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1. Introduction

Switching theory has developed in the 1950s and the 1960s as a common effort of the mathematicians
and the engineers of studying the switching circuits (a.k.a. asynchronous circuits) from digital electrical
engineering. We are unaware of any existent mathematical work published after 1970 on what we call
switching theory. The published works are written by engineers and their approach is always descriptive
and unacceptable for the mathematicians. The label of switching theory has changed to asynchronous
systems (or circuits) theory. One of the possible motivations of the situation consists in the fact that the
important producers of digital equipments have stopped the dissemination of such researches.

Our interest in asynchronous systems had bibliography coming from the 1950s and the 1960s, as well
as engineering works giving intuition, as well as mathematical works giving analogies. An interesting
rendez-vous has happened when the asynchronous systems theory has met the dynamical systems theory,
resulting in the so-called regular autonomous systems (a.k.a Boolean dynamical systems) where the
vector field is Φ : {0, 1}n → {0, 1}n and time is discrete or real, and we obtain the unbounded delay
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model of computation of Φ suggested by the engineers. The synchronous iterations of Φ : Φ ◦ Φ,Φ ◦
Φ ◦ Φ, . . . of the dynamical systems are replaced by asynchronous iterations in which each coordinate
Φ1, . . . ,Φn is iterated independently on the others, in arbitrary finite time.

We denote with B = {0, 1} the binary Boolean algebra, together with the discrete topology and with
the usual algebraic laws:

0 1

1 0

,

· 0 1

0 0 0

1 0 1

,

∪ 0 1

0 0 1

1 1 1

,

⊕ 0 1

0 0 1

1 1 0

(1)

We use the same notations for the laws that are induced from B on other sets, for example ∀x ∈ Bn,
∀y ∈ Bn,

x = (x1, . . . , xn)

x ∪ y = (x1 ∪ y1, . . . , xn ∪ yn)

etc. In Figure 1, we have drawn at (a) the logical gate NOT, i.e., the circuit that computes the logical
complement and at (b) a circuit that makes use of logical gates NOT. The asynchronous system that
models the circuit from (b) has the state portrait drawn at (c). In the state portraits, the arrows show the
increase of (the discrete or continuous) time. The underlined coordinates µi are these coordinates for
which Φi(µi) 6= µi and they are called excited, or enabled, or unstable. The coordinates µi that are not
underlined fulfill by definition Φi(µi) = µi and they are called not excited, or not enabled, or stable.
The existence of two underlined coordinates in (0, 0) shows that Φ1(0, 0) = 1 may be computed first,
Φ2(0, 0) = 1 may be computed first, or Φ1(0, 0), Φ2(0, 0) may be computed simultaneously, thus when
the system is in (0, 0), it may run in three different directions, which results in non-determinism.

Our present purpose is to define the symmetry of these systems.

Figure 1. (a) the logical gate NOT; (b) circuit with logical gates NOT; (c) state portrait.

2. Semi-Regular Systems

Notation 1 We denote N = {−1, 0, 1, 2, . . .}.

Notation 2 χA : R → B is the notation of the characteristic function of the set A ⊂ R: ∀t ∈ R,

χA(t) =

{
0, if t /∈ A
1, if t ∈ A

.
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Notation 3 We denote with Πn the set of the sequences α = α0, α1, . . . , αk, . . . ∈ Bn.

Notation 4 The set of the real sequences t0 < t1 < . . . < tk < . . . that are unbounded from above is
denoted with Seq.

