = 0) = 2C fcc = 3− cosx cos px − cosx− cos px (21)

on the condition that the substitutions presented in (6) and (17) are taken into account.
A characteristic point of (19)–(21) is that beyond the symmetry properties dictated by the crystal

potential [see (11)–(13)], a supplementary symmetry in the dynamic variables x and px, namely that due
to (9) and (10), occurs in the formalism. In effect of that symmetry, the Hamiltonians (19), (20) and (21)
provide us with an anharmonic oscillator problem [11]. The oscillators of this kind are one-dimensional,
because x and px refer to the motion in a single dimension, say, that extended along the axis x. In
consequence, the electron circulation along the edge of a planar cross-section area of the Fermi surface
has been replaced by an oscillation between two opposite (symmetrical) points of the axis x:

x = −a0, x = a0 (22)

the axis is lying in a cross-section plane of the Fermi surface labeled by (18).
The distance a0 in (22) is called the amplitude of the oscillator motion. A property of the oscillator is

that when x = kx = ±a0 we have px = ky = 0, and vice versa: for x = kx = 0 we have px = ky = ±a0.
In course of its oscillatory motion the electron has a constant energy equal to that possessed by an

electron circulating in the (x, y)-plane. Consequently, this energy can be considered, for the sake of
simplicity, at some special points of the oscillator trajectory, for example those quoted in (22). The
values of x, px entering that points, when substituted into (19), (20) and (21), give respectively the
planar Hamiltonians:

Csc = 2− cosx− cos px = 1− cos a0 = Csc(a0) (23)

Cbcc = 1− cosx cos px = 1− cos a0 = Cbcc(a0) (24)

2C fcc = 3− cosx cos px − cosx− cos px = 2(1− cos a0) = 2C fcc(a0) (25)

for each of the considered lattice cases. Our task becomes to calculate the oscillation frequencies for the
electron motions represented by the Hamiltonians given in (23), (24) and (25).

4. Symmetry of Oscillators with Respect to the Dynamic Variables x and px and Separation of
Energy into the Kinetic and Potential Parts

A total electron energy of a one-dimensional oscillator is

1

2

(
dx

dt

)2

+ V (x) = C latt(a0) (26)
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where the first term on the left-hand side is a kinetic energy, the second one is a potential energy, and
C latt(a0) is a total energy of the oscillator which is a parameter constant in time. A differentiation of
(26) with respect to time gives

dx

dt

d2x

dt2
+
dV (x)

dx

dx

dt
= 0 (27)

from which we obtain the well-known relation

d2x

dt2
= −dV (x)

dx
(28)

The left-hand side of (28) can be easily calculated on the basis of the Hamilton equations presented
in (9) and (10). These give the acceleration of x:

d2x

dt2
=

d

dt

(
∂C latt

∂px

)
=
∂2C latt

∂px∂x

dx

dt
+
∂2C latt

∂p2x

dpx
dt

=
∂2C latt

∂px∂x

∂C latt

∂px
− ∂2C latt

∂p2x

∂C latt

∂x
= ax(x, px) (29)

Symmetrically, we have the acceleration of px:

d2px
dt2

=
d

dt

(
−∂C

latt

∂x

)
= −∂

2C latt

∂x∂px

dpx
dt
− ∂2C latt

∂x2
dx

dt

=
∂2C latt

∂x∂px

∂C latt

∂x
− ∂2C latt

∂x2
∂C latt

∂px
= apx(x, px) (30)

A characteristic point obtained from (30) and (31) is that

ax(x, px) = apx(px, x) (31)

ax(px, x) = apx(x, px) (32)

The Expressions (29)–(30) can be calculated in each lattice case. In the next step, on the basis of the
energy Equations (23)–(25), the terms dependent on px entering (29) can be replaced by those dependent
on x, and the constant terms enter also the energy expressions. In effect, the acceleration term on the
left-hand side of (29) becomes a function of x alone and the constant terms. According to (28), its
integral over the variable x leads to V (x) with the accuracy to a constant potential term VC .

The term VC can be obtained from the condition that the points

x = ±a0 (33)

are the turning points of the oscillator. In this case the electron velocity dx
dt

as well as the kinetic energy
are equal to zero. Therefore,

V (±a0) = C latt(a0) (34)

This completes the calculation of the potential energy. Examples are presented below separately for
each cubic lattice.

But the same reasoning can be applied also to the acceleration expression for the momentum variable
px in (30). In this case the terms dependent on x are replaced by those dependent on px combined with
the constant terms entering the energy Equations (23)–(25). This gives the acceleration terms dependent
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only on px and the constant terms. We find that both functional dependencies obtained for (29) and (30)
are the same.

