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Abstract: We consider the “intrinsic” symmetry group of a two-component link L, defined
to be the image Σ(L) of the natural homomorphism from the standard symmetry group
MCG(S3, L) to the product MCG(S3) × MCG(L). This group, first defined by Whitten
in 1969, records directly whether L is isotopic to a link L′ obtained from L by permuting
components or reversing orientations; it is a subgroup of Γ2, the group of all such operations.
For two-component links, we catalog the 27 possible intrinsic symmetry groups, which
represent the subgroups of Γ2 up to conjugacy. We are able to provide prime, nonsplit
examples for 21 of these groups; some are classically known, some are new. We catalog the
frequency at which each group appears among all 77,036 of the hyperbolic two-component
links of 14 or fewer crossings in Thistlethwaite’s table. We also provide some new
information about symmetry groups of the 293 non-hyperbolic two-component links of 14
or fewer crossings in the table.
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1. Introduction

The symmetry group of a link L is a well-studied object in knot theory. It is defined to be the mapping
class group of the pair (S3, L) and is frequently denoted Sym(L). A variety of approaches exist for
computing symmetry groups for prime knots and links; see for instance [1–4].

This paper considers a different but related group of link symmetries. The image of the
group homomorphism

π : Sym(L) = MCG(S3, L)→ MCG(S3)×MCG(L)

represents what we call intrinsic link symmetries, where we focus upon the action on L itself and only
record the orientation of the ambient S3.

Without using the language of mapping class groups Whitten [5], following ideas of Fox, defined the
group structure of MCG(S3)×MCG(L) in 1969. They denoted this group as either Γ(L) or Γµ, where
µ is the number of components of L. This group (cf. Definition 2.1) can be described as a semidirect
product of Z2 groups recording the orientation of each component of the link L with the permutation
group Sµ representing component exchanges, crossed with another Z2 recording the orientation of S3:

Γµ = Γ(L) = Z2 × (Zµ
2 o Sµ)

An element γ = (ε0, ε1, . . . , εµ, p) in Γµ acts on L to produce a new link Lγ . If ε0 = +1, then Lγ and
L are the same as sets; however the components of L have been renumbered and reoriented. If ε0 = −1,
the new link Lγ is the mirror image of L, again with renumbering and reorientation. We can then define
the intrinsic symmetry group Σ(L) by

γ ∈ Σ(L) ⇐⇒ there is an isotopy from L to Lγ preserving component numbering and orientation.

We refer to our paper [6] for a thorough description of the history, construction, and applications of
intrinsic symmetry groups. In that paper, we find the intrinsic symmetry groups for all 48 prime links of
eight or fewer crossings.

The goal of this paper is to describe how frequently the various possible intrinsic symmetry groups
of two-component links occur in examples. There are 27 possible symmetry groups, representing the
different subgroups of Γ2 up to conjugacy. The subgroups are only considered up to conjugacy as
conjugation corresponds to merely relabeling and reorienting the components of the link; see Section 2.3.
Figure 1 displays the subgroup lattice of Γ2. In Table 1, we present prime, nonsplit examples for 21 of
these groups; some examples are already known, some are new. Many new examples were found using
the software SnapPea; see Section 3 for details. We present in Table 2 a report on how frequently each
symmetry group occurs among the 77,036 two-component hyperbolic links with 14 or fewer crossings.
In Section 5, we restrict to the case of alternating, nonsplit two-component links, for which only 12 of the
27 symmetry groups are possible. In particular, no alternating link with an even number of components
may have full symmetry. We realize alternating, prime examples for 11 of these 12 groups.
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Figure 1. The 27 subgroups (up to conjugacy) of the Whitten group Γ2 are depicted below as
a subgroup lattice. There are 8 pairs of conjugate subgroups of Γ2; above, one representative
is displayed for each conjugate pair; these are denoted by ∗. For 21 of these subgroups, we
provide an example realizing this symmetry group in Table 1. The 6 subgroups for which no
example has been found are depicted with a red dashed border.