Notation 5 We use the notation P n for the set of the functions ρ : R → Bn having the property that
α ∈ Πn and (tk) ∈ Seq exist with ∀t ∈ R,

ρ(t) = α0χ{t0}(t)⊕ α1χ{t1}(t)⊕ . . .⊕ αkχ{tk}(t)⊕ . . . (2)

Definition 6 Let Φ : Bn → Bn be a function. For ν ∈ Bn, ν = (ν1, . . . , νn) we define the function
Φν : Bn → Bn by ∀µ ∈ Bn,

Φν(µ) = (ν1µ1 ⊕ ν1Φ1(µ), . . . , νnµn ⊕ νnΦn(µ))

Remark 7 For any µ ∈ Bn, ν ∈ Bn and i ∈ {1, . . . , n}, if νi = 0, then Φν
i (µ) = µi i.e., Φi(µ)

is not computed and if νi = 1, then Φν
i (µ) = Φi(µ) i.e., Φi(µ) is computed. This is the meaning

of asynchronicity.

Definition 8 Let α ∈ Πn. The function Φ̂α : Bn ×N → Bn defined by ∀µ ∈ Bn,∀k ∈ N ,{
Φ̂α(µ,−1) = µ,

Φ̂α(µ, k + 1) = Φαk+1
(Φ̂α(µ, k))

(3)

is called discrete time α−semi-orbit of µ. We consider also the sequence (tk) ∈ Seq and the function
ρ ∈ P n from Equation (2), for which the function Φρ : Bn ×R→ Bn is defined by: ∀µ ∈ Bn,∀t ∈ R,

Φρ(µ, t) = Φ̂α(µ,−1)χ(−∞,t0)(t)⊕ Φ̂α(µ, 0)χ[t0,t1)(t)⊕
⊕ Φ̂α(µ, 1)χ[t1,t2)(t)⊕ . . .⊕ Φ̂α(µ, k)χ[tk,tk+1)(t)⊕ . . .

(4)

Φρ is called continuous time ρ−semi-orbit of µ.

Definition 9 The discrete time and the continuous time universal semi-regular autonomous asyn-
chronous systems associated to Φ are defined by

Ξ̂Φ = {Φ̂α(µ, ·)|µ ∈ Bn, α ∈ Πn}
ΞΦ = {Φρ(µ, ·)|µ ∈ Bn, ρ ∈ P n}

Remark 10 Ξ̂Φ, ΞΦ and Φ are usually identified.

Example 11 In Figure 2 we have drawn at (a) the AND gate that computes the logical intersection, at (b)
a circuit with two gates and at (c) the state portrait of Φ : B2 → B2,∀(µ1, µ2) ∈ B2,Φ(µ1, µ2) = (0, 1).

We conclude that

ΞΦ = {(µ1, µ2)χ(−∞,t0) ⊕ (µ1λ1, µ2 ∪ λ2)χ[t0,t1)⊕
⊕ (µ1λ1ν1, µ2 ∪ λ2 ∪ ν2)χ[t1,∞)|µ, λ, ν ∈ B2, t0, t1 ∈ R, t0 < t1}

since the first coordinate might finally decrease its value and the second coordinate might finally increase
its value, but the order and the time instant when these things happen are arbitrary.
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Figure 2. The semi-regular system ΞΦ from Example 11.

3. Anti-Semi-Regular Systems

Definition 12 Let Φ : Bn → Bn, α ∈ Πn, (tk) ∈ Seq and ρ ∈ P n from Equation (2). The function
∗Φ̂α : Bn ×N → Bn that satisfies ∀µ ∈ Bn,∀k ∈ N ,{

∗Φ̂α(µ,−1) = µ

Φαk+1
(∗Φ̂α(µ, k + 1)) = ∗Φ̂α(µ, k)

(5)

is called discrete time α−anti-semi-orbit of µ and the function ∗Φρ : Bn × R → Bn that satisfies
∀µ ∈ Bn,∀t ∈ R,

∗Φρ(µ, t) = ∗Φ̂α(µ,−1)χ(−∞,t0)(t)⊕ ∗Φ̂α(µ, 0)χ[t0,t1)(t)⊕
⊕ ∗Φ̂α(µ, 1)χ[t1,t2)(t)⊕ . . .⊕ ∗Φ̂α(µ, k)χ[tk,tk+1)(t)⊕ . . .

(6)

is called continuous time ρ−anti-semi-orbit of µ.