In effect, we can write for (29) and (30) respectively

d2x

dt2
= ax(x, px) = a(x) (35)

and
d2px
dt2

= apx(x, px) = a(px) (36)

This kind of symmetry, represented by the same functional dependence of both accelerations (35)
and (36) on x and px, allows us to derive another equation of motion of a one-dimensional nonlinear
oscillator than that given in (26). The new equation concerns the behavior of the momentum variable px
and has its postulated form similar to (26):

1

2

(
dpx
dt

)2

+ V (px) = C latt(a0) (37)

The potential V depends solely on the momentum variable px and the constant terms. The amplitude
a0 labels now a maximum value of |px| which can be admitted by the oscillator. The time differentiation
of (37) gives

d2px
dt2

dpx
dt

+
dV (px)

dpx

dpx
dt

= 0 (38)

so
d2px
dt2

= −dV (px)

dpx
= a(px) (39)

Examples given below (see Sections 5–7) demonstrate that a functional dependence of V (px) is the
same as V (x). The constant terms entering V (px) and V (x) should be the same because a0 is equal to
the same amplitude for the oscillations of x and px.

The kinetic energy of the oscillator in the momentum space is given by the formula:

1

2

(
dpx
dt

)2

=
1

2

(
−∂C

latt

∂x

)2

(40)

Examples of (40) for special lattice cases are given in Section 5.

5. Example 1: The Simple Cubic Lattice

Since
dx

dt
=
∂Csc

∂px
= sin px (41)

the acceleration term for electrons oscillating in that lattice is :

d2x

dt2
=

d

dt
(sin px) = cos px

dpx
dt

= − cos px sinx (42)

because of (10) and (19). From Equation (23) we have

cos px = 1− cosx+ cos a0 (43)
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so the potential derivative is [see (28)]

dV

dx
= (1− cosx+ cos a0) sinx (44)

This gives

V (x) = − cosx(1 + cos a0) +
1

4
cos(2x) + VC (45)

The constant term VC is obtained from the condition of vanishing of the kinetic energy at the turning
points (33) [see (34)]:

VC =
1

2
cos2 a0 +

5

4
(46)

The validity of calculations can be checked by substituting the kinetic energy derived from the first of
the Hamilton Equations (9) and V (x) from (45) and (46) into (26). We obtain

Csc = Ekin + V (x) =
1

2
sin2 px + V (x) =

1

2
[1− (1− cosx+ cos a0)

2] + V (x)

=
1

2
(cosx− cos a0)(2− cosx+ cos a0)− cosx(1 + cos a0)

+
1

4
(2 cos2 x− 1) +

1

2
cos2 a0 +

5

4
= 1− cos a0 (47)

This is a constant result expected on the basis of the energy Equation (23). It shows that relations

Csc − V (x) =
1

2
sin2 px =

1

2

(
dx

dt

)2

= Ekin (48)

hold for any x of the oscillator.
The same energy expression in the momentum space is:

Csc − V (px) =
1

2
sin2 x =

1

2

(
dpx
dt

)2

(48a)

where V (px) depends on px in the same way as V (x) on x and the constant VC remains unchanged.
In Figure 1 parts (a), (b), (c) we demonstrate the phase space (x, px) calculated for three forms of the
electron Hamiltonian for the sc lattice. Figure 1(a) is representing a constant energy Csc = 1 − cos a0

calculated for two values of cos a0 in the case of the Hamiltonian (26) which is fully symmetrical in x
and px. Figure 1(b) plots the same energy of Csc in the case of the Hamiltonian formula given in the first
step of (47), Figure 1(c) is a plot of Csc obtained when the kinetic energy is presented according to (48a).

6. Example 2: The Body-Centered Cubic Lattice

The velocity of the oscillator representing the circulating electron is

dx

dt
=
∂Cbcc

∂px
= cosx sin px (49)

and
dpx
dt

= −∂C
bcc

∂x
= − sinx cos px (50)
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Figure 1. The (x, px) plot of a constant energy Csc of the simple cubic lattice done for two
values of cos a0 : 1/2 and −1/3. Figure 1a is based on the Hamiltonian formula (23), Figure
1b is obtained from the first step of (47), Figure 1c is based on the energy expression given
in (48a) and inferences below of it. x and px are expressed in radians.
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The corresponding acceleration term is:

d2x

dt2
= − sinx

dx

dt
sin px + cosx cos px

dpx
dt

= − sinx cosx sin2 px + cosx cos px(− sinx cos px)

= − sinx cosx = −dV
dx

(51)

In this special (bcc) case (51) is a function of x alone. The potential energy obtained from the integral
of the negative acceleration term is:

V (x) = −1

4
cos(2x) + VC (52)
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The constant VC can be derived from the energy balance at the turning points at which the oscillator
velocity is zero because of px = 0; see (49). This gives the condition:

V (±a0) =
1

4
cos(2a0) + VC = 1− cos a0 (53)

so
VC = 1− cos a0 +

1

4
cos(2a0) (54)

A control of the calculations requires to add the kinetic energy

1

2

(
dx

dt

)2

=
1

2
cos2 x sin2 px =

1

2
cos2 x(1− cos2 px) =

1

2
(cos2 x− cos2 a0) (55)

to the potential one calculated in (52)–(54). In (55) we eliminate the variable px with the aid of
the relation

cosx cos px = cos a0 (56)

obtained from (24). A sum of (55) and (52) supplemented by the result in (54) for VC gives

Cbcc = Ekin + V (x) =
1

2
(cos2 x− cos2 a0)−

1

4
(2 cos2 x− 1) + 1− cos a0

+
1

4
(2 cos2 a0 − 1) = 1− cos a0 (57)

which is a constant energy term entering Equation (24). In the momentum space a counterpart of (55) is

1

2

(
dpx
dt

)2

=
1

2
sin2 x cos2 px (55a)

See (55) and a similar change of the variable x into px concerns the expression of V (x) in (52). The
constant VC remains unchanged. In Figure 2 we plot the constant energy Cbcc = 1− cos a0 in the phase
space (x, px) for the case of a fully symmetrical Hamiltonian formula (24). But an identical plot in
(x, px) is obtained for Cbcc when Ekin = Ekin(x, px) calculated from the first step in (55) and V (x) from
the second step in (57) are taken into account. By the property of symmetry the calculation of Cbcc done
with the aid of the kinetic energy (55a) and V (px) taken instead of V (x) gives a result identical to that
of the former two approaches, viz., (24), or (55) and (57).

7. Example 3: The Face-Centered Cubic Lattice

Here

dx

dt
=
∂C fcc

∂px
=

1

2
sin px(1 + cos x) (58)

dpx
dt

= −∂C
fcc

∂x
= −1

2
sinx(1 + cos px) (59)

and
d2x

dt2
=

1

2
cos px

dpx
dt

(1 + cos x) +
1

2
sin px(− sinx)

dx

dt

= − cos px
1

2
sinx(1 + cos px)(1 + cos x)

1

2
+ sin px sinx

1

2
sin px(1 + cos x)

1

2

= −1

4
sinx(1 + cos x)(1 + cos px) (60)
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Figure 2. The (x, px) plot of a constant energy Cbcc of the body centered cubic lattice; two
values applied for cos a0 are: 1/2 and 1/4. The plot obtained on the basis of (24) degenerates
with the energy plot having Ekin taken from the first step in (55) and V (x) taken from the
second step in (57), as well as with the plot based on Ekin taken from (55a) and V (px)

considered instead of V (x).

1�2

1�4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

A further calculation requires to eliminate the dependence on px on the basis of the energy formula
in (25). We obtain

cos px =
3− cosx− 2(1− cos a0)

1 + cos x
(61)

which can be substituted into (60). This gives:

d2x

dt2
= −1

4
sinx(1 + cos x)

[
1 +

3− cosx− 2(1− cos a0)

1 + cos x

]
= −1

2
sinx(1 + cos a0) = −dV

dx
(62)

The expression in (34) taken with a minus sign should be next integrated over the variable x. The
result is

V (x) = −1

2
cosx(1 + cos a0) + VC (63)

where
VC = 1− 1

2
cos a0 +

1

2
cos2 a0. (64)

The constant VC is obtained from the requirement of the energy conservation at the turning
points see (25):

V (±a0) = −1

2
cos a0(1 + cos a0) + VC = 1− cos a0 = C fcc(a0) (65)

The kinetic energy in the fcc lattice is from (58):

Ekin =
1

2

(
dx

dt

)2

=
1

8
sin2 px(1 + cos x)2 =

1

2
(cosx− cos a0)(1 + cos a0) (66)

This energy added to V (x) gives a constant value equal to C fcc(a0) see (25):

Ekin + V (x) =
1

2
(cosx− cos a0)(1 + cos a0)−

1

2
cosx(1 + cos a0)

+ 1− 1

2
cos a0 +

1

2
cos2 a0 = 1− cos a0 = C fcc(a0) (67)
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Symmetrical expressions to those in (66) and (67) can be obtained in the momentum space by a
replacement–in the first step of (66) and in (67)–of the variable px by x, and the variable x by px. In
Figure 3 parts (a), (b), (c) we plot the constant energy C fcc = 1 − cos a0 in the phase space (x, px)

calculated: (i) from (25) (see Figure 3(a)), (ii) from Ekin obtained in the first step of (66) and V (x) is
taken from (67), (iii) from the formula (37) specified for the case of the fcc lattice. The degeneracy of
the plots observed for the bcc case does not exist for the fcc lattice.

