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Abstract: The paper puts the emphasis on surveying information-theoretic network
measures for analyzing the structure of networks. In order to apply the quantities
interdisciplinarily, we also discuss some of their properties such as their structural
interpretation and uniqueness.
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1. Introduction

Information theory has been proven useful to solve interdisciplinary problems. For example, problems
in biology, chemistry, computer science, ecology, electrical engineering, and neuroscience have been
tackled by using information-theoretic methods such as entropy and mutual information, see [1–5]. In
particular, advanced information-measures such as the Jensen–Shannon divergence have also been used
for performing biological sequence analysis [6].

In terms of investigating networks, information-theoretic techniques have been applied in an
interdisciplinary manner [7–11]. In this paper, we put the emphasis on reviewing information-theoretic
measures to explore the network structure and shed light on some of their strong and weak points. But
note that the problem of exploring the dynamics of networks by using information theory has also been
tackled, see [12].

Interestingly, the problem of exploring graphs quantitatively emerged in the fifties when investigating
structural aspects of biological and chemical systems [13,14]. In this context, an important
problem is to quantify the structural information content of graphs by using Shannon’s information
measure [14–19]. This groundbreaking work led to numerous measurements of network complexity
by using Shannon’s information measure [15,20–22]. Particularly this task firstly appeared when
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studying the complexity of chemical and biological systems [13,23–25]. Besides studying chemical
and biological questions, the structural complexity of networks have been also explored in computer
science [1,26], ecology [10,27–29], information theory [30], linguistics [31,32], sociology [33,34], and
mathematical psychology [33,35]. Also, information-theoretic approaches for investigating networks
have been employed in network physics, see [7,36,37].

As the measures have been explored interdisciplinarily, it is particularly important to understand
their strong and weak points. Otherwise, the results of applications involving the measures can not
be understood properly. Besides surveying the most important measures, the main contribution is to
highlight some of their strong and weak points. In this paper, this relates to better understand their
structural interpretation and to gain insights about their uniqueness. The uniqueness, often called the
discrimination power or degeneracy of an information-theoretic graph measure (and of course of any
graph measure) relates to the property how well it can discriminate non-isomorphic graphs by its values,
see [38–40]. An important problem is to evaluate the degree of degeneracy of a measure by several
quantities such as the sensitivity measure due to Konstantinova [40]. Note that the discrimination power
of a measure clearly depends on the graph class in question, see [38,41].

2. Graph Entropies

2.1. Measures Based on Equivalence Criteria and Graph Invariants

To find such measures, seminal work was done by Bonchev [8,42], Mowshowitz [15–18],
Rashevsky [19] and Trucco [14]. Chronologically, Rashevsky [19], MacArthur [27] and Trucco [14]
were the first who applied Shannon’s information measure to derive an entropy of a graph characterizing
its topology. Then, Mowshowitz [15–18] called it structural information content of a graph and
developed a theory to study the properties of such graph entropies under certain graph operations such
as product, join etc. So far, numerous related quantities have been defined by applying the general
approach of deriving partitions based on a graph invariant which is due to Mowshowitz [15]. As a result
of these developments, Bertz [43], Basak et al. [44,45] and Bonchev [8,42,46] contributed various related
measures which are all based on the idea of deriving partitions by using a graph invariant, e.g., vertices,
edges, degrees, and distances.

Let G = (V,E) be a graph, X be a graph invariant, and τ be an equivalence criterion. Then, G can be
partitioned with respect to the elements of the graph invariant under consideration. From this procedure,
one also obtains probability values for each partition [8,15] given by pi :=

|Xi|
|X| . By applying Shannon’s

information measure [5], we yield the graph entropies as follows [8]:

It(G, τ) := |X| log(|X|)−
k∑

i=1

|Xi| log(|Xi|) (1)

Im(G, τ) := −
k∑

i=1

|Xi|
|X|

log

(
|Xi|
|X|

)
(2)

where k equals the number of different partitions. It is called total information content and Im is called
the mean information content of G, respectively.
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In the following, we survey graph entropy measures exemplarily by applying this principle. Besides
well-known quantities, we also mention more recently developed indices.