Remark 13 We compare the semi-orbits and the anti-semi-orbits now and see that they run both from
the past to the future, but the cause-effect relation is different: in Φ̂α,Φρ the cause is in the past and the
effect is in the future, while in ∗Φ̂α, ∗Φρ the cause is in the future and the effect is in the past.

Definition 14 The discrete time and the continuous time universal anti-semi-regular autonomous
asynchronous systems associated to Φ are defined by

∗Ξ̂Φ = {∗Φ̂α(µ, ·)|µ ∈ Bn, α ∈ Πn}
∗ΞΦ = {∗Φρ(µ, ·)|µ ∈ Bn, ρ ∈ P n}

Example 15 In Figure 3 we have drawn at (a) the circuit and at (b) the state portrait of Ψ : B2 → B2,
∀(µ1, µ2) ∈ B2, Ψ(µ1, µ2) = (1, 0) for which

ΞΨ = {(µ1, µ2)χ(−∞,t0) ⊕ (µ1 ∪ λ1, µ2λ2)χ[t0,t1)⊕
⊕ (µ1 ∪ λ1 ∪ ν1, µ2λ2ν2)χ[t1,∞)|µ, λ, ν ∈ B2, t0, t1 ∈ R, t0 < t1}

The arrows in Figures 2(c) and 3(b) are the same, but with a different sense and we note that ΞΨ = ∗ΞΦ,

where Φ is the one from Example 11.
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Figure 3. The semi-regular system ΞΨ from Example 15.

4. Isomorphisms and Anti-Isomorphisms

Definition 16 Let g : Bn → Bn. It defines the functions ĝ : Πn → Πn, ∀α ∈ Πn,∀k ∈ N,

ĝ(α)(k) = g(αk)

g̃ : P n → P n,∀ρ ∈ P n, ∀t ∈ R,

g̃(ρ)(t) =

{
(0, . . . , 0), if ρ(t) = (0, . . . , 0)

g(ρ(t)), otherwise

and g : (Bn)R → (Bn)R,∀x ∈ (Bn)R,∀t ∈ R,

g(x)(t) = g(x(t))

Theorem 17 Let Φ,Ψ, g, g′ : Bn → Bn. The following statements are equivalent:
(a) ∀ν ∈ Bn, the diagram

Bn Φν→ Bn

g ↓ ↓ g

Bn Ψg
′(ν)
→ Bn

is commutative;
(b) ∀µ ∈ Bn,∀α ∈ Πn,∀k ∈ N ,

g(Φ̂α(µ, k)) = Ψ̂ĝ′(α)(g(µ), k)

(c) ∀µ ∈ Bn,

g(µ) = Ψg′(0,...,0)(g(µ))

and ∀µ ∈ Bn,∀ρ ∈ P n,∀t ∈ R,

g(Φρ(µ, t)) = Ψg̃′(ρ)(g(µ), t)

Proof. (a)=⇒(b): We fix arbitrarily µ ∈ Bn, α ∈ Πn and we use the induction on k ≥ −1. For k = −1,
(b) becomes g(µ) = g(µ), thus we suppose that it is true for k and we prove it for k + 1:

g(Φ̂α(µ, k + 1)) = g(Φαk+1

(Φ̂α(µ, k))) = Ψg′(αk+1)(g(Φ̂α(µ, k)))

= Ψg′(αk+1)(Ψ̂ĝ′(α)(g(µ), k)) = Ψ̂ĝ′(α)(g(µ), k + 1)



Symmetry 2012, 4 121

(b)=⇒(c): The first statement results from (b) if we take α0 = (0, . . . , 0) and k = 0. In order
to prove the second statement, let µ ∈ Bn and ρ ∈ P n be arbitrary, thus Equation (2) holds with
(tk) ∈ Seq, ρ(t0), . . . , ρ(tk), . . . ∈ Πn. If ∀t ∈ R, ρ(t) = (0, . . . , 0) the statement to prove takes the
form g(µ) = g(µ) so that we can suppose now that a finite or an infinite number of ρ(tk) are 6= (0, . . . , 0).