Figure 3. The (x, px) plot of a constant energyC fcc of the face centered cubic lattice done for
two values of cos a0 : 1/2 and −1/2. Figure 3(a) is based on the Hamiltonian formula (25);
Figure 3(b) is calculated on the basis of Ekin obtained in the first step of (66) and V (x) taken
from (67); Figure 3(c) is a plot of the energy formula (37) specified for the case of the fcc
lattice.

1�2

-1�2

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

(a)

1�2

-1�2

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

(b)

1�2

-1�2

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

(c)

8. Equations of Motion as a Basis in Calculating the Cyclotron Frequency

This kind of approach replaces that quoted in Equation (1).
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On the first step, the motion of crystal electrons close to a free-electron behavior attained at small kx,
ky, kx is examined; see (14). In this case the energy expressions (23)–(25) of a planar motion (kx = x,
ky = px) are reduced to the formula

C free =
x2

2
+
p2x
2

=
a20
2

(68)

This is a typical Hamiltonian of the harmonic oscillator. In accordance with the oscillator property at
x = ±a0 is attained px = 0, and vice versa, px = ±a0 is attained at x = 0.

The electron velocity is
dx

dt
=
∂C free

∂px
= px =

√
a20 − x2 (69)

On the basis of (69) a half of the time period of the oscillator can be readily calculated from the integral

T

2
=

∫
dt =

∫ a0

−a0

dx√
a20 − x2

= arcsin

(
x

a0

) ∣∣∣∣x=a0
x=−a0

=
π

2
+
π

2
= π (70)

In effect
T = 2π (71)

In case the potential V (x) instead of the velocity (69) is considered, we have as a starting point
the relation

1

2

(
dx

dt

)2

= C free − V (x) =
a20
2
− x2

2
(72)

The V (x) in (72) is obtained readily from the acceleration formula

d2x

dt2
=

d

dt

(
∂C free

∂px

)
=
dpx
dt

= −∂C
free

∂x
= −x = −dV

dx
(73)

since the integral of the potential derivative over the variable x gives:

V (x) =
x2

2
+ VC (74)

At x = ±a0 we have dx/dt = 0, so the potential energy should be equal there to a total energy (68).
This gives the equation

a20
2

+ VC =
a20
2

(75)

so VC = 0. In effect, the expression under the integral with respect to x leading to T becomes identical
to that applied in (70).

Since the general formula for the circular frequency is

Ω =
2π

T
(76)

we obtain in view of (70)

Ω =
2π

2π
= 1 (77)

This is precisely a result for Ω obtained in (2), on the condition that the values of parameters (8) are
substituted into (2).
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The situation for the crystal electrons becomes much similar to that for the free ones. Because the
kinetic and potential energies add together to a constant value for any x, it is inessential whether we apply
the kinetic, i.e., the velocity-dependent, energy expression, or the potential energy in the calculations. In
the velocity case, since

dx

dt
=
∂C latt

∂px
(78)

the integral formula
T

2
=

∫
dt =

∫ a0

−a0

(
∂C latt

∂px

)−1
dx (79)

can be applied for any lattice. For example, for the sc lattice we have see (41)

∂Csc

∂px
= sin px = [1− (1− cosx+ cos a0)

2]1/2 (80)

where the transformation of the dependence on px into that on x is obtained on the basis of (43). But the
potential V (x) can be also used. In this case, because of the relation(

dx

dt

)2

= 2[C latt − V (x)] (81)

the integral formula becomes:

T

2
=

∫
dt =

1√
2

∫ a0

−a0
[C latt − V (x)]−1/2 dx (82)

An equivalence of the both approaches can be easily demonstrated. For the bcc case we have [see (52)]

Cbcc − V (x) = 1− cos a0 +
1

4
cos(2x)− 1 + cos a0 −

1

4
cos(2a0)

=
1

2
(cos2 x− cos2 a0) =

1

2

(
dx

dt

)2

(83)

where the second and the last step are obtained because of the formulae (54) and (55).
A similar calculation can be done for the fcc lattice, since from (25), (63) and (66) we have:

C fcc − V (x) =
1

2
(cosx− cos a0)(1 + cos a0) =

1

2

(
dx

dt

)2

(84)

9. Cyclotron Oscillation Periods and Frequencies

The effect of the crystal potential is represented by the dependence of Ω on the amplitude a0 absent
in (2), (16) and (77). These Ω are reduced to that obtained in (77) only if a0 is tending to zero, a situation
obtained when the crystal electrons approach the behavior of the free-electron particles.