1. Topological information content due to Rashevsky [19]:

Ia(G) := −
k∑

i=1

|Ni|
|V |

log

(
|Ni|
|V |

)
(3)

|Ni| denotes the number of topologically equivalent vertices in the i-th vertex orbit of G. k is
the number of different orbits. This measure is based on symmetry in a graph as it relies on
its automorphism group and vertex orbits. It can be easily shown that Ia vanishes for vertex
transitive graphs. Also, it attains maximum entropy for asymmetric graphs. However, it has been
shown [41] that these symmetry-based measures possess little discrimination power. The reason
for this is that many non-isomorphic graphs have the same orbit structure and, hence, they can not
be distinguished by this index. Historically seen, the term topological information content was
proposed by Rashevski [19]. Then, Trucco [14] redefined the measure in terms of graph orbits.
Finally, Mowshowitz [15] studied extensively mathematical properties of this information measure
for graphs (e.g., the behavior of Ia under graph operations) and generalized it by considering
infinite graphs [18].

2. Symmetry index for graphs due to Mowshowitz et al. [47]:

S(G) := (log(|V |)− Ia(G)) + log (|Aut(G)|) (4)

In [47], extremal values of this index and formulas for special graph classes such as wheels, stars
and path graphs have been studied. As conjectured, the discrimination power of S turned out to be
higher than by using Ia as a discriminating term log (|Aut(G)|) has been added, see Equation (4).
In particular, we obtained this result by calculating S on a set of 2265 chemical graphs whose
order range from four to nineteen. A detailed explanation of the dataset can be found in [48].

3. Chromatic information content due to Mowshowitz [15,16]:

Ic(G) := min
V̂

{
−

h∑
i=1

ni(V̂ )

|V |
log

(
ni(V̂ )

|V |

)}
(5)

where V̂ := {Vi|1 ≤ i ≤ h}, |Vi| := ni(V̂ ) denotes an arbitrary chromatic decomposition
of a graph G. h = χ(G) is the chromatic number of G. Graph-theoretic properties of Ic

and its behavior on several graph classes have been explored by Mowshowitz [15,16]. To our
knowledge, the structural interpretation of this measure as well as the uniqueness has not yet been
explored extensively.

4. Magnitude-based information indices due to Bonchev et al. [49]:

ID(G) := − 1

|V |
log

(
1

|V |

)
−

ρ(G)∑
i=1

2ki
|V |2

log

(
2ki
|V |2

)
(6)

IWD (G) := W (G) log(W (G))−
ρ(G)∑
i=1

iki log(i) (7)
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where ki is the occurrence of a distance possessing value i in the distance matrix of G. The
motivation to introduce these measures was to find quantities which detect branching well,
see [49]. In this context, branching of a graph correlates with the number of terminal vertices.
By using this model, Bonchev et al. [49] showed numerically and by means of inequalities that
these indices detect branching meaningfully. Also, it turned out that magnitude-based information
indices possess high discrimination power for trees. But recent studies [50] have shown that
the uniqueness of the magnitude-based information indices deteriorate tremendously when being
applied to large sets of graphs containing cycles. More precisely, Dehmer et al. [50] evaluated
the uniqueness of several graph entropy measures and other topological indices by using almost
12 million non-isomorphic, connected and unweighted graphs possessing ten vertices.

5. Vertex degree equality-based information index found by Bonchev [8]:

Ideg(G) :=
k̄∑

i=1

|Nkv
i |

|V |
log

(
|Nkv

i |
|V |

)
(8)

where |Nkv
i | is the number of vertices with degree equal to i and k̄ := maxv∈V kv. Note that this

quantity is easy to determine as the time complexity of the calculation of the degrees is clearly
polynomial. But it is intuitive that a simple comparison of the degree distribution of graphs is not
meaningful to discriminate their structure. In [50], it has been shown that this measure possesses
little discrimination power when applying the quantity to several sets of graphs.

6. Overall information indices found by Bonchev [46,51]:

OX(G) :=

|E|∑
k=0

kX; {X} := {0X, 1X, . . . , |E|X} (9)

I(G,OX) := OX log(OX)−
|E|∑
k=0

kX log
(
kX
)

(10)

The index calculates the overall value OX of a certain graph invariant X by summing up its
values in all subgraphs, and partitioning them into terms of increasing orders (increasing number
of subgraph edges k). In the simplest case, we have OX = SC, i.e., it is equal to the subgraph
count [51]. Several more overall indices and their informational functionals have been calculated,
such as overall connectivity (the sum of total adjacency of all subgraphs), overall Wiener index
(the sum of total distances of all subgraphs), the overall Zagreb indices, and the overall Hosoya
index [51]. They all share (with some inessential variations) the property to increase in value with
the increase in graph complexity. The properties of most of these information functionals will not
be studied here in detail.