Γ2

Σ8,7 Σ8,2

ε0ε1ε2=1〈i1,ma〉

Σ8,1 Σ8,4 Σ8,6 Σ8,3 Σ8,5

No m No ρ ε1=ε2〈m, a〉 〈mi1,a〉

Σ4,4Σ4,2 Σ4,1 Σ4,11 Σ4,3 Σ4,6 Σ4,7 Σ4,8 Σ4,10

Σ2,1

Σ4,5 Σ4,9

〈i1, i2〉 〈a〉 〈PI,ρ〉 〈mb,mρ〉
〈mi1,

〈m〉 〈mPI〉 〈PI〉 〈i1〉 〈ρ〉 〈mρ〉 〈mi1〉

**

* * * *

* *

{id}

〈ma〉 〈m,PI〉 〈m, i1〉 〈mi1,i2〉 〈m, ρ〉 〈mPI,

Σ2,3Σ2,2 Σ2,4 Σ2,5 Σ2,6 Σ2,7

mi2〉 mb〉



Symmetry 2012, 4 132

Table 1. Examples of prime, nontrivial two-component links are currently known for 21 of
the possible 27 intrinsic symmetry groups. Links are specified using Thistlethwaite notation
and DT codes, as described in Section 2.2.

Symmetry Group Example

{id} 11a164

Σ2,2 = 〈m〉 DT[8,10,-16:12,14,24,2,-20,-22,-4,-6,-18]

Σ2,3 = 〈mPI〉 DT[8,10,-14:12,22,24,-18,-20,-4,-6,-16,2]

Σ2,1 = 〈PI〉 7a2
Σ2,4 = 〈i1〉 10a98
Σ2,5 = 〈ρ〉 DT[14,16,44,20,4,2,18,10,12,8,28:36,38,22,42,26,24,40,32,34,30,6]

Σ2,6 = 〈mρ〉 DT[44,-20,-16,-22,-14,-4,-6,-10,-12,-28,-8:2,34,-18,24,42,26,40,30,32,36,38]

Σ2,7 = 〈mi1〉 10a81

Σ4,2 7a3
Σ4,4 No example known
Σ4,1 4a1
Σ4,11 DT[16,-6,-12,-20,-22,-4,28:2,14,26,-10,-8,18,24]

Σ4,3 10n46, 10a56
Σ4,5 DT[14,6,10,16,4,20:22,8,2,24,12,18]

Σ4,9 10n36
Σ4,6 No example known
Σ4,7 No example known
Σ4,8 DT[10,-14,-18,24:2,28,-4,-12,-20,-6,-16,26,8,22]

Σ4,10 DT[10,-14,-20,24:2,28,-16,-4,-12,-6,-18,26,8,22]

Σ8,7 10n59
Σ8,2 2a1
Σ8,1 5a1
Σ8,4 DT[14,-16,22,-28,24,-18:12,-20,-10,-2,26,8,5,-6]

Σ8,6 No example known
Σ8,3 No example known
Σ8,5 DT[10,-14,-18,22:2,24,-4,-12,-6,-16,8,10]

Γ2 No example known
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Table 2. The number of links admitting each symmetry group among the 77,036 hyperbolic
two-component links included in the Thistlethwaite table distributed with SnapPy. Among
these links, almost two-thirds had no symmetry (trivial symmetry group) and there were no
examples with full symmetry.