With a substitution
sin

x

2
= sin

a0
2

sin
z

2
(85)

the time period
T

4
=

∫ a0

0

dx

(cosx− cos a0)1/2(2 + cos a0 − cosx)1/2
(86)
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of the electron oscillation in the sc lattice can be represented by the formula

T

4
=

∫ π/2

0

dz(
1− sin2 a0

2
sin2 z

)1/2 [
1− sin2 a0

2
(1− sin2 z)

]1/2 (87)

With another substitution
k = sin

a0
2

(88)

the integral in (87) becomes:

T

4
=

∫ π/2

0

dz[
1− k2 +

k4

4
sin2(2z)

]1/2 =
1√

1− k2

∫ π/2

0

dz[
1 +

k4

4(1− k2)
sin2(2z)

]1/2
Assuming that 2z = w the last integral becomes

T

4
=

1√
1− k2

∫ π/2

0

dw[
1 +

k4

4(1− k2)
sin2w

]1/2
=

1

cos
(
a0
2

) ∫ π/2

0

dw[
1 +

1

4
tg2
(a0

2

)
sin2

(a0
2

)
sin2w

]1/2
With the aid of the formula (76) this leads to the expression for the cyclotron frequency

ωsc =
π cos

(a0
2

)
2K

[
−1

4
sin2

(a0
2

)
tg2
(a0

2

)] (89)

where

K(µ) =

∫ π/2

0

dz

(1− µ sin2 z)1/2
(90)

The expansion of (89) in powers of a0 is presented in Table 1. This expansion is equal to that
calculated earlier with the aid of more conventional, but also more complicated, methods [11].

The bcc problem is equivalent to an elliptic integral similar to that met in the problem of the
mathematical pendulum:

T

4
=

∫ a0

0

dx

(cos2 x− cos2 a0)1/2
(91)

A substitution of
sinx = sin a0 sin z (92)

provides us with the formula

T

4
=

∫ π/2

0

sin a0 cos z dz

(sin2 a0 − sin2 a0 sin2 z)1/2 cosx

=

∫ π/2

0

dz

(1− sin2 a0 sin2 z)1/2
= K(sin2 a0) (93)

Because of (76) the cyclotron frequency in the bcc lattice becomes

ωbcc =
π

2K(sin2 a0)
(94)

its power expansion in terms of a0 is also presented in Table 1.
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Table 1. Cyclotron frequencies of the tightly-bound s electrons gyrating in cubic crystal
lattices see (89), (94) and (98).

sc lattice

ωsc = 1− a20
8

+
5a40
768
− 17a60

92160
− 11a80

16515072
− 5753a100

29727129600
− 46177a120

6278369771520
− . . .

= 1.− 0.125a20 + 0.00651042a40 − 0.000184462a60 − 6.66058× 10−7a80

− 1.93527× 10−7a100 − 7.35493× 10−9a120 − . . .
bcc lattice

ωbcc = 1− a20
4

+
a40

192
− 23a60

11520
− 2519a80

5160960
− 140333a100

928972800
− 23798857a120

490497638400
− . . .

= 1.− 0.25a20 + 0.00520833a40 − 0.00199653a60 − 0.000488087a80

− 0.000151063a100 − 0.0000485198a120 − . . .
fcc lattice

ωfcc = 1− 3a20
16

+
11a40
1024

− 21a60
81920

+
1891a80

440401920
− 1213a100

317089382400
+

75113a120
31890132172800

+ . . .

= 1.− 0.1875a20 + 0.0107422a40 − 0.000256348a60 + 4.29381× 10−6a80

− 3.82542× 10−9a100 + 2.35537× 10−9a120 + . . .

The period of the electron oscillation in the fcc lattice is given by the integral:

T

4
=

1

(1 + cos a0)1/2

∫ a0

0

dx

(cosx− cos a0)1/2

=
1√
2

1

(1 + cos a0)1/2

∫ a0

0

dx

[sin2(a0/2)− sin2(x/2)]1/2
(95)

A substitution
sin
(x

2

)
= sin

(a0
2

)
sin z (96)

provides us with the following expression

T

4
=

√
2

(1 + cos a0)1/2

∫ π/2

0

dz

[1− sin2(a0/2) sin2 z]1/2

=

√
2

(1 + cos a0)1/2
K[sin2(a0/2)] (97)

which evidently is also proportional to an elliptic integral. The cyclotron frequency in the fcc lattice is
see (76):

ωfcc =
π(1 + cos a0)

1/2

2
√

2K[sin2(a0
2

)]
(98)