In the case ∀k ∈ N, ρ(tk) 6= (0, . . . , 0) that does not restrict the generality of the proof, we have that

g̃′(ρ)(t) = g′(ρ(t0))χ{t0}(t)⊕ . . .⊕ g′(ρ(tk))χ{tk}(t)⊕ . . . (7)

is an element of P n and

g(Φρ(µ, t)) = g(µχ(−∞,t0)(t)⊕ Φ̂α(µ, 0)χ[t0,t1)(t)⊕ . . .⊕ Φ̂α(µ, k)χ[tk,tk+1)(t)⊕ . . .)
= g(µ)χ(−∞,t0)(t)⊕ g(Φ̂α(µ, 0))χ[t0,t1)(t)⊕ . . .⊕ g(Φ̂α(µ, k))χ[tk,tk+1)(t)⊕ . . .

= g(µ)χ(−∞,t0)(t)⊕ Ψ̂ĝ′(α)(g(µ), 0)χ[t0,t1)(t)⊕ . . .⊕ Ψ̂ĝ′(α)(g(µ), k)χ[tk,tk+1)(t)⊕ . . .

= Ψg̃′(ρ)(g(µ), t)

(c)=⇒(a): Let ν, µ ∈ Bn be arbitrary and fixed and we consider ρ ∈ P n given by Equation (2), with
(tk) ∈ Seq fixed, ρ(t0) = ν and ∀k ≥ 1, ρ(tk) 6= (0, . . . , 0). We have

g(Φρ(µ, t)) = g(µχ(−∞,t0)(t)⊕ Φν(µ)χ[t0,t1)(t)⊕ Φ̂α(µ, 1)χ[t1,t2)(t)⊕ . . .)
= g(µ)χ(−∞,t0)(t)⊕ g(Φν(µ))χ[t0,t1)(t)⊕ g(Φ̂α(µ, 1))χ[t1,t2)(t)⊕ . . .

(8)

Case (i) ν = (0, . . . , 0), the commutativity of the diagram is equivalent with the first statement of (c).
Case(ii) ν 6= (0, . . . , 0),

g̃′(ρ)(t) = g′(ρ(t))

= g′(ν)χ{t0}(t)⊕ g′(ρ(t1))χ{t1}(t)⊕ . . .

Ψg̃′(ρ)(g(µ), t) = g(µ)χ(−∞,t0)(t)⊕Ψg′(ν)(g(µ))χ[t0,t1)(t)⊕ Ψ̂ĝ′(α)(g(µ), 1)χ[t1,t2)(t)⊕ . . .

and from Equation (8), for t ∈ [t0, t1), we obtain

g(Φν(µ)) = Ψg′(ν)(g(µ))

Definition 18 We consider the functions Φ,Ψ : Bn → Bn. If g, g′ : Bn → Bn bijective exist such
that one of the equivalent properties (a), (b) or (c) from Theorem 17 is satisfied, then we say that the
couple (g, g′) defines an isomorphism from Ξ̂Φ to Ξ̂Ψ, or from ΞΦ to ΞΨ, or from Φ to Ψ. We use the
notation Iso(Φ,Ψ) for the set of these couples and we also denote with Aut(Φ) = Iso(Φ,Φ) the set of
the automorphisms of Ξ̂Φ, ΞΦ, or Φ.