Group Number of Links Group Number of Links Group Number of Links

{id} 53,484 Σ4,1 1,396 Σ8,1 52
Σ4,2 2,167 Σ8,2 25

Σ2,1 17,951 Σ4,3 24 Σ8,3 0
Σ2,2 7 Σ4,4 0 Σ8,4 1
Σ2,3 9 Σ4,5 12 Σ8,5 2
Σ2,4 1,336 Σ4,6 0 Σ8,6 0
Σ2,5 418 Σ4,7 0 Σ8,7 8
Σ2,6 3 Σ4,8 2
Σ2,7 123 Σ4,9 11 Γ2 0

Σ4,10 1
Σ4,11 4

2. The Whitten Group Γ2

We begin by giving the details of our construction of the Whitten group Γµ and the symmetry
group Σ(L). Consider operations on an oriented, labeled link L with µ components. We may reverse
the orientation of any of the components of L or permute the components of L by any element of the
permutation group Sµ. However, these operations must interact with each other as well: if we reverse
component 3 and exchange components 3 and 5, we must decide whether the orientation is reversed
before or after the permutation. Further, we can reverse the orientation on the ambient S3 as well, a
process which is clearly unaffected by the permutation. To formalize our choices, we follow [5] to
introduce the Whitten group of a µ-component link.

Definition 2.1 Consider the homomorphism given by

ω : Sµ 7−→ Aut(Zµ+1
2 ), p 7−→ ω(p)

where ω(p) is defined as

ω(p)(ε0, ε1, ε2 . . . εµ) =
(
ε0, εp(1), εp(2) . . . εp(µ)

)
For γ = (ε0, ε1, . . . εµ, p) , and γ′ =

(
ε′0, ε

′
1, . . . ε

′
µ, q
)
∈ Zµ+1

2 oω Sµ, we define the Whitten group Γµ as
the semidirect product Γµ = Zµ+1

2 oω Sµ with the group operation

γ ∗ γ′ = (ε0, ε1, ε2 . . . εµ, p) ∗
(
ε′0, ε

′
1, ε
′
2 . . . ε

′
µ, q
)

=
(
(ε0, ε1, ε2 . . . εµ) · ω(p)(ε′0, ε

′
1, ε
′
2 . . . ε

′
µ), qp

)
=
(
ε0ε
′
0, ε1ε

′
p(1), ε2ε

′
p(2) . . . εµε

′
p(µ), qp

)
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2.1. Intrinsic Symmetries of a Link

Given a link L consisting of µ oriented knots in S3, we may order the knots so that

L = K1 ∪K2 ∪ · · · ∪Kµ

Consider the following operations on L:

1. Permuting the Ki.
2. Reversing the orientation of any set of Ki’s.
3. Reversing the orientation on S3 (mirroring L).

Let γ be a combination of any of the moves (1), (2), or (3). We think of γ = (ε0, ε1, . . . εµ, p) as an
element of the set Zµ+1

2 × Sµ in the following way. Let

ε0 =

−1, if γ mirrors L

+1, if γ does not mirror L

and

εi =

−1, if γ reverses the orientation of Kp(i)

+1, if γ does not reverse the orientation of Kp(i)

Lastly, let p ∈ Sµ be the permutation of the Ki associated to γ. To be explicitly clear, permutation p
permutes the labels of the components; the component originally labeled i will be labeled p(i) after the
action of γ.

For each element, γ in Zµ+1
2 × Sµ, we define

Lγ = γ(L) = ε1K
(∗)
p(1) ∪ ε2K

(∗)
p(2) ∪ · · · ∪ εµK

(∗)
p(µ) =

µ⋃
i=1

εiK
(∗)
p(i) (1)

where −Ki is Ki with orientation reversed and K∗i is the mirror image of Ki. We note that the (∗)
appears above either for all component knots or for none; it appears if ε0 = −1, meaning the entire link
L is mirrored, i.e., we reverse the ambient orientation on S3. Note that the ith component of γ(L) is
εiK

(∗)
p(i) the possibly reversed or mirrored p(i)th component of L. Since we are applying εi instead of εp(i)

to Kp(i) we are taking the convention of first permuting and then reversing the appropriate components.
We can now define the subgroup of Γ(L) which corresponds to the symmetries of the link L.