Clearly, we only surveyed a subset of existing graph entropy measures. Further measures which are
based on the same criterion can be found in [51–53]. Also, we would like to mention that information
measures for graphs based on other entropy measures have been studied [54]. For instance, Passerini
and Severini [54] explored the von Neumann entropy of networks in the context of network physics.
Altogether, the variety of existing network measures bears great potential for analyzing complex
networks quantitatively. But in the future, the usefulness and ability of these measures must be
investigated more extensively to gain further theoretical insights in terms of their properties.
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2.2. Körner Entropy

The definition of the Körner entropy is rooted in information theory and has been introduced to solve a
particular coding problem, see [30,55]. Simony [55] discussed several definitions of this quantity which
have been proven to be equivalent. One definition thereof is

H(G,P ) := lim
t−→∞

min
U⊆V t,P t(U)>1−ϵ

1

t
log(χ(Gt(U))) (11)

For V ′ ⊆ V (G), the induced subgraph on V ′ is denoted by G(V ′) and χ(G) is the chromatic number [56]
of G, Gt the t-th co-normal power [30] of G and

P t(U) :=
∑
x∈U

P t(x) (12)

Note that P t(x) is the probability of the string x, see [55]. Examples and the interpretation of this graph
entropy measure can be found in [30,55]. Due to the fact that its calculation relies on the stable set
problem, its computational complexity may be insufficient. To our knowledge, the Körner entropy has
not been used as a graph complexity measure in the sense of the quantities described in the previous
section. That means, it does not express the structural information content of a graph (as the previously
mentioned graph entropies) as it has been used in a different context, see [30,55]. Also, its computational
complexity makes it impossible to apply this quantity on a large scale and to investigate properties such
as correlation and uniqueness.

2.3. Entropy Measures Using Information Functionals

Information-theoretic complexity measures for graphs can also be inferred by assigning a probability
value to each vertex of a graph in question [9,21]. Such probability values have been defined by using
information functionals [9,21,48]. In order to define these information functionals, some key questions
must be answered:

• What kind of structural features (e.g., vertices, edges, degrees, distances etc.) should be used to
derive meaningful information functionals?

• In this context, what does “meaningful” mean?
• In case the functional is parametric, how can the parameters be optimized?
• What kind of structural information does the functional as well as the resulting entropy detect?

To discuss the first item, see [9,21,48] and note that metrical properties have been used to derive such
information functionals. In order to prove whether a functional as well as the resulting entropy measures
captures structural information meaningfully, an optimality criterion is needed. For example, suppose
there exists a data set where the class labels of its entities (graphs) are known. By employing supervised
machine learning techniques, the classification error can be optimized. Note that the last item relates
to investigate the structural interpretation of the graph entropy measure. Indeed, this question could be
raised for any topological index.
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In order to reproduce some of these measures, we start with a graph G = (V,E) and let f be an
information functional representing a positive function that maps vertices to the positive reals. Note that
f captures structural information of G. If we define the vertex probabilities as [9,21]

p(vi) :=
f(vi)∑|V |
j=1 f(vj)

(13)

we yield the families of information-theoretic graph complexity measures [9,48]:

If (G) := −
|V |∑
i=1

f(vi)∑|V |
j=1 f(vj)

log

(
f(vi)∑|V |
j=1 f(vj)

)
(14)

Iλf (G) := λ

log(|V |) +
|V |∑
i=1

f(vi)∑|V |
j=1 f(vj)

log

(
f(vi)∑|V |
j=1 f(vj)

) (15)

λ > 0 is a scaling constant. Typical information functionals are [9,21,48]

f1(vi) := αc1|S1(vi,G)|+c2|S2(vi,G)|+···+cρ(G)|Sρ(G)(vi,G)|, ck > 0, 1 ≤ k ≤ ρ(G), α > 0 (16)

and

f2(vi) := c1|S1(vi, G)|+ c2|S2(vi, G)|+ · · ·+ cρ(G)|Sρ(G)(vi, G)|, ck > 0, 1 ≤ k ≤ ρ(G) (17)

The parameters ck > 0 to weight structural characteristics or differences of G in each sphere have to
be chosen such that at least ci ̸= cj holds. Otherwise the probabilities become 1

|V | leading to maximum
entropy log(|V |). For instance, the setting c1 > c2 > · · · > cρ(G) have often been used, see [9,21,48].
Also, other schemes for the coefficients can be chosen but need to be interpreted in terms of the
structural interpretation of the resulting entropy measure. As the measures are parametric (when using
a parametric information functional), they can be interpreted as generalizations of the aforementioned
partition-based measures.