Theorem 19 For Φ,Ψ, g, g′ : Bn → Bn, the following statements are equivalent:
(a) ∀ν ∈ Bn, the diagram is commutative;

Bn Φν→ Bn

g ↓ ↓ g

Bn Ψg
′(ν)
←− Bn
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(b) ∀µ ∈ Bn,∀α ∈ Πn,∀k ∈ N ,

g(µ) = ∗Ψ̂ĝ′(α)(g(Φ̂α(µ, k)), k)

(c) ∀µ ∈ Bn,

g(µ) = Ψg′(0,...,0)(g(µ))

and ∀µ ∈ Bn,∀ρ ∈ P n,∀t ∈ R,

g(µ) = ∗Ψg̃′(ρ)(g(Φρ(µ, t)), t)

Proof. (a)=⇒(b): We fix arbitrarily µ ∈ Bn, α ∈ Πn and we use the induction on k ≥ −1. In the case
k = −1 the equality to be proved is satisfied

g(µ) = g(Φ̂α(µ,−1)) = Ψ̂ĝ′(α)(g(Φ̂α(µ,−1)),−1)

thus we presume that the statement is true for k and we prove it for k + 1. We have:

g(µ) = ∗Ψ̂ĝ′(α)(g(Φ̂α(µ, k)), k)

= ∗Ψ̂ĝ′(α)(Ψg′(αk+1)(g(Φαk+1

(Φ̂α(µ, k)))), k)

= ∗Ψ̂ĝ′(α)(g(Φ̂α(µ, k + 1)), k + 1)

The proof is similar with the proof of Theorem 17.

Definition 20 Let Φ,Ψ : Bn → Bn. If g, g′ : Bn → Bn bijective exist such that one of the
equivalent properties (a), (b) or (c) from Theorem 19 is fulfilled, we say that the couple (g, g′) defines an
anti-isomorphism from Ξ̂Φ to ∗Ξ̂Ψ, or from ΞΦ to ∗ΞΨ, or from Φ to Ψ. We use the notation ∗Iso(Φ,Ψ)

for these couples and we also denote with ∗Aut(Φ) = ∗Iso(Φ,Φ) the set of the anti-automorphisms of
Ξ̂Φ, ΞΦ or Φ.

5. Symmetry and Anti-Symmetry

Remark 21 The fact that (1Bn , 1Bn) ∈ Aut(Φ) implies Aut(Φ) 6= ∅, but all of Iso(Φ,Ψ),∗ Iso(Φ,Ψ)

and ∗Aut(Φ) may be empty.

Definition 22 Let Φ,Ψ : Bn → Bn, Φ 6= Ψ. If Iso(Φ,Ψ) 6= ∅, then Ξ̂Φ, Ξ̂Ψ; ΞΦ,ΞΨ; Φ,Ψ are
called symmetrical, or conjugated; if ∗Iso(Φ,Ψ) 6= ∅, then Ξ̂Φ,

∗Ξ̂Ψ; ΞΦ,
∗ ΞΨ; Φ,Ψ are called

anti-symmetrical, or anti-conjugated.
If card(Aut(Φ)) > 1, then Ξ̂Φ, ΞΦ and Φ are called symmetrical and if ∗Aut(Φ) 6= ∅, then Ξ̂Φ, ΞΦ

and Φ are called anti-symmetrical.

Remark 23 The symmetry of Φ,Ψ means that (g, g′) ∈ Iso(Φ,Ψ) maps the transfers µ → Φν(µ) in
transfers g(µ) → g(Φν(µ)) = Ψg′(ν)(g(µ)); the situation when Φ is symmetrical and (g, g′) ∈ Aut(Φ)

is similar. Anti-symmetry may be understood as mirroring: (g, g′) ∈ ∗Iso(Φ,Ψ) maps the transfers (or
arrows) µ→ Φν(µ) in transfers g(µ)←− g(Φν(µ)) = Ψg′(ν)(g(µ)) and similarly for (g, g′) ∈ ∗Aut(Φ).
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Theorem 24 Let Φ,Ψ : Bn → Bn.

(a) If (g, g′) ∈ Iso(Φ,Ψ), then (g−1, g′−1) ∈ Iso(Ψ,Φ).

(b) If (g, g′) ∈ ∗Iso(Φ,Ψ), then (g−1, g′−1) ∈ ∗Iso(Ψ,Φ).