Definition 2.2 Given a link, L and γ ∈ Γ(L), we say that L admits γ when there exists an isotopy
taking each component of L to the corresponding component of Lγ which respects the orientations of
the components. We define the intrinsic symmetry group (also called the Whitten symmetry group) of L
to be

Σ(L) := {γ ∈ Γ(L)| L admits γ}

The intrinsic symmetry group Σ(L) is a subgroup of Γµ, and its left cosets represent the different
isotopy classes of links Lγ among all symmetries γ. By counting the number of cosets, we determine
the number of (labeled, oriented) isotopy classes of a particular prime link.

Next, we provide a few examples of symmetry subgroups. Recall that the first Whitten group
Γ1 = Z2 × Z2 has order four and that Γ2 = Z2 × (Z2 × Z2 o S2) is a non-Abelian 16 element group.
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Example 2.3 Let L = 31, a trefoil knot. It is well known that L ∼ −L and L∗ ∼ −L∗, but
L � L∗, so we have Σ(31) = {(1, 1, e), (1,−1, e)}. This means that the two cosets of Σ(31) are
{(1, 1, e), (1,−1, e)} and {(−1,−1, e), (−1, 1, e)}, and there are two isotopy classes of 31 knots. A
trefoil knot is thus invertible. ♦

Example 2.4 Let L = 82
12, whose components are an unknot K1 and a trefoil K2. Since the components

K1 and K2 are of different knot types, we conclude that no symmetry in Σ(82
12) can contain the

permutation (12). As we describe in [6], certain symmetries are impossible for alternating links with
nonzero self-writhe, such as 82

12. In particular, such a link never admits a symmetry that reverses the
ambient orientation, i.e., one with ε0 = −1. These two obstructions rule out 12 of the 16 elements in Γ2,
so we may conclude that Σ(82

12)) has order four or less.
It is not difficult to find isotopies that show that L is purely invertible, meaning isotopic to

−L = −K1 ∪ −K2, and individually invertible in the first component, meaning isotopic to
−K1 ∪ K2. (Section 2.2 describes our notation in further detail.) Thus, both (1,−1,−1, e) and
(1,−1, 1, e) are included in the Whitten group for L. Hence, Σ(L) is the four element group
Σ4,2 = {(1, 1, 1, e), (1,−1,−1, e), (1,−1, 1, e), (1, 1,−1, e)}. There are four cosets of this four element
group in the 16 element group Γ2, so there are four (labeled, oriented) isotopy classes of 82

12 links. ♦

2.2. Notation

We introduce some notations and names for commonly occurring symmetries. Let m = (−1, 1, 1, e)

describe a mirror of the link and ρ = (1, 1, 1, (12)) denote a pure exchange symmetry. Individually
inverting component k is denoted by ik = (1, ε1, ε2, e) where εk = −1 and ε3−k = 1 (for k = 1, 2).
Let ak = ρ ∗ ik = (1, ε1, ε2, (12)); observe that these elements have order 4. A link has pure invertible
symmetry if PI = (1,−1,−1, e) ∈ Σ(L). Finally, let b = PI ∗ρ = ρ ∗ PI = (1,−1,−1, (12)). We shall
sometimes use this notation in a product form, e.g., ma1 = (−1,−1, 1, (12)).

Note that we use Thistlethwaite notation to specify links unless the link has twelve or more crossings,
in which case we use DT (Dowker–Thistlethwaite) codes. Henceforth, “symmetry group” will always
refer to the intrinsic symmetry group Σ(L). We use the notation from [6] for symmetry groups: Σk,j is
the jth subgroup of order k in our subgroup lattice for Γ2.