A power expansion of it is also given Table 1. The accordance of the expansions in Table 1 with those
calculated formally with aid of other methods [11] becomes evident. A physical cyclotron frequency is
obtained when ωlatt of Table 1 is multiplied by a factor presented in (16); see the end of Section 1.
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An extension of the frequency calculations for the sc and bcc lattices to the case of kz 6= 0 is
straightforward. If the energies Esc in (11) and Csc in (23) are equal, i.e., they concern the same Fermi
surface [see also (17)], we obtain for kx = x, ky = px the relation

Esc = 3− cosx− cos px − cos kz = 2− cos a′0 − cos kz = Csc = 1− cos a0 (99)

where a′0 is the amplitude of the oscillation on the plane kz 6= 0. Equation (41) holds also in this case,
therefore the formula (89) for the cyclotron frequency is valid with a0 replaced by a′0. In effect, the a0
entering the expansion for the sc lattice in Table 1 should be replaced by

a′0 = arccos(1− cos kz + cos a0) (100)

A similar calculation can be done for the bcc lattice. Because of (12), (17) and (24) we have

Ebcc = 1− cosx cos px cos kz = 1− cos a′0 cos kz = Cbcc = 1− cos a0 (101)

where
cos a′0 = cosx cos px (102)

is the formula for the amplitude a′0 at kz 6= 0. In this case (49) becomes

dx

dt
= cosx sin px cos kz = (cos2 x− cos2 a′0)

1/2 cos kz (103)

In effect, an infinitesimal oscillation time

dt =
dx

(cos2 x− cos2 a′0)
1/2

1

cos kz
(104)

becomes inversely proportional to cos kz. The formula for the oscillation frequency is similar to that
in (94), namely

ωbcc = cos kz
π

2K(sin2 a′0)
(105)

where from (101)

a′0 = arccos

(
cos a0
cos kz

)
(106)

The calculation of the oscillation frequency at kz 6= 0 for the fcc lattice is based on the energy
formulae (13), (17) and (25):

2Efcc = 3− cosx cos px − cos px cos kz − cos kz cosx

= 3− cos a′0 − cos kz − cos kz cos a′0 = 2C fcc = 2− 2 cos a0 (107)

This gives
dx

dt
=
∂Efcc

∂px
=

1

2
sin px(cos kx + cos kz) (108)

from which

T

4
=

∫ a′0

0

dx
1
2

sin px(cosx+ cos kz)

= 2

∫ a′0

0

dx[
1−

(
cos a′0 + cos kz(1 + cos a′0 − cosx)

cosx+ cos kz

)2
]1/2

(cosx+ cos kz)

(109)
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where
cos a′0 =

1 + 2 cos a0 − cos kz
1 + cos kz

(110)

with

cosx = 1− 2 sin2
(x

2

)
(111)

cos a′0 = 1− 2 sin2

(
a′0
2

)
(112)

we obtain

T

8
=

1√
2(1 + cos kz)1/2

×
∫ a′0

0

dx

[sin2(
a′0
2

)− sin2(x
2
)]1/2[(1 + cos a0)(1 + cos kz)− 2(1− cos kz) sin2(x

2
)]1/2

(113)

Another substitution

sin
(x

2

)
= sin

(
a′0
2

)
sin z (114)

gives

T

8
=

√
2

(1 + cos kz)(1 + cos a′0)
1/2

×
∫ π/2

0

dz

[1− sin2(
a′0
2

) sin2 z]1/2

[
1−

2(1− cos kz) sin2(
a′0
2

)

(1 + cos a′0)(1 + cos kz)
sin2 z

]1/2 (115)

By applying the formula [12]∫ π/2

0

dz

(1−m sin2 z)1/2(1− n sin2 z)1/2
=

1

(1− n)1/2

∫ π/2

0

dz(
1− n−m

n− 1
sin2 z

)1/2
(116)

a following elliptic integral defines the time period T :

T =
8
√

2

(1 + cos kz)(1 + cos a′0)
1/2 cos(

a′0
2

)

×
∫ π/2

0

dz{
1 + tg2(

a′0
2

)

[
1− 2(1− cos kz)

(1 + cos a′0)(1 + cos kz)

]
sin2 z

}1/2
(117)

from which the calculation of the cyclotron frequency ωfcc is straightforward.
Following (76), any time period of the oscillation can be next transformed into the frequency Ω.