By applying Equation (15), concrete information measures to characterize the structural complexity
chemical structures have been derived in [48]. For example, if we choose the coefficients linearly
decreasing, e.g.,

c1 := ρ(G), c2 := ρ(G)− 1, . . . , cρ(G) := 1 (18)

or exponentially decreasing, e.g.,

c1 := ρ(G), c2 := ρ(G)e−1, . . . , cρ(G) := ρ(G)e−ρ(G)+1 (19)

the resulting measures are called Iλ
fV
lin

and IλfV
exp

, respectively. Importantly, it turned out that Iλ
fV
lin

and IλfV
exp

possess high discrimination power when applying them to real and synthetic chemical graphs, see [48].
To obtain more advanced information functionals, the concept outlined above has been extended

in [57]. The main idea for deriving these information functionals is based on the assumption that starting
from an arbitrary vertex vi ∈ V , information spreads out via shortest paths in the graph which can be
determined by using Dijkstra’s algorithm [58]. Then, more sophisticated information functionals as well
as complexity measures have been defined [57] by using local property measures, e.g., vertex centrality
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measures [59]. In particular, some of them turned out to be highly unique when applying the measures
to almost 12 million non-isomorphic, connected and unweighted graphs possessing ten vertices [50].
Interestingly, the just mentioned information-theoretic complexity measures showed a constantly high
uniqueness that does not depend much on the cardinality of the underlying graph set. This property is
desirable as we found that the uniqueness of the most existing measures deteriorates dramatically if the
cardinality of the underlying graph set increases.

2.4. Information-Theoretic Measures for Trees

In this section, we sketch a few entropic measures which have been developed to characterize trees
structurally. For example, Emmert-Streib et al. [60] developed an approach to determine the structural
information content of rooted trees by using the natural partitioning of the vertices in such a tree. That
means the number of vertices can be counted on each tree level which leads to a probability distribution
and, thus, to an entropy characterizing the topology of a rooted tree. Dehmer [57] used this idea to
calculate the entropy of arbitrary undirected graphs by applying a decomposition approach. Mehler [31]
also employed entropic measures as balance and imbalance measures of tree-like graphs in the context
of social network analysis. Other aspects of tree entropy have been tackled by Lions [61].

2.5. Other Information-Theoretic Network Measures

Apart from information-theoretic measures mostly used in mathematical and structural chemistry,
several other entropic networks measures for measuring disorder relations in complex networks have
been explored in the context of network physics, see [62]. If P (kv) denotes the probability of a vertex v

possessing degree k, the distribution of the so-called remaining degree was defined by [62]

q(kv) :=
(k + 1)Pkv+1

< k >
(20)

<k>:=
∑

k kP (kv). By applying Shannon’s information measure, the following graph entropy measure
has been obtained [62]:

I(G) :=

|V |∑
i=1

q(i) log(q(i)) (21)

It can be interpreted as a measure for determining the heterogeneity of a complex network [62]. In order
to develop information indices for weighted directed networks, Wilhelm et al. [63] defined the measure
called Medium Articulation that obtains its maximum for networks with a medium number of edges. It
has been defined by [63]

MA(G) := R(G) · I(G) (22)

where

R(G) := −
∑
i,j

Tvivj log

(
T 2
vivj∑

k Tvkvj

∑
l Tvivl

)
(23)

represents the redundancy and [63]

I(G) :=
∑
i,j

Tvivj log

(
Tvivj∑

k Tvkvj

∑
l Tvivl

)
(24)
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the mutual information.
Finally, the normalized flux from vi to vj is

Tvivj :=
tvivj∑
k,l tvkvl

(25)

tvivj is the flux (edge weight) between vi and vj . It can be easily shown that R vanishes for a directed ring
but attains its maximum for the complete graph [63]. The behavior of I is just converse. This implies
that MA vanishes for extremal graphs and attains its maximum in between [63]. We remark that a critical
discussion of MA and modified measures have been recently contributed by Ulanowicz et al. [64].

For finalizing this section, we also reproduce the so-called offdiagonal complexity (OdC) [65] that
is based on determining the entropy of the offdiagonal elements of the vertex-vertex link correlation
matrix [65,66]. Let G = (V,E) be a graph and let (cij)ij be the vertex-vertex link correlation matrix,
see [65]. Here cij denotes the number of all neighbors possessing degree j > i of all vertices with degree
i [66]. k̄ := maxv∈V kv stands for the maximum degree of G. If one defines [66]

a|V | :=

k̄−|V |∑
i=1

ci,i+|V | (26)

and
b|V | :=

a|V |∑k̄−1
|V |=0 a|V |

(27)

OdC can be defined by [66]

OdC :=
−
(∑k̄−1

|V |=0 b|V | log(b|V |)
)

log(|V | − 1)
∈ [0, 1] (28)

As the measure depends on correlations between degrees of pairs of vertices [65], it is not surprising that
its discrimination power is low, see [41].