2.3. Subgroups of Γ2

In order to classify the possible symmetry groups of two-component links, we must find the subgroups
of Γ2. For any γ ∈ Γ2, the symmetry groups Σ(L) and Σ(Lγ) are conjugate via γ. Therefore if a link
L has symmetry group Σ, which is conjugate to group Σ′, then there exists some γ ∈ Γ2 such that Lγ

has symmetry group Σ′; link Lγ is merely a relabeled and reoriented copy of L. Thus, the truly different
symmetry groups are represented by the conjugacy classes of Γ2 subgroups.

Proposition 2.5 There are 35 subgroups of Γ2 and 27 mutually nonconjugate subgroups. A maximal set
of nonconjugate subgroups consists of 7 subgroups of order two denoted Σ2,1 through Σ2,7, 11 subgroups
of order four denoted Σ4,1 through Σ4,11 and seven subgroups of order eight denoted Σ8,1 through Σ8,7,
as well as the trivial subgroup and the full group. Generators for these groups and the lattice structure
of the subgroups appear in Figure 1.
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We note that this proposition corrects a mistake in the literature [7], in which it is reported that 28
possible symmetry groups exist. All 12 groups explicitly listed therein are distinct.

Proof: From the semidirect product structure we can see that all but four of the 15 non-identity
elements of Γ2 are order two. The exceptions are a1 = (1,−1, 1, (12)), a2 = (1, 1,−1, (12)), ma1, and
ma2, each of which has order four. Thus, there are 11 subgroups of Γ2 of order two. Via computations
in Γ2, we proceed to find 15 subgroups of order four and 7 subgroups of order eight. Combined with the
trivial subgroup and all of Γ2, we arrive at a total of 35 subgroups.

However, some of these subgroups occur in conjugate pairs. For example, the subgroups
〈m, ρ〉 = {e,m, ρ,mρ} and 〈m, b〉 = {e,m, b,mb} are conjugate four-element subgroups, since
i1(m)i−11 = m, i1(ρ)i−11 = b, and i1(mρ)i−11 = mb.

There are four conjugate pairs of two-element subgroups and four conjugate pairs of four-element
subgroups. Therefore precisely 27 mutually nonconjugate subgroups of Γ2 exist. Our calculations (by
hand) of these Γ2 subgroups and the corresponding lattice structure given in Figure 1 have been verified
using the software Magma. �

3. Computational Examples

For a hyperbolic link L, we may compute its symmetry group Σ(L) using the software SnapPea.
This software can calculate the mapping class group MCG(S3\L) of the link complement. The elements
of MCG(S3, L) which extend through the boundary tori to automorphisms of all of S3 form a copy of
MCG(S3, L) inside MCG(S3 \ L). We can detect such maps using the following standard lemma.

Lemma 3.1 A map in Aut(S3 \ L) extends to all of S3 if and only if it sends meridians of the boundary
tori to meridians. Moreover, any two such extensions are isotopic.

We utilize the Python front end SnapPy for SnapPea written by Marc Culler and Nathan
Dunfield. To each map on the boundary tori of the link complement, SnapPy assigns a collection
of µ matrices along with a permutation element which records how the components of the link were
permuted. Each matrix is 2×2 and records the images of the meridians and longitudes of the appropriate
component, along with the orientation of the ambient space. The effect of the map on the orientation εi
of the given component and the orientation ε0 of S3 is given by the rules below. Note that if the matrix
for one boundary torus indicates that the orientation on S3 is reversed, then so will the matrices for all
other boundary tori, since these matrices result from restricting a single map on S3.(