Proof. (a): The hypothesis states that ∀ν ∈ Bn, the diagram

Bn Φν→ Bn

g ↓ ↓ g

Bn Ψg
′(ν)
→ Bn

commutes, with g, g′ bijective. We fix arbitrarily ν ∈ Bn, µ ∈ Bn. We denote µ′ = g(µ), ν ′ = g′(ν) and
we note that

g−1(Ψν′(µ′)) = Φg′−1(ν′)(g−1(µ′)) (9)

As ν, µ were chosen arbitrarily and on the other hand, when ν runs in Bn, ν ′ runs in Bn and when µ runs
in Bn, µ′ runs in Bn, we infer that Equation (9) is equivalent with the commutativity of the diagram

Bn Ψν
′

→ Bn

g−1 ↓ ↓ g−1

Bn Φg
′−1(ν′)
→ Bn

for any ν ′ ∈ Bn. We have proved that (g−1, g′−1) ∈ Iso(Ψ,Φ).

(b): By hypothesis ∀ν ∈ Bn, the diagram

Bn Φν→ Bn

g ↓ ↓ g

Bn Ψg
′(ν)
←− Bn

is commutative, g, g′ bijective and we prove that ∀ν ′ ∈ Bn, the diagram

Bn Ψν
′

→ Bn

g−1 ↓ ↓ g−1

Bn Φg
′−1(ν′)
←− Bn

is commutative.

Theorem 25 Aut(Φ) is a group relative to the law: ∀(g, g′) ∈ Aut(Φ), ∀(h, h′) ∈ Aut(Φ),

(h, h′) ◦ (g, g′) = (h ◦ g, h′ ◦ g′)

Proof. The fact that ∀(g, g′) ∈ Aut(Φ),∀(h, h′) ∈ Aut(Φ), (h ◦ g, h′ ◦ g′) ∈ Aut(Φ) is proved like this:
∀ν ∈ Bn,

(h ◦ g) ◦ Φν = h ◦ (g ◦ Φν) = h ◦ (Φg′(ν) ◦ g) = (h ◦ Φg′(ν)) ◦ g
= (Φh′(g′(ν)) ◦ h) ◦ g = Φ(h′◦g′)(ν) ◦ (h ◦ g)

the fact that (1Bn , 1Bn) ∈ Aut(Φ) was mentioned before; and the fact that ∀(g, g′) ∈ Aut(Φ),

(g−1, g′−1) ∈ Aut(Φ) was shown at Theorem 24(a).

Definition 26 Any subgroup G ⊂ Aut(Φ) with card(G) > 1 is called a group of symmetry of Ξ̂Φ, of
ΞΦ or of Φ.
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6. Examples

Example 27 Φ,Ψ : B2 → B2 are given by, see Figure 4

∀(µ1, µ2) ∈ B2,Φ(µ1, µ2) = (µ1 ⊕ µ2, µ2)

∀(µ1, µ2) ∈ B2,Ψ(µ1, µ2) = (µ1, µ1 µ2 ∪ µ1µ2)

and the bijections g, g′ : B2 → B2 are ∀(µ1, µ2) ∈ B2,

g(µ1, µ2) = (µ2, µ1)

g′(µ1, µ2) = (µ2, µ1)

(in order to understand the choice of g′, to be remarked in Figure 4 the positions of the underlined
coordinates for Φ and Ψ). Φ and Ψ are conjugated.

Figure 4. Symmetrical systems, Example 27.

Example 28 The system from Figure 5 is symmetrical and a group of symmetry is generated by the
couples (g, 1B3), (u, 1B3), (v, 1B3), see Equation (10); g, u, v are transpositions that permute the isolated
fixed points (1, 0, 0), (1, 0, 1), (1, 1, 1).