3. Structural Interpretation of Graph Measures

We already mentioned the problem of exploring the structural interpretation of topological graph
measures exemplarily in the preceding sections. In general, this relates to explore what kind of structural
complexity a particular measure does detect. The following listing shows a few such types of structural
complexity of measures which have already been explored:

• Branching in trees [49,67,68]. Examples for branching measures are the Wiener index [69], the
magnitude-based measures also known as Bonchev–Trinajstić indices [49] and others outlined by
Janežić et al. [68].

• Linear tree complexity depending on their size and symmetry [68]. Examples for such measures
are the MI and MB indices, TC and TC1 Indices etc., see [68].

• Balance and imbalance of tree-like graphs [31]. For examples, see [31].
• Cyclicity in graphs [23,38,68,70,71]. Note that in the context of mathematical chemistry, this graph

property has been introduced and studied by Bonchev et al. [38]. Examples for branching measures
are the BT and BI Indices, and the F index, see [70].
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• Inner symmetry and symmetry in graphs [15,47,48,72]. Examples for such measures are Ia, S (see
Section (2.1)) and If2 (see Section (2.3)).

In view of the vast amount of topological measures developed so far, determining their structural
interpretation is a daunting problem. Evidently, it is important to contribute to this problem as measures
could be then classified by this property. This might be useful when designing new measures or finding
topological indices for solving a particular problem.

4. Summary and Conclusion

In this paper, we surveyed information-theoretic measures for analyzing networks quantitatively.
Also, we discussed some of their properties, namely the structural interpretation and uniqueness.
Because a vast number of measures have been developed, the former problem has been somewhat
overlooked when analyzing topological network measures. Also, the uniqueness of information-theoretic
and non-information-theoretic measures is a crucial property. Applications thereof might be interesting
for applications such as problems in combinatorial chemistry [73]. In fact, many papers exist to tackle
this problem [40,74–76] but not on a large scale. Interestingly, a statistical analysis has been recently
shown [50] that the uniqueness of many topological indices strongly depends on the cardinality of a
graph set in question. Also, it is clear that the uniqueness property depends on a particular graph class.
This implies that results may not be generalized when the measure gives feasible results for a special
class only, e.g., trees, isomers etc.
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49. Bonchev, D.; Trinajstić, N. Information theory, distance matrix and molecular branching. J. Chem.
Phys. 1977, 67, 4517–4533.

50. Dehmer, M.; Grabner, M.; Varmuza, K. Information indices with high discrimination power for
arbitrary graphs. PLoS One submitted for publication, 2011.

51. Bonchev, D. The Overall Topological Complexity Indices. In Advances in Computational Methods
in Science and Engineering; Simos, T., Maroulis, G., Eds.; VSP Publications: Boulder, USA, 2005;
Volume 4B, pp. 1554–1557.

52. Bonchev, D. My life-long journey in mathematical chemistry. Internet Electron. J . Mol. Des.
2005, 4, 434–490.

53. Todeschini, R.; Consonni, V.; Mannhold, R. Handbook of Molecular Descriptors; Wiley-VCH:
Weinheim, Germany, 2002.

54. Passerini, F.; Severini, S. The von Neumann entropy of networks. Int. J. Agent Technol. Syst.
2009, 1, 58–67.

55. Simonyi, G. Graph Entropy: A Survey. In Combinatorial Optimization; Cook, W., Lovász, L.,
Seymour, P., Eds.; ACM: New York, NY, USA, 1995; Volume 20, pp. 399–441.

56. Bang-Jensen, J.; Gutin, G. Digraphs. Theory, Algorithms and Applications; Springer: Berlin,
Heidelberg, Germany, 2002.

57. Dehmer, M. Information-theoretic concepts for the analysis of complex networks. Appl. Artif.
Intell. 2008, 22, 684–706.

58. Dijkstra, E.W. A note on two problems in connection with graphs. Numer. Math. 1959, 1, 269–271.
59. Brandes, U.; Erlebach, T. Network Analysis; Springer: Berlin, Heidelberg, Germany, 2005.
60. Emmert-Streib, F.; Dehmer, M. Information theoretic measures of UHG graphs with low

computational complexity. Appl. Math. Comput. 2007, 190, 1783–1794.
61. Lyons, R. Identities and inequalities for tree entropy. Comb. Probab. Comput. 2010, 19, 303–313.
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74. Bonchev, D.; Mekenyan, O.; Trinajstić, N. Isomer discrimination by topological information

approach. J. Comput. Chem. 1981, 2, 127–148.
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