1 n

0 1

) (
−1 n

0 1

) (
1 n

0 −1

) (
−1 n

0 −1

)
⇓ ⇓ ⇓ ⇓

ε0 = 1, εi = 1 ε0 = −1, εi = 1 ε0 = −1, εi = −1 ε0 = 1, εi = −1

Using these rules, it is easy to extract Σ(L) from SnapPy. We computed the symmetry group for
all 77,036 two-component hyperbolic links of 14 and fewer crossings in SnapPy’s database. Table 2
shows the census of symmetry groups of hyperbolic links found using SnapPy. The data file containing
the Whitten group elements for these links is included in the Arxiv data repository and it is a future
project to incorporate our computational techniques into SnapPy.
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There are 293 non-hyperbolic two-component links with up to 14 crossings in Thistlethwaite’s
link table. For these links, we were unable to compute the symmetry groups using SnapPea. We
were able to get partial information about the symmetry groups using the Mathematica package
KnotTheory [8]. For each link L and each Whitten group element γ, we computed a number of
invariants of L and Lγ in an attempt to rule out γ as an element of Σ(L). To rule out “exchange”
symmetries, we applied two tests. First, we computed the Jones polynomials of each component of L
to try to rule out exchanges between components of different knot types. If that failed, we turned to the
“satellite lemma”, which we use often in [6].

Lemma 3.2 Suppose that L(K, i) is a satellite of L constructed by replacing component i with a knot or
link K. Then L cannot have a pure exchange symmetry exchanging components i and j unless L(K, i)

and L(K, j) are isotopic.

Proof: Such a pure exchange would carry an oriented solid tube around Li to a corresponding oriented
solid tube around Lj . If we imagine K embedded in this tube, this generates an isotopy between L(K, i)

and L(K, j). �

The point of this lemma is that we can often distinguish L(K, i) and L(K, j) using classical invariants
which are insensitive to the original labeling of the link. In our computations, we replaced component
i of L and Lγ with a (2, 2i) torus link (for i > 0) and compared the Jones polynomials of the resulting
links. An example is shown in Figure 2.

Figure 2. The link 72
6 (or 7a1 in Thistlethwaite’s notation) has two unknotted components

with linking number zero. To decide whether this link admits a pure exchange symmetry,
we construct two satellite links. The center link has one component replaced by a Hopf
link while the other is unframed, while the right link has the other component replaced by
a Hopf link. If the original 72

6 admits a pure exchange symmetry, these satellites would be
isotopic. However the Jones polynomial of the center link is a10 − 2a9 + a8 − a6 + 2a5 −
a4 − 1

a4
+ 2a3 + 1

a3
+ 1

a2
− 1

a
+ 2 while the Jones polynomial of the right-hand link is

a7 − 2a6 + 2a5 − 2a4 + 2a3 − 1
a3

+ a2 + 2
a2
− 2

a
+ 3. This proves that 72

6 does not admit a
pure exchange symmetry.

Ruling out elements of the Whitten group using these methods gave us a subgroup of Γ2 guaranteed
to contain Σ(L). We found 9 links with Σ(L) < Σ4,1, 89 links with Σ(L) < Σ4,2, 194 links with
Σ(L) < Σ2,1 and 1 link with Σ(L) < Σ8,1. Consulting the subgroup lattice of Γ2 along with Table 2, we
saw that only this last link, the 194th 14-crossing two component non-hyperbolic link in Thistlethwaite’s
table, might have had a new symmetry group which was not already represented by a hyperbolic link.
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The potential group was Σ4,4 < Σ8,1. However, rearranging the diagram as in Figure 3 ruled out Σ4,4 by
revealing a pure exchange symmetry.

Figure 3. The 194 th non-hyperbolic two-component link with 14 crossings in Thistleth-
waite’s table has Σ(L) < Σ8,1 according to our polynomial and satellite lemma calculations.
The original diagram of this link is shown at left. Since Σ4,4 < Σ8,1, this link could have the
“missing” symmetry group Σ4,4. However, rearranging the diagram as shown on the right
reveals that this link has pure exchange symmetry. Since pure exchange is not part of Σ4,4,
we see that this link cannot be an example of a link with Σ4,4 symmetry.