(µ1, µ2, µ3) 1B3 g u v

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)

(0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0)

(0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1)

(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 1) (1, 1, 1)

(1, 0, 1) (1, 0, 1) (1, 1, 1) (1, 0, 0) (1, 0, 1)

(1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0)

(1, 1, 1) (1, 1, 1) (1, 0, 1) (1, 1, 1) (1, 0, 0)

(10)

Figure 5. Symmetrical system, Example 28.



Symmetry 2012, 4 125

Example 29 The function Φ : B2 → B2 defined by ∀µ ∈ B2,Φ(µ1, µ2) = (µ1, µ2) fulfills for ν ∈ B2 :

Φν(µ1, µ2) = (ν1µ1 ⊕ ν1µ1, ν2µ2 ⊕ ν2µ2)

(Φν ◦ Φν)(µ1, µ2) = (ν1Φν1
1 (µ1, µ2)⊕ ν1Φν1

1 (µ1, µ2)), ν2Φν2
2 (µ1, µ2)⊕ ν2Φν2

2 (µ1, µ2))

= (ν1(ν1µ1 ⊕ ν1µ1)⊕ ν1(ν1µ1 ⊕ ν1µ1 ⊕ 1), ν2(ν2µ2 ⊕ ν2µ2)⊕ ν2(ν2µ2 ⊕ ν2µ2 ⊕ 1))

= ((ν1 ⊕ 1)µ1 ⊕ ν1(µ1 ⊕ 1)⊕ ν1, (ν2 ⊕ 1)µ2 ⊕ ν2(µ2 ⊕ 1)⊕ ν2)

= (ν1µ1 ⊕ µ1 ⊕ ν1µ1 ⊕ ν1 ⊕ ν1, ν2µ2 ⊕ µ2 ⊕ ν2µ2 ⊕ ν2 ⊕ ν2)

= (µ1, µ2)

thus (1B2 , 1B2) ∈ ∗Aut(Φ) and Φ is anti-symmetrical. The state portrait of Φ was drawn in Figure 1(c).

Notation 30 Let σ : {1, . . . , n} → {1, . . . , n} be a bijection. We use the notation πσ : Bn → Bn for the
bijection given by ∀µ ∈ Bn,

πσ(µ1, . . . , µn) = (µσ(1), . . . , µσ(n))

Definition 31 Any of Ξ̂Φ, ΞΦ and Φ : Bn → Bn is called symmetrical relative to the coordinates if the
bijection σ exists, σ 6= 1{1,...,n} such that (πσ, πσ) ∈ Aut(Φ).

Example 32 We consider the function Φ : B3 → B3 defined by ∀µ ∈ B3, Φ(µ1, µ2, µ3) =

(µ2µ3 ⊕ µ1 ⊕ µ2, µ1µ3 ⊕ µ2 ⊕ µ3, µ1µ2 ⊕ µ1 ⊕ µ3) and the permutation σ : {1, 2, 3} → {1, 2, 3},

σ =

(
1 2 3

σ(1) σ(2) σ(3)

)
=

(
1 2 3

3 1 2

)
. A group of symmetry of ΞΦ is represented by

G = {(1B3 , 1B3), (πσ, πσ), (πσ◦σ, πσ◦σ)}. We have given in Figure 6 the state portrait of Φ.

Figure 6. System that is symmetrical relative to the coordinates, Example 32.

Notation 33 For λ ∈ Bn, we denote by θλ : Bn → Bn the translation of vector λ : ∀µ ∈ Bn,

θλ(µ) = µ⊕ λ

Definition 34 If (θλ, g′) ∈ Aut(Φ) holds for some (θλ, g′) 6= (1Bn , 1Bn), we say that any of Ξ̂Φ, ΞΦ and
Φ is symmetrical relative to translations.

Example 35 In Figure 7
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Figure 7. Φ has the automorphism (θ(0,0,1), 1B3), Example 35.

we have the system with Φ given by Equation (11)

(µ1, µ2, µ3) Φ

(0, 0, 0) (0, 0, 0)

(0, 0, 1) (0, 0, 1)

(0, 1, 0) (0, 1, 1)

(0, 1, 1) (0, 1, 0)

(1, 0, 0) (0, 1, 1)

(1, 0, 1) (0, 1, 0)

(1, 1, 0) (1, 0, 0)

(1, 1, 1) (1, 0, 1)

(11)

and (θ(0,0,1), 1B3) ∈ Aut(Φ), as resulting from the state portrait.