These Ω differ from the result of unity for free electrons [see (77)] by the power expansions presented
in terms of a dimensionless amplitude parameter a0, or a′0 and kz. Physical values of Ω are obtained by
multiplying the dimensionless Ω by a factor equal to (16); see the end of Section 2.
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10. Extensions of the Method to More Complicated Hamiltonians

The Hamiltonians discussed above were symmetrical with respect to an interchange of the variables x
and px. The amplitude a0 can be referred to a crystal state (kx, ky) lying in a plane kz = 0 by the formula∣∣∣∣Elatt(kx, ky, kz = 0)− Elatt(0, 0, kz = 0)

βlatt

∣∣∣∣ = 1− cos a0 (118)

where latt = sc, bcc, fcc.
More complicated Hamiltonians can be obtained, for example, when more atomic layers than that of

the nearest atomic neighbors are considered. Let the second atomic layer interacting with a central atom
be assumed as also important for the band energy in the sc lattice. The atomic distribution in that layer is
similar to a layer of the nearest atomic neighbors in the fcc lattice. In this case the oscillation amplitude
is referred to the electron energy by the formula

Esc(2 layers)(kx, ky, kz = 0)− Esc(2 layers)(0, 0, kz = 0)

βI
= (1− cos a0)

(
1 +

βII

βI

)
(119)

where βI is characteristic for the nearest neighbors in the sc lattice and βII for the nearest neighbors in
the fcc lattice. Since the interaction between atoms decreases strongly with an increase of the interatomic
distance, we may assume that

|γ| =
∣∣∣∣βII

βI

∣∣∣∣ < 1 (120)

The oscillator Hamiltonian for two layers taken together into account becomes

Csc + γC fcc = 2− cosx− cos px +
1

2
γ(3− cosx cos px − cosx− cos px)

= (1− cos a0)(1 + γ) (121)

This gives the velocity

dx

dt
=
∂(Csc + γC fcc)

∂px
= sin px +

1

2
γ sin px(cosx+ 1) (122)

which vanishes at px = 0, and x = a0 is a new amplitude characteristic for this case. The
oscillation problem and calculation of the cyclotron frequency become similar to those considered for
the Hamiltonians discussed above.

But not only the spherical s-like atomic orbits define the band structure of numerous crystals. In the
case of orbits different than s, an asymmetry of the Hamiltonian describing the electron motion in the
(kx, ky)-plane should be usually taken into account. For example, the wave functions based on px-like
atomic orbitals (this symbol should not be confused with the electron momentum) can be considered,
see e.g., [10]. In the sc lattice we obtain then different interaction between the nearest atomic neighbors
lying in two sites (±alatt, 0, 0) than with the neighbors lying in two sites (0,±alatt, 0); in the nearest
neighbors approximation the interaction with the remaining two sites (0, 0,±alatt) becomes inessential
for the planar motion in the (x, y)-plane. In this case the Hamiltonian for three dimensions becomes

Esc(px orbits) = βx[1− cos(kxalatt) + γ(2− cos(kyalatt)− cos(kzalatt))] (123)
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Here βx refers to the interaction between the nearest atomic neighbors in the x-direction and the ratio

γ =
βy(x)
βx

=
βz(x)
βx

(124)

refers the βx interaction to the interaction of the central atom with the neighbors placed in the y

and z directions. Assuming the oscillator motion along axis x in the plane kz = 0 is considered, the
Hamiltonian for that motion which replaces (19) becomes :

C
sc(x)
px orbits = 1− cosx+ γ(1− cos px) = 1 + γ − cosx− γ cos px

= 1− cos a0x (125)

since β in (17) can be replaced by βx. The last step in (125) is obtained because

dx

dt
=
∂C

sc(x)
px orbits

∂px
= γ sin px = 0 (126)

for px = 0, and in this case x = a0x. The kinetic energy of the motion calculated with the aid of (125)
and (126) is:

1

2

(
dx

dt

)2

= γ(cosx− cos a0x)−
1

2
(cosx− cos a0x)

2 (127)

The potential energy obtained from the acceleration formula

d2x

dt2
=

d

dt

(
∂C

sc(x)
px orbits

∂px

)
= γ cos px

dpx
dt

= γ cos px

(
−
∂C

sc(x)
px orbits

∂x

)
= −γ cos px sinx = −dV

dx
(128)

becomes
V (x) = − cosx(1 + γ + cos a0x) +

1

2

∫
sin(2x) dx+ VC (129)

The integration constant VC can be obtained from the condition that at x = a0x the total energy
in (125) is equal to the potential energy. This gives

VC = γ cos a0x +
1

4
cos(2a0x)− cos2 a0x (130)

A check of calculations is a sum

1

2

(
dx

dt

)2

+ V (x) = 1− cos a0x (131)

which is equal to a constant energy value entering (125). This makes possible to calculate the oscillation
period of time by an integration of the electron velocity obtained either from the formula (127), or from
the energy balance represented by (129) and (131). The integration should be performed between two
turning points, −a0x and a0x, of the oscillator.