Having obtained supergroups of the Σ(L) groups for these non-hyperbolic links, we turned to
obtaining subgroups of Σ(L). To do so, we viewed each diagram as a polyhedral decomposition of
the 2-sphere and enumerated the combinatorial symmetries of each polyhedron using Mathematica.
Those symmetries which extended to symmetries of the link after crossing information was taken
into account were classified according to the Whitten element they represented. We called these
diagrammatic symmetries of each link. Of course, different diagrams are expected to reveal additional
symmetries, so the diagrammatic symmetry group of a diagram of a link is only a subgroup of Σ(L).
In most cases, we still have a number of potential symmetries which may or may not be present for the
link. However, we found 70 cases where the diagrammatic symmetry groups represented all of Σ(L)

since they agreed with the “supergroups” computed earlier: 6 links with Σ(L) = Σ4,1, 4 links with
Σ(L) = Σ4,2, and 60 links with Σ(L) = Σ2,1.

4. Examples of Links with Particular Symmetry Groups

Table 1 lists examples of prime, nonsplit links by their intrinsic symmetry groups. We present
examples for 21 of the 27 different symmetry groups.

The example links for the groups {id} and Σ8,5 were originally found by Hillman [7]. He listed
examples for many of the 12 subgroups that do not include i1 or i2 in that paper as well. The examples
for the groups Σ8,1, Σ8,2, Σ4,1, Σ4,2, and Σ2,1 were generally known; for example, proofs that these links
exhibit the given symmetry groups are found in [6].

The examples for 〈ρ〉, 〈mρ〉 and Σ8,7 are found in Figure 4 and are new to the literature; we prove that
these symmetry groups are correct below. All other examples have been found using SnapPea and are
new to the literature.
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Figure 4. Three new example links for symmetry groups, not found using SnapPea. From
left to right, these links exhibit the symmetry groups 〈ρ〉, 〈mρ〉 and Σ8,7.

Theorem 4.1 The three links in Figure 4 possess the symmetry groups 〈ρ〉, 〈mρ〉 and Σ8,7, respectively.

Proof: The link on the far left in Figure 4 is comprised of two components of 932, while the link in
the center is comprised of knots 932 and 9∗32. The knot 932 has no symmetry, therefore the only possible
nontrivial symmetries for these links are ρ andmρ respectively. These two links achieve said symmetries
through a 180 degree rotation about a line perpendicular to the page.

The two components of the link 10n59 in the far right in Figure 4 are a left- and a right-handed
trefoil (31 and 3∗1). Since the trefoil is not mirrorable, we cannot mirror link 10n59 without permuting
components, and vice versa. Therefore its symmetry group is a subgroup of Σ8,7 = 〈i2,mρ〉. The link
exhibits the mρ symmetry through a 180 degree rotation about a line perpendicular to the page; Figure 5
shows it also admits the symmetry i2. Thus, Σ(10n59) = Σ8,7. �

Figure 5. An isotopy diagram showing that link 10n59 admits symmetry i2—we may reverse
the orientation of the second component.
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5. Intrinsic Symmetry Groups of Alternating Links

Alternating, nonsplit two-component links only have 12 possible intrinsic symmetry groups;
15 groups will never occur when the link is alternating. To understand why, we will utilize a
property of Conway polynomials [9]. Though this result is classically known, we provide a proof here
for completeness.

Lemma 5.1 Let L be a link with c components. Consider a symmetry γ = (−1, ε, ε, . . . , ε, p) that
reverses the orientation of either all or no components of L. Then, the Conway polynomial of L changes
sign according to the formula∇(Lγ) = (−1)c+1∇(L).