Example 36 In Equation (12) we have a function Φ : B2 → B2 for which four functions g′1, g
′
2, g
′
3, g
′
4 :

B2 → B2 exist:

(µ1, µ2) Φ g′1 g′2 g′3 g′4
(0, 0) (0, 0) (0, 0) (1, 0) (0, 0) (1, 0)

(0, 1) (0, 1) (0, 1) (0, 1) (1, 1) (1, 1)

(1, 0) (1, 1) (1, 0) (0, 0) (1, 0) (0, 0)

(1, 1) (1, 0) (1, 1) (1, 1) (0, 1) (0, 1)

(12)

such that (1B2 , g′1), (1B2 , g′2), (1B2 , g′3), (1B2 , g′4) ∈ Aut(Φ). The state portrait of Φ is drawn Figure 8.

Figure 8. Φ is symmetrical relative to translations with (0, 0), Example 36.

Example 37 The system from Figure 9 is symmetrical relative to translations, since it has the group of
symmetry G = {(1B2 , 1B2), (θ(1,1), 1B2)}. Φ is self-dual Φ = Φ∗, where the dual Φ∗ of Φ is defined by
Φ∗(µ) = Φ(µ).
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Figure 9. Function Φ that is self dual, (θ(1,1), 1B2) ∈ Aut(Φ), Example 37.

Example 38 Functions Φ : B2 → B2 exist, see Figure 10, that are symmetrical rel-
ative to the translations with any λ ∈ B2, thus their group of symmetry is G =

{(1B2 , 1B2), (θ(0,1), 1B2), (θ(1,0), 1B2), (θ(1,1), 1B2)}. The fact that (θ(1,1), 1B2) ∈ G shows that all these
functions: Φ(µ) = (µ1, µ2), Φ(µ) = (µ1, µ2), Φ(µ) = (µ1, µ2), Φ(µ) = (µ1, µ2) are self-dual, Φ = Φ∗.

Figure 10. Functions Φ that are self dual, (θ(1,1), 1B2) ∈ Aut(Φ), Example 38.

Example 39 The group of symmetry G of the system from Figure 11 has four elements given by
Equation (13)

(µ1, µ2) 1B2 g h θ(1,1)

(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)

(0, 1) (0, 1) (1, 1) (0, 0) (1, 0)

(1, 0) (1, 0) (0, 0) (1, 1) (0, 1)

(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

(13)

and we remark that h = g−1, θ(1,1) = (θ(1,1))−1 hold, see also Equation (14).

(ν1, ν2) (1B2 )′ g′ h′ (θ(1,1))′

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 1) (0, 1) (1, 0) (1, 0) (0, 1)

(1, 0) (1, 0) (0, 1) (0, 1) (1, 0)

(1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

(14)

We have Φ = Φ∗ like previously.
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Figure 11. Symmetry including symmetry relative to translations, Example 39.

7. Conclusions

The paper defines the universal semi-regular autonomous asynchronous systems and the universal
anti-semi-regular autonomous asynchronous systems. It also defines and characterizes the isomorphisms
(automorphisms) and the anti-isomorphisms (anti-automorphisms) of these systems. Symmetry is
defined as the existence of such isomorphisms (automorphisms), while anti-symmetry is defined as
the existence of such anti-isomorphisms (anti-automorphisms). Many examples are given. A by-pass
product in this study is anti-symmetry, which is related with systems having the cause in the future and
the effect in the past. Another by-pass product consists in semi-regularity, since important examples of
isomorphisms (automorphisms) are of semi-regular systems only and do not keep progressiveness and
regularity [2,3].
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