But an oscillator along the axis y can be equally considered. This changes the amplitude of the
oscillation because of the asymmetry of the Hamiltonian in (123). For the sake of convenience this
Hamiltonian can be written (kx = py, ky = y, kz = 0):

C
sc(y)
px orbits = 1− cos py + γ(1− cos y) = γ(1− cos a0y) (132)
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We have
dy

dt
=
∂C

sc(y)
px orbits

∂py
= γ sin py = 0 (133)

attained at the amplitude a0y different than a0x because the right-hand side of (132) is different than that
in (125). The kinetic energy of the motion is:

1

2

(
dy

dt

)2

=
1

2
sin2 py = γ(cos y − cos a0)−

1

2
γ2(cos y − cos a0)

2 (134)

and the acceleration in direction y:

d2y

dt2
=

d

dt

(
∂C

sc(y)
px orbits

∂py

)
= cos py

dpy
dt

= cos py

(
−
∂C

sc(y)
px orbits

∂y

)
= −γ cos py sin y = −dV

dy
(135)

The corresponding potential energy is an integral of (135):

V (y) = −γ cos y(1 + γ cos a0y) +
1

2
γ2
∫

sin(2y) dy + VC (136)

with the integration constant

VC = γ +

(
1

2
cos2 a0y +

1

4

)
γ2 (137)

obtained from the condition that at y = a0y the potential energy (136) should be equal to the total energy
in (132). A check of calculations is a sum

1

2

(
dy

dt

)2

+ V (y) = γ(1− cos a0y) (138)

which gives for any y the result of a constant energy entering (132).
The cyclotron frequency can be calculated equally from the oscillator motions performed in x and y

directions. The integral limits in the second case are (−a0y, a0y).

11. Summary

The paper presents a method of calculating the cyclotron frequency of electrons circulating in cubic
crystal lattices upon the action of a constant magnetic field. An approximation of the tightly-bound
electrons is mainly assumed for the electron Hamiltonians.

In the first step, an analysis is developed on the symmetry properties of the crystal Hamiltonian
as well as the similar properties of the Lorentz equation governing the electron motion in an external
magnetic field.

For the field directed along the axis z, the planar motion in the space of the wave vector ~k has the
variable kz as a constant parameter, and the variables kx and ky in the motion plane can be considered as
canonical position and momentum variables of an anharmonic one-dimensional oscillator. The second
step is based on a separation of the total energy of the oscillator into the kinetic and potential parts, which
readily provides us with the analytic integral formulae for the time period of the cyclotron oscillation.
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This way is much more simple than a former one [11] in which the oscillation frequencies, or time
periods, are obtained either from the action function, or from a direct solution of the differential equation
of an oscillator. Moreover, the motion parameters of a crystal electron oscillating upon the action of the
magnetic field, for example the electron velocity dx

dt
, can be easily examined for any electron position

within the oscillation limits (22). This velocity can be obtained for any x on the basis of (26):

dx

dt
= 21/2[C latt(a0)− V (x)]1/2 (139)

on the condition that V (x) is a known function of x. In [11] the same velocity is calculated only with
the aid of a rather tedious solution of the equation of motion.

Moreover, the time t at any instant of the motion can be coupled with position x because of
the formula: ∫

dt =
1

21/2

∫
dx

[C latt(a0)− V (x)]1/2
(140)

This dependence of t on x is absent in [11]. The V (x) entering (139) and (140) is calculated for
different lattices in (45), (52), (54) and (63), (64).

A similar examination can be done for the dependence of px on x and t, on the condition that we note
a coupling between x and px due to the energy relations (23)–(25). The same energy formulae can be
applied in calculating the speed of the change of px, namely

dpx
dt

= −∂C
latt

∂x
(141)

cf. here (30). The dependence of the electron acceleration d2x
dt2

on x is easily obtainable from V (x) on
the basis of (28). The dynamical parameters in more complicated band structures than listed in Section 4
(see Section 10) can be examined in a similar way.

The Hamiltonian plots of crystal electrons in the phase space (x, px) are also examined. Beyond the
original Hamiltonian H(x, px), the Hamiltonians H(x, dx

dt
) and H(px,

dpx
dt

) are also considered. This
kind of plots in the phase space is obtained when dx

dt
and dpx

dt
entering H are calculated from the

Hamilton equations.
The calculations performed for the s-electrons taken as an example fit the cyclotron frequency data

obtained on the basis of more conventional methods; see Table 1. Outlines of an extension of the method
to other crystal cases than described by the tight-binding approximation and the s-electron band structure,
for example the case of the px-electron band, are also given.
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