Proof: We shall proceed by induction on the number of components. For knots (c = 1), this is well
known. Let γ be defined as above. Let K be one of the components of L. Resolve each of the n
overcrossings that K has with the other components of L according to the skein relation of the Conway
polynomial; similarly, resolve the corresponding n undercrossings in Lγ . As this will turn every crossing
K has with L or Lγ into over or under crossings, we eventually get down to split links L−K and Lγ−K.
We obtain

∇(L) = (−1)i1z∇(L0,1) + (−1)i2z∇(L0,2) + · · ·+ (−1)inz∇(L0,n) +∇(L−K)

and

∇(Lγ) = (−1)i1+1z∇(Lγ0,1) + (−1)i2+1z∇(Lγ0,2) + · · ·+ (−1)in+1z∇(Lγ0,n) +∇(Lγ −K)

where ij = 0 or 1 if the jth over crossing of K in L was a +1 crossing or a −1 crossing, respectively.
As L−K and Lγ−K are split,∇(L−K) = ∇(Lγ−K) = 0. Moreover, every crossing we resolved

was an intercomponent crossing, so L0,j is a link with c − 1 components for every j; therefore by the
inductive hypothesis,∇(L0,j) = (−1)c∇(Lγ0,j).

We thus have

∇(L) = (−1)i1+cz∇(Lγ0,1) + (−1)i2+cz∇(Lγ0,2) + · · ·+ (−1)in+cz∇(Lγ0,n)

= (−1)c+1∇(Lγ)

�

This lemma rules out four possible symmetries for nonsplit, alternating two-component links L.
Recall that the Conway polynomial does not vanish for nonsplit, alternating links. Thus such a link
L cannot admit a symmetry of the form (−1, ε, ε, p). Only 12 subgroups of Γ2 fail to contain one
of the four elements of this form; the other 15 groups cannot be symmetry groups for an alternating
two-component link, which proves the following proposition.

Proposition 5.2 Only 12 intrinsic symmetry groups are possible for alternating, nonsplit two-component
links. These 12 groups may be viewed as a subdiagram of Figure 1: they form the order ideal generated
by two groups, Σ8,1 and Σ8,2, i.e., these two groups and all of their subgroups.

Alternating examples appear in Table 1 for all but one of these 12 groups; the exception is Σ4,4, where
no example, alternating or not, is known.
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6. Future Directions

We have found prime, nontrivial examples for 21 of the 27 possible intrinsic symmetry groups of
two-component links. Do examples exist for the 6 remaining subgroups? In considering links of 14 or
fewer crossings, our exhaustive approach has not captured the full complexity of possible link structures.
It seems possible that some of the missing groups, especially the smaller ones, will appear among links
of 20 or fewer crossings. For instance, examples for three groups (Σ4,8,Σ4,10,Σ4,11) appeared first for
14-crossing links; perhaps examples of links with the three missing groups of order four will appear
“soon” in the tables. In particular, we conjecture that there is an alternating link with symmetry group
Σ4,4, which would complete the set of examples for alternating, nonsplit two-component links.

More interesting is the search for nonsplit links with full symmetry. The unlink with µ components
possesses full symmetry; to date no nonsplit examples are known. A two-component link L with
symmetry group Σ(L) = Γ2 must have linking number zero and be nonalternating; its two knot
components must be of the same knot type, which itself must possess full symmetry. We are compelled
to put forth the following conjecture.

Conjecture 6.1 There does not exist a prime, nonsplit two-component link with full symmetry.

Another project is to extend our catalog of the relative frequencies of different intrinsic symmetry
groups. To date, we have only approached hyperbolic two-component links of 14 or fewer crossings;
raising the number of components is an obvious next step. However, searching for the intrinsic symmetry
groups of links with more components becomes more daunting, as the number of such groups rises
considerably; see Table 3. Few examples of intrinsic symmetry groups are known for µ-component links
for µ ≥ 3; we found a handful in [6]. However, using SnapPy, searching for examples and developing
a catalog of frequencies seems like an approachable problem.

Table 3. The number of subgroups of Γµ, as computed by Magma. Each one represents a
different intrinsic symmetry group possible for a µ-component link.

# subgroups
µ |Γµ| # subgroups

(up to conjugacy)

1 4 5 5
2 16 35 27
3 96 420 131
4 768 9,417 994
5 7,680 270,131 6,382
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